
Symbolic Logic

John W. Snow

c©2009-2015 John W. Snow
All Rights Reserved

Contents

Preface . iii

1. Introduction . 1

2. An Incomplete History . 7

3. Sentential Languages . 13

4. Truth Values . 27

5. Implication . 35

6. Logical Equivalence . 41

7. Switching Networks . 55

8. Deduction . 61

9. Soundness, Completeness, and Compactness 73

10. Temporary Assumptions . 81

11. Arguments .87

12. Three Valued Logic . 91

13. Recursion and Induction . 95

14. Phrase Structure Grammars . 107

15. Predicate Logic . 113

16. Implication and Deduction .121

17. Sets . 129

18. Relations . 137

19. Models . 141

20. Some Geometry . 153

21. Basic Proof Techniques . 157

22. The Natural Numbers . 167

23. Incompleteness . 177

24. Cardinality . 187

25. Machines . 193

26. Computability . 209

i

ii

Preface

These are notes for a course in Mathematical Logic for Liberal Arts
Students. The notes are designed for students with little to no math-
ematical background. In making these notes I had these specific goals
in mind:

• The class should be a math class involving theorems and proofs.

• The class should expose students to the process of doing mathe-
matics and the manner in which Logic in particular has developed
over time.

• The class should address these ideas: formalization of language,
sentential and propositional logic, logical equivalence, implica-
tion, proof, completeness, soundness, computability, Gödel’s In-
completeness Theorems, cardinality, the Halting Problem.

• The class should communicate that Logic is interesting from
mathematical, utilitarian, aesthetic, and philosophical perspec-
tives.

• The class should be accessible to motivated undergraduates who
are unaware of the definition of “function.”

I considered many texts which are already in print for this class. The
reason that these notes exist is that the texts I previewed all fell into
one of these categories:

• “Real” Mathematical Logic Texts: There are a variety of
good Logic books for mathematics majors. I needed a book which
assumed no background.

• Handbooks on Proof: There are several books that do a good
job of describing how to use rules of inference. Some of these

iii

even discuss completeness and soundness in understandable ways.
None of the books I considered in this category covered all of the
material I wanted in the class.

• General Audience Books on “How to Think”: There are
some very good survey books on Logic. I found them to be largely
non-mathematical discussions of mathematical topics.

The mathematician who reads these notes will probably find them
inadequate at best, but they are appropriate for my intended audi-
ence (in my humble opinion). Some statements in the notes have been
weakened from their full mathematical strength. Others are necessar-
ily somewhat imprecise due to the target audience. Proofs of theorems
are largely outlined or discussed in vague details.

I decided that I would begin the study of Logic by addressing sen-
tential logic in some detail. The processes we use in sentential logic are
then repeated in much less detail for first order predicate logic. The
discussion becomes less precise as the topics become more involved.

As with most texts, there is nothing original mathematically in
these notes. Most of this material can be found in most textbooks on
mathematical logic (though usually at at higher level.) Some specific
suggestions for further reading include:

• Barwise, Jon, and H. Jerome Keisler. Handbook Of Mathematical
Logic. Amsterdam: North-Holland Pub. Co., 1977.

• Chang, Chen Chung, and H. Jerome Keisler. Model Theory. Am-
sterdam: North-Holland Pub. Co., 1973.

• Enderton, Herbert B. A Mathematical Introduction to Logic. San
Diego, CA: Academic Press, 2001.

• Halmos, Paul R., and Steven R. Givant. Logic As Algebra. Wash-
ington, D.C.: Mathematical Association of America, 1998.

• Lyndon, Roger C. Notes On Logic. Princeton, NJ: Van Nostrand,
1966.

• Mates, Benson. Elementary Logic. New York: Oxford University
Press, 1965.

• Tarski, Alfred. Introduction To Logic and to the Methodology of
Deductive Sciences. New York: Oxford University Press, 1965.

iv

Chapter 1

Introduction

Logic is the study of how we reason and draw conclusions. At the heart
of logic are the questions: What is true? How does one truth follow
from another? How can we decide what is or is not true? To address
questions like these, we first need to address what types of things can
be true. We assign the quality of being true or false to sentences or
statements. Our natural language has rules which govern what is or
is not a grammatically correct sentence. Among these grammatically
correct sentences, some can be given a truth value while others cannot.
Among those that have truth values, some are true while others are
false.

The rules governing natural language are complex and ever-changing.
To study logic and how we think, mathematicians create formal lan-
guages governed by clearer and more explicit rules. These formal lan-
guages are a shadow of the natural language and can be used to describe
how we think and communicate in the natural language.

In the sections that follow, we will use a variety of symbols to
approximate and study language and truth. We will let capital letters
such as P , Q, A, and B represent declarative sentences which may have
truth values. We will also use symbols for special words which are used
in English to form compound sentences:

symbol meaning

∨ or
∧ and
¬ not
→ if...then..

These symbols are called logical connectives. We will use Greek letters

1

2

such as α, β, and γ to represent compound sentences formed by com-
bining our simple sentence symbols with these logical connectives. We
use these sentences to build formal languages in which we can analyze
how to reason. Within these languages, we will address questions such
as:

• How do the logical connectives affect truth?

• How do the truth values of simple sentences affect the truth value
of a compound sentence in which they appear.

• How can a collection of sentences which are truth force another
sentence to be true?

• How can we determine and demonstrate mechanically that the
truth of a collection of sentences forces another sentence to be
true.

• Can we mechanically determine what is and what is not true?

In the process of this analysis, we will sometimes view our formal
languages from within – as if we live in a small, precise world in which
all reasoning is absolutely rigorous. We will also sometimes view the
languages from without. In this case, we will discuss the formal lan-
guage in our less precise natural language. Sometimes, we will be able
to prove things about a language from within the language. Sometimes,
we will be able to give convincing arguments in our natural language for
properties of the formal language. The tools we develop here for proof
and verification will be quite powerful in many respects, but they are
limited. We will discuss some of their mathematical limitations at the
end of the course in the sections on Incompleteness and Computability.

The first part of these notes will work in the realms of senten-
tial logic. Sentential logic provides very restrictive, precise formal lan-
guages where we can study reasoning quite thoroughly. This precision
comes at a price – the descriptive power of sentential logic (how easy
it is to communicate and what can be described) appears quite lim-
ited compared to our natural languages. The basic building blocks of
sentential logic are whole sentences. These are put together with the
words and, or, not, and implies.

In the second part of these notes, we move up from sentential logic
to predicate logic. Predicate logic expands the tools of sentential logic

3

Figure 1.1: Formal languages are used to study how we reason in
natural language. Sentential languages offer precision at a compromise
of expressive power. Natural language offers a great deal of expressive
power but can be terribly vague.

to include mechanisms that mimic verbs and nouns. It also adds quan-
tifiers to act as the words “for all” and “there exist.” Predicate logic
provides languages with (apparently) more descriptive power which
are more complex than sentential languages. We will have tools called
instantiation and generalization that allow us to move between pred-
icate and sentential logic when reasoning. All deduction (drawing of
conclusions) and most computation of truth values actually occur in
sentential logic. Many formal descriptions of mathematical ideas oc-
cur in predicate logic. Discussions about these ideas and conclusions
occur in an environment closer to our natural language. These levels
of language are depicted in Figure 1.1.

4

1.1 Examples for Thought

We begin by considering a handful of logical statements and arguments
to whet your appetite.

The Liar’s Paradox

The Liar’s Paradox was formally introduced by Eubulides in the
fourth century BC. If a man says, “I am lying to you,” then what are
we to think? If we think he is telling the truth, then that means he
is lying. But then he cannot be telling the truth. If we think that he
is not telling the truth, then what he says is says is false. This means
that he is not lying and is in fact telling the truth. This problem has
been a fascination of logicians for almost two and a half millenia.

Eubulides is not the first author to record statements like the Liar’s
Paradox. Around the sixth century BC, Epimenedes wrote that, “Cre-
tans are always liars.” The Apostle Paul calls attention to this in
Titus 1:12. The odd thing here is that Epimenedes was a Cretan.
Had Epimenedes said, “All Cretans always lie,” we would have a clear
version of the Liar’s Paradox.

About the time of Epimenedes, the Psalmist wrote in Psalm 116:11,
“All men are liars.” This again comes close to the Liar’s Paradox.

The Resurrection of the Dead

The next argument we consider is offered by Jesus in Mark 12 as
an argument in favor of the resurrection of the dead.

And as for the dead being raised, have you not read in
the book of Moses, in the passage about the bush, how God
spoke to him, saying, ‘I am the God of Abraham, and the
God of Isaac, and the God of Jacob’? He is not God of
the dead, but of the living. You are quite wrong.” (Mark
12:26-27, ESV)

Apparently, because God is the God of Abraham, Abraham must be
alive at the time this is spoken. However, Abraham had previously
died (Genesis 5:28). Thus he must have been raised from the dead.

Marcion

The second century Christian heretic Marcion believed the God
of the Old Testament and the God of the New Testament were two

5

different Gods. Here is an argument to support this stance1:

The God of the New Testament cannot be the God of
the Old Testament. In John 1:18, Jesus says, “No one has
ever seen God.” However, according to Exodus, Moses and
others did see God:

Then Moses and Aaron, Nadab, and Abihu,
and seventy of the elders of Israel went up, and
they saw the God of Israel. There was under his
feet as it were a pavement of sapphire stone, like
the very heaven for clearness. (Exodus 24:9-10,
ESV)

Is there a God?

Our next argument is an argument for the existence of God. Vari-
ants of this argument are known as the ontological (existence) argu-
ment. The argument goes something like this: God is that beyond
which nothing greater can be imagined. If God did not exist, then we
could imagine another God, God 2.0, that did exist. This imagined
God 2.0 would then be even greater than God (now rendered to the
obsolete designation God 1.0). But then we have imagined God 2.0 to
be greater than that beyond which nothing greater can be imagined.
Thus, we would have a contradiction if God did not exist.

Omniscience

Next, we address a proof that God does not exist. We prove that
no one can be omniscient. First, we prove that Tyler is not omniscient
by giving an example of a sentence that Tyler cannot correctly know
to be true or false. The sentence is

Tyler knows that this sentence is false.

The “this sentence” refers to the sentence itself.

Suppose that Tyler correctly knows that this sentence is true. Since
he is correct, the sentence is true, and we should believe what it says -
that Tyler knows it is false. This is a contradiction since we assumed
that Tyler knows the sentence is true. This contradiction implies that
Tyler cannot correctly know the sentence to be true.

1This was probably not Marcion’s argument since it is based on John. Marcion
used Luke.

6

Suppose that Tyler correctly knows the sentence to be false. Since
Tyler is correct, the sentence must be false. But then what the sentence
says is false - Tyler does not know that the sentence is false. This is
again a contradiction. Tyler cannot know this sentence to be false.

Since Tyler cannot correctly know whether this sentence is true or
false, Tyler is not omniscient. There is nothing special about the name
“Tyler.” The same argument works with the insertion of any name.
Thus God is not omniscient, or there cannot be an omniscient God.
Therefore, if omniscience is one of our defining features of God, there
can be no God.

Proof and Truth
Finally, consider this sentence:

This sentence cannot be proven true.

The “this” in the sentence refers to the sentence itself. Now, suppose
that this sentence is false. Then, it cannot be that the sentence cannot
be proven true, so it must be that the sentence can be proven true.
However, this means that the sentence is both true and false – which
simply cannot be. We conclude then that the sentence must be true.
Thus, we have a sentence which is true but (according to the sentence
itself) cannot be proven. But wait! Did we just prove the sentence to
be true?

Chapter 2

An Incomplete History

This section should probably be skimmed when one first reads these
notes and then be read in more detail after one has thoroughly read
through all of the notes. We do not pretend the history listed below is
exhaustive. We only intend to provide an outline to mention some of
the main figures and concepts that have helped to mold mathematical
logic. We note that this is intended to be a brief summary of the history
of mathematical logic. The realms of mathematics, science, philosophy,
and logic are at times difficult to separate historically.

The first written discussions of logic seem to be from the Dissoi
Logoi (Double Arguments) from around 400 B.C. This writing includes
a debate over whether truth is a temporal or atemporal quality. It
also includes discussions that witness to the awareness of complications
involved with self-referential statements. This issue with self-referential
statements is a recurring theme throughout the history of logic.

Zeno of Elea (b. 490 B.C.) and Socrates (470-399 B.C.) were famous
for their debating abilities. Their tactics on occasion took advantage of
arguments similar to reductio ad absurdum (or proof by contradiction).
Zeno virtually used the rule of inference modus tollens in arguments of
the form “This implies that, but not that; so not this.”

Eubulides – a grand-student of Socrates – seems to be the first
to introduce the Liar’s Paradox. The man who says “I am lying” is
neither lying nor telling the truth. If he is lying, then we should not
believe him and must conclude he is telling the truth. But if he is
telling the truth, then he must be lying. Self-referential sentences such
as these have plagued logicians for over two thousand years. They were
exploited by twentieth century mathematicians to prove deep theorems

7

8

about the power of logic and computation.
Plato (429-347 B.C.) instituted dialectic competitions – verbal de-

bates governed by rules – at the Academy. Patrons of these competi-
tions seemed to have at least studied the patterns of argument.

The first great logician by all accounts was Aristotle (384-322 B.C.).
Aristotle summarized the tools of the dialecticians and created his own
logic, which is usually called a “logic of terms” because it deals with the
relationships between terms such as “man” and “white.” The state-
ments in his syllogisms or arguments were originally all universal or
particular and affirmative or negative. For example:

Universal Affirmative All men are white.
Particular Affirmative Some men are white.
Universal Negative Not every man is white.
Particular Negative No man is white.

These types of statements are similar to those involving quantifiers in
predicate logic in the second part of these notes. Aristotle’s syllogisms
contained exactly two premises and a conclusion and up to three terms
such as:

For if A is predicated of (holds for) all B and B of all
C, it is necessary for A to be predicated of all C.

Here, the letters A, B, and C are variables for terms. This is the
first known use of variables in mathematics or science. Aristotle also
introduce modal logic. He considered that truth can be necessary, pos-
sible, contingent, or impossible – paving the way for multi-valued logic.
Aristotle’s logic was essentially the leading logic until the nineteenth
century. His school included the Peripatetics who wrote much but
basically preserved, refined, and expanded the ideas of Aristotle.

A follower of Socrates by the name of Euclid (not the geometer)
began the Megarian School. One of his students was Eubulides (father
of the Liar). A great-grand student was Zeno (336-264), the founder
of Stoicism. While Aristotle is heralded as the pre-eminent logician by
modern historians, ancient historians gave that stature to the Stoic lo-
gician Chrysippus (280-205 B.C.). Chrysippus and the Stoics invented
much of the propositional/sentential logic which we will discuss in the
first part of these notes. Their achievements and completeness in these
respects were not matched until Frege in the nineteenth century. They
developed the basic rules of inference such as Modus Ponens. A Stoic
description of such a rule would read something like:

9

If the first, then the second;
The first;
Therefore, the second.

Notice the clear use of first, second, etc. as variables. These variables
differ from those of Aristotle in that the Stoic variables are complete
propositions rather than just terms. The Stoics also seem to have been
obsessed with paradoxes such as the Liar. Chrysippus apparently wrote
whole volumes on them. Chrysippus was legendary in his own time for
his skills of deductions. He is reported as having written to a colleague,
“Just send me the theorems; I’ll find the proofs for myself.” He claimed
that rules of inference such as disjunctive syllogism were so natural that
even dogs are aware of them. Ancient historians declared, “If there is
any logic in Heaven, it is that of Chrysippus.”

One of the offshoots of the Megarian school was Diodorus Cronus
and his student Philo. They used truth assignments (as we will in
the first part of these notes) to define logical connectives. They are
credited with inventing the “material implication” – that a statement
of the form “if A then B” is false exactly when A is true and B is false.
This is an approach which modern mathematicians take and which was
debated by early logicians.

For the next millennium, historians declare that logicians did little
except to preserve the heritage of Aristotle and Chrysippus. This is the
first “Dark Age” of logic (if the time before Aristotle is to be ignored).
The next distinguished logician came in the form of indomitable de-
bater and scholar Peter Abelard (1079-1142 A.D.). Abelard created
his own system of propositional logic based on truth assignments com-
plete with rules of inference, logical implication, and a discussion of the
negation of quantifiers. In his logic, he focused much on the word “is.”
Many (most, all) statements which he considered could be phrased as
“A is B.” This is similar to Aristotle’s term relationships, but is closer
to predicate logic and set theory which would not take the stage until
the nineteenth century. Abelard is perhaps most well known for his
method of presenting an idea through a series of questions and answers
both for and against the idea (Sic et Non).

The most distinguished logicians of the fourteenth century were
William of Ockham (1295-1349), Jean Buridan (1300-1358), and an
anonymous writer called Pseudo Scotus. These writers developed a
theory of consequentiae (basic arguments or rules of inference). A
consequentia was defined to be sound if and only if it was not possible

10

for the antecedent to be true and the the consequent to be false. The
writing of these logicians masked the mathematical form of their rules
of inference. A simple rule of inference which employs variables could
be expressed as “P implies P or Q.” The same rule for these fourteenth
century logicians may read

There is a sound consequentia from either part of an af-
firmative disjunction to the affirmative disjunction of which
it is a part.

The Renaissance in the west and the rediscovery of ancient Greek
writings ironically ushered in a second dark age for logic. The clarity
of the the ancients was such that Renaissance scholars saw the works
of “modern” logicians as inferior. With the exception of Leibniz, there
seems not to have been a truly innovative logician for four hundred
years.

Gottfried Wilhelm von Leibniz (1647-1716 A.D.) was one of the
founding fathers of the Calculus. At the heart of twenty-first cen-
tury culture is technology. Technology is built upon science – largely
physics. Science and physics are dependent upon Calculus. With this
in mind, it is safe to say that Leibniz has made unmeasurable con-
tributions to the world today. His work in logic is at a tangent to
these magnificent contributions. As a teenager, Leibniz envisioned an
artificial language which could mirror thought and the process of im-
plication. This language could streamline communication, derivation,
and proof. After building an adding machine, Leibniz imagined a ma-
chine which would use his language and mechanical rules to perform
arithmetic with propositions to separate mechanically between truth
and falseness. Leibniz worked on developing his language, but it never
fully emerged. Later mathematicians would take up his concept of a
logical calculating machine. This, like the Liar’s Paradox, is a theme
which, once introduced, would remain.

The modern era of logic began with George Boole (1815-1864 A.D.)
and Augustus De Morgan (1806-1871 A.D.). These mathematicians
introduced the idea that one can use logical connectives (and, or, not,
if...then...) to do “arithmetic” with sentences and relations. Logic then
took on a more mechanical and mathematical tone than it had enjoyed
at any time in the previous two millennia.

Georg Cantor (1845-1918 A.D.), beginning with the word “is” (as
Peter Abelard) formally laid out the theory of sets – on which all of

11

modern mathematics would be built. In the process, he formalized the
notion of the infinite.

Gottlob Frege (1848-1925) can arguably be described as the greatest
modern logician – perhaps the foremost logician of all-time (but for our
affinity for Aristotle and that due to Chrysippus). In his Begriffsschrift
Frege essentially laid out the concepts of modern mathematical logic.
Using a formalized, axiomatic process, he developed sentential logic,
quantifiers and first order predicate logic, and he laid the foundation for
theory of positive integers. Moreover, he described how all of arithmetic
can be reduced to logic. While Boole and DeMorgan showed us that
logic really is mathematics, Frege showed us that mathematics (or,
at least arithmetic) really is logic. Many of the ideas of Frege were
simultaneously developed by Charles Sanders Peirce (1839-1914) in a
less systematic way.

About the same time that Frege was laying down the foundations
for modern mathematical logic Giuseppe Peano (1858-1932) was build-
ing off of the work Boole to construct his own system of mathematical
logic. One of his goals was to lay down rigid and complete axioms
from which the natural numbers (0,1,2,. . .) and their properties could
be derived. His system – usually called the Peano Axioms – form the
standard axiom system used today for the natural numbers.

The theory of sets laid out by Georg Cantor was not entirely ac-
ceptable. Bertrand Russell showed that it was susceptible to certain
paradoxes which we will entertain later. Russell and Alfred North
Whitehead (1861-1947) set out to remedy this situation in their Prin-
cipia Mathematica in which they sought to fulfill Frege’s program of
deriving all of mathematics from logic.

Kurt Gödel (1906-1978) proved in 1930 that the deductive logic of
Frege was complete – any logical implication could be proven in this
logical system. This could be read as a declaration of the power of
proof. However, Gödel also proved in 1931 that there are statements
true in the logic of the positive integers which cannot be proven from
the usual axioms. In fact, the statements true about positive integers
cannot be listed or described in any “nice” way. His proofs heavily
take advantage of self-reference. Related to these results, Alfred Tarski
(1901-1983) proved that in sufficiently complex logical systems, truth
cannot be defined or easily described.

In 1928, David Hilbert posed the Entscheidungsproblem (decision
problem), which asks if there is an algorithm which, for any math-

12

ematical proposition, would decide if that proposition were true or
false. Alan Turing (1912-1954) invented a theoretical computing ma-
chine which allowed him to formulate a definition of what it meant to
compute. He was able to prove that there is no algorithm to decide if a
program on one of his machines would run forever or eventually stop.
This answered Hilbert’s’s question. Turing’s solution (like Gödel’s) re-
lies on self-reference. Turing’s solution to the Entscheidungsproblem
came just on the heels of another solution by Alonzo Church (1903-
1995). The result of Alonzo Church proved that no algorithm exists to
decided the truthness of a proposition in arithmetic or in set theory.

Chapter 3

Sentential Languages

In this chapter, we discuss how to build sentences in a formal language.
Sentences will begin with symbols (usually letters A, B, . . .) that rep-
resent what can be thought of as simple sentences. We combine these
with logical connectives to form compound sentences. After we have
said how to build sentences, we will discuss how the truth values of the
simple sentence symbols affect the truth value of a compound sentence.

We will use a variety of words for the idea of a sentence in this
chapter. The words sentence, statement, and proposition all refer to a
declarative sentence which must be either true or false and not both.
We will also use the words formula and well-formed formula for the
mathematical counterpart (or representation) of a sentence.

3.1 Statements

We first address the question, “What types of things can be true?”
A chair cannot be true. An apple cannot be true. Truth is a quality
which is assigned to sentences – and not to every sentence at that. We
isolate our attention to those sentences which may be said to be true
or false. A statement is a declarative sentence which must be either
true or false and not both. Statements are also called propositions.
Here are some examples of statements (not all of these are true):

“The grass is green.”
“George W. Bush is the American president.”
“The number 2 is less than the number 1.”
“1+1=2”
“The sun will rise tomorrow.”

13

14

Here are some examples of things which are not statements:

“Go to bed.” (an imperative or command)
“The house on the hill” (not even a sentence)
“Is this a statement?” (an interrogative or question)
“Paul is tall.” (Since “tall” is relative, this might seem true
to some people and false to others. It is not strictly true or
false.)

3.2 Exercises

Which of the following are statements?

1. The brown and white dog ran down the long winding road.

2. True is spelled t-r-u.

3. This sentence is true.

4. This sentence is neither true nor false.

5. The old white house on the lonesome hill outside of town.

6. Feed the lazy dog on the porch once every day.

7. The clock is slow.

8. The car is slow.

9. The sentence “This sentence is false” is not a statement. Explain
why. Hint: What would happen if the sentence were true? What
would happen if it were false?

3.3 Assumptions

There are two underlying assumptions in our definition of a statement.
First, every statement must be either true or false. Second, no state-
ment is both true and false. That any statement must be either true
or false but not both is called the law of the excluded middle. The
choice of two truth values is almost arbitrary, but it is the way we per-
ceive the world to work. We will experiment with more truth values
later in Chapters 12 and 13.

15

3.4 Symbols

The work of mathematicians is largely to determine what is true and
what is false. The ambiguous nature of our spoken language can make
this task difficult. In order to avoid ambiguity, mathematicians use
symbols. As our first use of symbols we will be letting capital letters
represent statements. For example, we could let the letter P be the
statement “It is raining.” Then whenever we see a P , we think “It
is raining.” Of course, there are only twenty six capital letters in our
alphabet and many, many statements, so we will often use the same
letter to represent different statements in different problems.

3.5 Compound Statements

A single letter representing a statement will be called an atomic state-
ment. We can join atomic statements together with the words “and,”
“or,” “not,” and “implies.” These words will be called logical opera-
tors, and the more complex statements which are formed will be called
compound statements. To make compound statements, we will not
actually use the words, but symbols for the words. This is outlined in
the next few sections.

3.5.1 Conjunction

We will use the symbol ∧ to mean “and.” If P and Q are two state-
ments, then P ∧ Q is the new statement “P and Q.” For example, if
P is “It is raining,” and Q is “The grass is green,” then P ∧ Q is “It
is raining, and the grass is green.” The statement P ∧Q is called the
conjunction of the statements P and Q. The statement P ∧Q should
be true when both of the statements P and Q are true. Otherwise, it
should be false. We can sum this up in this truth table:

P Q P ∧Q
T T T
T F F
F T F
F F F

The first two columns of the table list all of the possible combinations
of truth values for P and Q. The third column gives the corresponding

16

truth value for P ∧Q. As we noted above, the only time when P ∧Q
is true is when P is true and Q is true.

In the English language, there are many ways of expressing P ∧
Q. Any statement which communicates that both P and Q are true
expresses P ∧Q. If P is “It is raining,” and Q is “The grass is green,”
then each of the following communicate P ∧Q:

“It is raining, and the grass is green.”
“It is raining, but the grass is green.”
“It is raining; however, the grass is green.”
“Even though it is raining, the grass is green.”
“While it is raining, the grass is green.”
“The grass is green, and it is raining.”

This last one is interesting; Q ∧ P seems to communicate the same
thing as P ∧Q.

3.5.2 Disjunction

We will use the symbol ∨ to mean “or.” If P and Q are two statements,
then the statement P ∨Q is “P or Q.” This is called the disjunction
of the statements P and Q. The statement P ∨Q will be true when P
is true, Q is true, or both are true. This can be expressed in a truth
table:

P Q P ∨Q
T T T
T F T
F T T
F F F

Again, the first two columns of the truth table list the all possible
combinations of truth values for P and Q (note that these are the
same as the first two columns for ∧ above). The last column gives the
corresponding truth value for P ∨Q.

3.5.3 Negation

We will use the symbol ¬ to mean “It is not the case that. . .” If P is any
statement then ¬P means “It is not the case that P .” For example, if
P is “It is raining,” then ¬P is “It is not the case that it is raining.”
In English, there are simpler ways of expressing this. The best choice
may be “It is not raining.” For simplicity, we will most often read ¬P

17

as “Not P.” A truth table for ¬ is easy to draw. If P is true, then ¬P
should be false. If P is false, then ¬P should be true:

P ¬P
T F
F T

The statement ¬P is called the negation of P .

3.5.4 Implication (Conditional)

We will use the symbol → to mean “implies.” If P and Q are state-
ments, then P → Q is “P implies Q.” We will often read this as “If P ,
then Q.” For example, if P is “I left my hat at home,” and Q is “It will
rain,” then P → Q could be read as “If I left my hat at home, then it
will rain.” To determine the truth values for this new logical operator,
it is useful to think of P → Q as a promise. Let P be the statement
“You win,” and let Q be the statement “We will go out to eat.” Then
P → Q is “If you win, then we will go out to eat.” Think of this as
a promise. The statement will be true when the promise is kept and
false if it is broken. There is only one way in which the promise may
be broken - if you win and we do not go out to eat. This is the case
where P is true and Q is false. Thus if P is true and Q is false, then
P → Q is false. Otherwise, the promise is not broken, so the statement
should be true. Here is the truth table:

P Q P → Q

T T T
T F F
F T T
F F T

As with conjunction, there are many ways of expressing implication.
Here are a few common ways of expressing P → Q:

“If P , then Q.”
“P implies Q.”
“Q, if P .”
“P only if Q.”
“Q follows from P .”
“Whenever P , Q.”
“Q, whenever P .”

18

“Not P unless Q.”
“P is sufficient for Q.”
“Q is necessary for P .”

The part of an implication which comes before the arrow is called the
antecedent or hypothesis. That which comes after the arrow is the
consequent or conclusion. Thus in B → K, B is the antecedent,
and K is the consequent. Notice in the last two statements on our
list that the antecedent is the sufficient part and the consequent is the
necessary part.

3.5.5 Bi-Implication

Sometimes we may want to express both P → Q and Q → P . We
could write this as (P → Q) ∧ (Q → P), but instead we introduce
the special symbol P ↔ Q. This is called the bi-implication or the
biconditional and is usually read as “P if and only if Q” or “P is
necessary and sufficient for Q.” Sometimes, this is abbreviated as “P
iff Q.”

3.6 Translations

Our logical operators can be applied repeatedly to atomic statements
to form more complex compound statements. Let L be “The lights are
on.” Let O be “The oven is on,” and let D be “The door is open.”
We can combine these statements with our logical operators to create a
multitude of compound statements. In doing so, we will use parenthesis
as punctuation to indicate order of operations.

For example, we could first form L ∧ O - “The lights are on and
the oven is on.” Then we could negate this statement to get ¬(L ∧O)
- “It is not the case that the lights are on and the oven is on.” In
English, the statement is not as clear as in symbols. In symbols, it is
clear that the ¬ applies to all of L ∧ O. In English, it sounds as if it
may just apply to the L - as in (¬L) ∧ O. In order make this clear,
we could translate ¬(L ∧O) as “It is not the case that both the lights
are on and the oven is on.” The “both. . .and. . .” act to join the two
simpler statements together. Now, we could take this new statement
and combine it with D with an “or” to get (¬(L∧O))∨D - “It is not
the case that both the lights are on and the oven is on, or the door

19

is open.” Notice that we placed parenthesis around the ¬(L ∧ O) to
communicate that the ¬ applies only to this part of the statement.

The best strategy for translating from symbols to words is use
parenthesis to locate the smallest compound statements within a state-
ment. Form these, then combine them with the appropriate logical op-
erators, using parenthesis as clues to punctuation and sentence struc-
ture. At each step along the way, it may be helpful to rephrase the
statements so they will be more readable in English.

For example, consider the statement (L∨O)→ (¬D). The simplest
compound statements are L∨O - “The lights are on or the oven is on”
- and ¬D - “It is not the case that the door is open.” The first of
these may sound better as “The lights or the oven are on.” The second
may better be written as “The door is not open,” or even “The door
is closed.” We combine these with an implication to get “If the lights
or oven are on, then the door is closed.”

3.7 Order of Operations

For the most part, we will always use parenthesis to indicate order
of operations in compound statements. The one exception we will
make to avoid too many parenthesis is to let ¬ take precedence over
all other operations. This means that unless a set of parenthesis is
in the way, we apply all ¬s first. For example, rather than writing
((¬P) ∧ (¬Q))→ (¬(R ∧ S)), we can write (¬P ∧ ¬Q)→ ¬(R ∧ S).

3.8 More Translations

Let L, O, and D be as above Here are some more examples of transla-
tions from words to symbols:

L ∧O The lights are on and the oven is on.

¬(L ∧O) It is not the case that both the lights are on
and the oven is on.

¬(L ∧O) ∨D Either it is not the case that both the lights
are on and the oven is on, or the door is open.

(L ∨O)→ ¬D If the lights or oven are on, then the door is
closed.

20

L→ (O ∨D) If the lights are on then either the oven is on
or the door is open.

¬(L→ D) It is not the case that if the lights are on then
the door is open.

(L∧D)∨(L∧O) Either the lights are on and the door is open
or the lights are on and the oven is on.

¬D ∨ (L→ O) The door is closed, or if the lights are on, then
the oven is on.

3.9 Exercises

Let M be “The moon is full.” Let A be “The alarm is set for 4:00
AM,” and let F be “Fred is going fishing in the morning.” Below are
compound statement using A, F , M . Translate each into words. (Try
to be creative).

1. F ∨ ¬A

2. ¬F ∧ ¬A

3. ¬(F ∨A)

4. F ∧ (M ∨A)

5. A ∧M ∧ F

6. (F ∧M) ∨ (F ∧ ¬M)

7. (M ∧A)→ F

8. ¬A ∨ (M → F)

3.10 Translating from words to symbols

We can also translate statements from words to symbols. Let S be
“The sun will rise in the morning.” Let C be “Candace leaves a candle
in her window,” and let D be “Doug passes his math test.”

21

Example 3.1: Translate this sentence into symbols:
“If Candace leaves a candle in her window or Doug
passes his math test, then the sun will rise in the
morning.”

We can identify the atomic statements C, D and S in the statement:

“If

C︷ ︸︸ ︷
Candace leaves a candle in her window or

D︷ ︸︸ ︷
Doug passes his math class

then

S︷ ︸︸ ︷
the sun will rise in the morning.

We notice the “or” and the “if. . .then. . .” in the statement and can
label them (notice we place the → over the “then”):

If

C︷ ︸︸ ︷
Candace leaves a candle in her window

∨
or

D︷ ︸︸ ︷
Doug passes his math class

→
then

S︷ ︸︸ ︷
the sun will rise in the morning.

Finally, we can use the structure of the sentence and punctuation to
determine placement of parenthesis. This gives:

If

(C︷ ︸︸ ︷
Candace leaves a candle in her window

∨
or

D)︷ ︸︸ ︷
Doug passes his math class

→
then

S︷ ︸︸ ︷
the sun will rise in the morning.

Thus our statement is (C ∨D)→ S.

The process is not always this straightforward since there are many
ways of expressing the logical operators in words.

Example 3.2: Translate this sentence into symbols:
“If Doug fails his math test, then in order for the
sun to rise tomorrow, it is sufficient that Candace
leaves a candle in her window.”

22

We notice the occurrence of ¬D, S, and C:

If

¬D︷ ︸︸ ︷
Doug fails his math test, then in order for

S︷ ︸︸ ︷
the sun to rise tomorrow,

it is sufficient that

C︷ ︸︸ ︷
Candace leaves a candle in her window.

We notice the “if. . .then. . .” and place an→ over the “then” and group
it by itself. The rest of the sentence seems to be a single unit, so we
place it in parenthesis:

If

¬D︷ ︸︸ ︷
Doug fails his math test,

→
then in order for

(S︷ ︸︸ ︷
the sun to rise tomorrow,

it is sufficient that

C)︷ ︸︸ ︷
Candace leaves a candle in her window.

What we have in parenthesis - “In order for S, it is sufficient that C”
- is an implication. The sufficient part is C, and we recall that the
sufficient part of an implication is the antecedent - what comes before
the arrow. Thus, what is in parenthesis is C → S. We draw the arrow
backwards here (←) to maintain the sentence structure.

If

¬D︷ ︸︸ ︷
Doug fails his math test,

→
then in order for

(S︷ ︸︸ ︷
the sun to rise tomorrow,

←
it is sufficient that

C)︷ ︸︸ ︷
Candace leaves a candle in her window.

Our statement is ¬D → (C → S). More examples are saved for the
exercises.

3.11 Exercises

Let F be the statement “The fox is more clever than the rabbit.” Let
R be “The rabbit is quicker than the fox,” and let C be “The fox will
catch the rabbit.” Write each of the following compound statements
using symbols:

1. The rabbit is quicker than the fox; however, the fox is more clever
than the rabbit and will catch the rabbit.

2. The fox is not more clever than the rabbit, and the rabbit is
quicker than the fox.

23

3. The rabbit is quicker than the fox, but the fox will catch the
rabbit anyway.

4. Although the fox is more clever than the rabbit, the fox will not
catch the rabbit.

5. If the fox is more clever than the rabbit or the rabbit is not
quicker than the fox, then the fox will catch the rabbit.

6. In order for the fox to catch the rabbit, it is sufficient that the
rabbit is not quicker than the fox.

7. For the fox to catch the rabbit, it is necessary that the rabbit is
not quicker than the fox.

8. While the fox is more clever than the rabbit, the rabbit is quicker
than the fox; hence, the fox will not catch the rabbit.

3.12 Sentential Languages

Our definition above of statement as a declarative sentence which must
be either true or false but not both is inadequate. To know what this
definition means, we would need first to define the notions of sentence,
declarative sentence, true, and false, and we would have to define what
it means for a sentence to be true or false. In this section, we outline
how to define the notion of statement in a rigorous way that avoids
these problems. To emphasize the formality, we will usually call a
statement a well-formed formula or a wff.

A sentential (propositional, statement) language is built on a set L
of (atomic) sentence symbols along with the symbols

∧,∨,¬,→,↔,), (

The symbols ∧,∨,¬,→,↔ are called logical connectives and have
intended interpretations in the English language. The parenthesis are
to be viewed as punctuation to force grouping. The sentence symbols
in L may have different interpretations in different environments. In
general, we can only be sure that they represent declarative sentences.
These symbols will usually be capital letters (sometimes adorned with
subscripts): A, B, P , Q, A1, A2, and so on. The intended interpreta-
tions of the logical connectives are given in Table 3.1.

24

connective name interpretation

∧ conjunction and
∨ disjunctions or
¬ negation not
→ conditional if...then...
↔ biconditional if and only if

Figure 3.1: Translations of the logical connectives.

An expression over L is a finite sequence (list) of symbols. Not all
expressions are meaningful. The expression

)↔ (

is meaningless. The expression

(P ∧Q)

can be read as “P and Q.”

Any meaningful expression – that is, any legal combination of sen-
tence symbols and logical connectives – we will call a sentence or propo-
sition or (most often) well-formed formula. Our first task is to define
formally what such an expression is. The description below is designed
specifically so that a machine could easily generate well-formed formu-
las and could easily check whether or not an expression is a well-formed
formula. We will abbreviate well-formed formula as wff and will often
use Greek letters to represent wffs. The wffs of a language with sen-
tence symbols L are defined as:

Well-Formed Formulas over L
1. Every sentence symbol in L is a wff.

2. If α and β are wffs, then so are

(¬α), (α ∧ β), (α ∨ β), (α→ β), and (α↔ β).

3. No expression can be a wff except for these reasons.

We call the sentence symbols in part 1 atomic wffs or atomic sen-
tences (or statements or propositions), while the wffs in part 2 of the

25

definition are called compound wffs or compound sentences (or state-
ments or propositions).

Notice that our definition of a wff over L refers to wffs. A definition
such as this is called a recursive definition. Recursive definitions often
allow for simple descriptions of complex systems that are built system-
atically from a given foundation. Recursive definitions also provide us
with a powerful proof technique call induction which we will explore in
Chapter 13.

Example 3.3: Suppose that L contains only the symbols P
and Q. List several wffs over L.

According to (1) in the definition of wff, the symbols P and Q are
wffs over L. These are the atomic wffs in the language. According to
(2), our language should also contain these wffs:

(¬P), (¬Q), (P ∧Q), (Q∧P), (P ∨Q), (Q∨P), (P → Q),
(Q→ P), (P ↔ Q), (Q↔ P)

Each of these would be considered compound wffs. To form more wffs
in the language, we can take each of the wffs we have listed so far
(including P and Q) and combine them with the operators to find wffs
such as these:

((¬P) ∧ (P → Q)), (¬(P → Q)), (P ∨ (P ↔ Q))

We can then repeat the process combining more and more complex
wffs.

3.13 Order of operations and abuse of notation

Using this formal definition seems to leave us with a lot of parenthesis
as in

(((¬A) ∨ (¬B))→ (¬C)).

The order of operations we introduced before helps to alleviate this
problem. We declare that ¬ takes precedence over all other operations,
and we will omit the parentheses at the beginning and end of compound
wffs. With these conventions, the wff above could be written in the
much more manageable form

(¬A ∨ ¬B)→ ¬C.

This is technically an abuse of notation, but it is a convention which
will make our lives a bit easier.

26

Chapter 4

Truth Values

In the previous chapter we informally declared how logical operators
should interact with truth values. In this chapter, we will make the
assignment of truth values more rigorous and show how to draw truth
tables for compound statements. First, we assume that we have two
values T and F . These represent the words true and false, but we
will never declare what those words mean. If we begin with a set L of
basic sentence symbols, we can assign a T or an F to each symbol. We
then will have rules (listed in the last chapter and listed again below
in another form) which will allow us to extend this truth assignment
to any wff in the sentential language over L.

4.1 Truth Assignments

A truth assignment for a sentential language built from the sentence
symbols in a set L is an assignment of either T or F to each of the
symbols in L. For each symbol P in L, s(P) denotes the truth value
assigned to P .

A truth assignment s on L can be extended to all wffs recursively.
Suppose that α and β are wffs whose truth values have been assigned.
Then

• s(¬α) =

{
T if s(α) = F
F else

Interpret this as saying that “not true” is “false” and “not false”
is “true.” This can be expressed by the equations ¬T = F and
¬F = T .

27

28

• s(α ∧ β) =

{
T if s(α) = s(β) = T
F else

The only way a conjunction can be true is for both parts of the
conjunction to be true. That is, T ∧ T = T but T ∧ F = F and
F ∧ T = F and F ∧ F = F .

• s(α ∨ β) =

{
F if s(α) = s(β) = F
T else

The only way a disjunction can be false is if both halves are false.
That is, F ∨F = F but T ∨T = T and T ∨F = T and F ∨T = T .
Note that our “or” is an inclusive or. The statement α∨β means
for us, “α or β or both.” Some (computer scientists for example)
prefer an exclusive or which would mean “α or β but not both.”

• s(α→ β) =

{
F if s(α) = T and s(β) = F
T else

These truth values are easiest to follow if we think of implication
as a promise. Think of α → β as the promise, “I promise that
if α is true then so is β.” The implication is true as long as the
promise is not broken. There is only one way for the promise to
be broken – if α is true but β is false. In particular, if α is false,
then the promise cannot be broken (the implication is true). If β
is true, the promise cannot be broken (the implication is true).

• s(α↔ β) =

{
T if s(α) = s(β)
F else

The biconditional α ↔ β means (α → β) ∧ (β → α). It is true
when α and β have the same truth value.

These definitions can be summarized in operation tables as in Figure
4.1. Our five logical connectives, their interpretations, and their effects
on truth values are summarized in Figure 4.2.

Example 4.1: Suppose that L contains the symbols A, B, C,
and D and that s is a truth assignment on L so that s(A) =
s(C) = s(D) = T and s(B) = F . Calculate

s(¬((A→ B) ∨ ¬(C ∧B))).

We will perform this calculation two ways. First, we will follow
the recursive definitions above. Then we will calculate the truth values
by performing arithmetic on truth values. The second approach is
probably simplest, but we need to first to see how the definitions apply.

29

∨ T F

T T T
F T F

∧ T F

T T F
F F F

→ T F

T T F
F T T

↔ T F

T T F
F F T

Figure 4.1: The effects of the five logical connectives on truth values.

Since s(A) = s(C) = s(D) = T and s(B) = F , then s(A→ B) = F
and s(C ∧ B) = F . Since s(C ∧ B) = F , then s(¬(C ∧ B)) = T .
We can combine s(A → B) = F and s(¬(C ∧ B)) = T to see that
s((A → B) ∨ ¬(C ∧ B)) = T . Finally, we can negate this to get
s(¬((A→ B) ∨ ¬(C ∧B))) = F .

Now we perform some arithmetic to arrive at the same conclusion.
We will first treat the basic symbols as variables and substitute their
truth values. We will then calculate with the truth values one step
at a time as outlined by the tables in Figure 4.1. At each step in the
following computation, we will underline the portion on which we are
about to compute to make the arithmetic easier to follow.

¬((A→ B) ∨ ¬(C ∧B)) = ¬((T → F) ∨ ¬(T ∧ F)))

= ¬((T → F) ∨ ¬F)

= ¬((T → F) ∨ T)

= ¬(F ∨ T)

= ¬T
= F.

4.2 Exercises

Find the truth values of the following statements.

1. (P ∨Q) ∧ (P ∨R) if P is false, Q is true, and R is true.

30

2. ¬(¬P ∧ (Q ∨ ¬R)) if P is false, Q is false, and R is true.

3. (¬P ∧ ¬Q) ∨ (P ∨Q) if P is false and Q is true.

4. ¬(P ∨Q) ∧ (P ∨ ¬Q) if P is true and Q is false.

5. If the sun rises in the east, then it sets in the west.

6. In order for the sun to set in the west, it is necessary for it to rise
in the east.

7. In order for the sun to set in the north, it is sufficient for it to
rise in the west.

8. If I clap three times, the sun will rise tomorrow.

9. The sun rises in the east only if it sets in the north.

10. The sun rises in the south if and only if the sun rises in the north.

11. Suppose P and Q are statements (it does not matter what they
are). Write a compound statement using P and Q which is always
true. (You do not have to use both P and Q if you do not need
to.)

12. Suppose P and Q are statements (it does not matter what they
are). Write a compound statement using P and Q which is always
false. (You do not have to use both P and Q if you do not need
to.)

13. Suppose P and Q are statements. Use logical operators to write
the statement: “P is true, or Q is true, but not both.”

14. Suppose P , Q, and R are statements. Use logical operators to
write the statement: “Exactly two of P , Q, and R are true.”

4.3 Truth Tables for WFFs

If our set L of sentence symbols is small we can display the effects of
all truth assignments on a particular wff at once in a table we call a
truth table. We domonstrate this with an example.

Example 4.2: Draw a truth table for the wff (P∨Q)∧(¬P∨Q).

31

The first columns of the table will be labeled P and Q. After this,
we will have a column for each logical connective that appears in our
wff. The columns should be ordered so that there is a column for each
argument of the connective before the column of that connective. Our
table should have columns labeled by P , Q, ¬P , P ∨Q, ¬P ∨Q, and
(P ∨Q) ∧ (¬P ∨Q). One might call these the subformulas of our wff.

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

The formulas are single letters on the extreme left. They get more
complicated as we move toward the right until we reach the entire
statement. Now, the first two columns will list all possible assignments
of truth values for P and Q. Each row corresponds to a different truth
assignment.

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

T T
T F
F T
F F

We next fill in the column for ¬P . These truth values should be exactly
opposite those for P . The column for P ∨ Q should have an F where
P and Q are both F . Otherwise, there is a T in this column. Filling
in these two columns gives

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

T T F T
T F F T
F T T T
F F T F

Fill in the column for ¬P ∨ Q by applying ∨ to the columns for ¬P
and Q.

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

T T F T T
T F F T F
F T T T T
F F T F T

32

Finally, apply ∧ to the last two columns to get the truth values for the
entire statement. T ∧ T = T , and everything else is false.

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

T T F T T T
T F F T F F
F T T T T T
F F T F T F

Each row of this table corresponds to a truth assignment. For example,
the second row corresponds to the assignment s where s(P) = T (P is
true) and s(Q) = F (Q is false). With this assignment, s((P ∨ ¬Q) ∧
(¬P ∨Q)) = F (that is, (P ∨ ¬Q) ∧ (¬P ∨Q) is false).

Example 4.3: In the language with sentence symbols A, B,
and C, draw a truth table for the wff (A ∧B)→ ¬C.

We need columns for A, B, C, A ∧B, ¬C, and the whole formula.
To get every possible combination of truth values for A, B, and C, we
need eight rows. We then fill in the other columns as we did above to
get

A B C A ∧B ¬C (A ∧B)→ ¬C
T T T T F F
T T F T T T
T F T F F T
T F F F T T
F T T F F T
F T F F T T
F F T F F T
F F F F T T

4.4 Exercises

Draw truth tables for each of these

1. ¬P ∨ ¬Q

2. ¬(P ∧Q)

3. ¬P ∨Q

4. ¬B → ¬A

5. A ∧ (B ∨ C)

6. (A ∧B) ∨ (A ∧ C)

33

name symbol truth table meaning

negation ¬α
α ¬α
T F
F T

not α

conjunction α ∧ β

α β α ∧ β
T T T
T F F
F T F
F F F

α and β

disjunction α ∨ β

α β α ∨ β
T T T
T F T
F T T
F F F

α or β

conditional α→ β

α β α→ β

T T T
T F F
F T T
F F T

if α then β

biconditional α↔ β

α β α↔ β

T T T
T F F
F T F
F F T

α iff β

Figure 4.2: Logical connectives and their effects on truth values.

34

Chapter 5

Implication

There are a variety of manners in which we might define the notion of
one sentence α implying another sentence β. Some options are:

• Whenever a truth assignment makes α true, then it also makes
β true.

• The wff α→ β is a always true.

• β can be derived from α via some pre-defined algebraic rules of
proof.

We begin a look at the first two options in this chapter. We will
consider the other option and the relationship between these options
later.

5.1 Tautology

A compound statement which is always true regardless of the truth
values of the atomic statements involved is called a tautology. The
standard example of a tautology is P ∨¬P . Any statement P is either
true or false. This means that one of P and ¬P must always be true.
Hence, P ∨¬P must be true. We can draw a truth table to verify this:

P ¬P P ∨ ¬P
T F T
F T T

We see that the last column consists of only T ’s. This is the tell-tale
sign of a tautology. Another less obvious example of a tautology is

35

36

(¬A ∨ B) → (A → B). To show this statement is a tautology, we can
simply draw a truth table and see that the final column contains only
T ’s.

A B ¬A A→ B ¬A ∨B (¬A ∨B)→ (A→ B)

T T F T T T
T F F F F T
F T T T T T
F F T T T T

5.2 Contradiction

A compound statement which is always false regardless of the truth
values of the atomic statements involved is called a contradiction.
The standard example of a contradiction is P ∧ ¬P . Since P and ¬P
will always have opposite truth values, they can never both be true, so
P ∧ ¬P must be false. Here is the truth table

P ¬P P ∧ ¬P
T F F
F T F

To show that any other statement is a contradiction, you may draw a
truth table for the statement and see that the final column is all F ’s.

5.3 Logical Implication

Suppose that Σ is a set of wffs in a sentential language and that α is
any wff in the same language. If a truth assignment s forces α to be
true, then we will write s |= α (so, s |= α means the same as s(α) = T).
If a truth assignment s forces every wff in Σ to be true, then we write
s |= Σ. This is read as “s satisfies Σ.”

We say that Σ logically implies α if whenever s is a truth assignment
so that s |= Σ, then also s |= α. In symbols, we write this as Σ |= α.
This is read as “Σ implies α” or “Σ entails α.” If Σ contains only a
single sentence β (so Σ = {β}), we will write β |= α. If Σ along with a
wff α together imply β, then we write Σ, α |= β.

If α is true for every truth assignment, then α is called a tautology,
and we write |= α (meaning the empty set of sentences implies α). An
example of a tautology is P ∨ ¬P .

37

At the opposite extreme from a tautology is a contradiction. A wff
α is a contradiction if s(α) = F for every truth value assignment s. An
example of a contradiction of P ∧ ¬P .

Suppose that α and β are wffs in a sentential language. Below are
some examples of entailment.

Example 5.1: Modus Ponens: {α→ β, α} |= β.

This is our most important example of entailment. To see that
this is true, simply look at the truth table in Figure 4.2 for α → β.
There is only one truth assignment in which α and α → β are both
true (the first row). This assignment also makes β true. Of course, this
entailment is almost obvious. The implication α→ β can be translated
as saying, “If α is true, then so is β.” Of course if this is true and if α
is true, then β should be.

Example 5.2: {α ∨ β,¬β} |= α

This entailment should seem reasonable. If either α or β is true but
β is not true, then α must be true. To verify this formally, we draw a
truth table including α, α ∨ β, ¬β and α.

α β α ∨ β ¬β
T T T F
T F T T
F T T F
F F F T

Notice that there is only one row (i.e. one truth assignment) in which
both α ∨ β and ¬β are both true. In this row, α is also true.

If some truth assignment makes everything in Σ true and α false,
then Σ does not imply α. We write this as Σ 6|= α.

Example 5.3: {α→ β, β} 6|= α

To see that this logical implication does not hold, we can again look
at the truth table in Figure 4.2 for α → β. In the third row we see
that it is possible for α→ β and β to be true while α is false.

Example 5.4: {α, β} |= γ if and only if α ∧ β |= γ.

38

To see this, we will look at a truth table for each logical implication.
Since we do not know the relationship between γ and α and β, the best
we can do in the truth tables is to imagine that all eight combinations
of truth values are possible. These are the tables.

α β γ

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

α β γ α ∧ γ
T T T T
T T F T
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

Since we do not know the relationship between these sentences, we
do not know which of these rows are actually possible. Things turn out
to be easier if we focus on the rows in which the logical implications fail.
We isolate our attention to the rows in which the logical implications
fail. In the first table, there is one row (the second) in which α and
β are both true but γ is false. In this row, the first logical implication
would fail. In the second table, there is one row (the second) in which
α ∧ β is true but γ is false. In this row, the implication would fail.
We see that the two logical implications fail at the same time, so they
must also hold at the same time.

Example 5.5: {σ, α} |= β if and only if σ |= (α→ β)

We again approach this by drawing two truth tables and seeing
where the implications may fail.

σ α β

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

σ α β α→ β

T T T T
T T F F
T F T T
T F F T
F T T T
F T F F
F F T T
F F F F

39

In the first table, there is one row in which σ and α are both true and
β is false. This is the only row in which the first implication fails. In
the second table, there is only one row in which σ is true and α → β
is false. Note that this is the same row as in the first table.

Example 5.6: If Σ = {γ1, . . . , γn} then

Σ, α |= β if and only if Σ |= (α→ β)

Let
σ = γ1 ∧ γ2 ∧ . . . ∧ γn.

Then this entailment follows from the previous example because a truth
assignment will satisfy Σ if and only if it satisfies σ.

5.4 Exercises

For each of these implications, either explain why the implication holds
or explain why it does not hold. You may want to draw truth tables.

1. {α→ β,¬β} |= ¬α.

2. {α→ β,¬α} |= ¬β.

3. {α, β} |= α ∧ β.

4. {α ∧ β} |= α.

5. {α ∨ β} |= α.

6. {α} |= α ∨ β.

7. {α} |= α ∧ β.

8. {α,¬α} |= β.

9. {α→ β, β → γ} |= α→ γ.

10. |= (β ∨ ¬β).

11. Explain why α |= β if and only if |= (α→ β) (that is, if and only
if α→ β is a tautology).

12. Explain why {α, β} |= γ if and only if α ∧ β |= γ.

13. Explain why {α, β} |= γ if and only if (α∧β)→ γ is a tautology.

14. Explain why {α, β} |= γ if and only if α→ (β → γ) is a tautology.

40

Chapter 6

Logical Equivalence

Closely related to logical implication is the idea of logical equivalence.
If you look closely at the truth table we drew for (P ∨¬Q)∧ (¬P ∨Q)
in the last section, you will notice that the truth values for (P ∨¬Q)∧
(¬P ∨Q) are identical to those for Q in the same table. If all we care
about is truth values, then these statements should in some way be
equivalent.

Suppose we are working in a sentential language with only two
atomic sentence symbols. If we draw a truth table for a wff in this
language, then there are only sixteen possible final columns of the
table:

F F F F F F F F T T T T T T T T
F F F F T T T T F F F F T T T T
F F T T F F T T F F T T F F T T
F T F T F T F T F T F T F T F T

If the truth values of a wff capture all the information that we care
about, then essentially there are only 16 different things that a wff can
mean in this language – different wffs can have the same meaning. This
motivates the following definition.

Suppose that α and β are wffs in the same sentential language. We
say that α and β are logically equivalent and write α ≡ β if s(α) = s(β)
for every truth assignment s. That is, α is equivalent to β if α and β
have the same truth value for every truth assignment.

The definitions of logical equivalence and logical implication imme-
diately imply this theorem:

Theorem 6.1: α ≡ β if and only if both α |= β and β |= α.

41

42

For an example of a logical equivalence,

Example 6.2: If α and β are wffs in the same language, then

α→ β ≡ ¬α ∨ β.

To see this, we simply draw two truth tables:

α β α→ β

T T T
T F F
F T T
F F T

and

α β ¬α ¬α ∨ β
T T F T
T F F F
F T T T
F F T T

Notice that the final columns of the tables are identical.

6.1 Basic Equivalences

There are only eight types of equivalences you need to remember. All
other logical equivalences can be derived from these. They are listed
below.

6.1.1 Commutative Laws

The English words “and” and “or” do not care about order. Saying
“The grass is green, or the sky is blue” communicates the same thing as
“The sky is blue, or the grass is green.” The same is true with “and.”
Thus our first pair of equivalences should make sense:

P ∧Q ≡ Q ∧ P and P ∨Q ≡ Q ∨ P

Notice that these resemble the commutative laws for multiplication and
addition.

6.1.2 Associative Laws

Our next pair of equivalences resembles the associative laws for mul-
tiplication and addition. The two statements “Jill and Jane passed
math, and Janet passed math” and “Jill passed math, and Jane and
Janet passed math” communicate the same thing - all three women

43

passed. The word “and” does not care how statements are grouped
together, and neither does “or.” Thus

(P ∧Q) ∧R ≡ P ∧ (Q ∧R) and (P ∨Q) ∨R ≡ P ∨ (Q ∨R)

Because of this equivalence, we will usually just write P ∧ Q ∧ R or
P ∨Q ∨R and dispense with the parenthesis.

6.1.3 Idempotent Laws

Our next set of equivalences again reflect the English language. All
three of these statements

“It is not the case that it is not raining.”
“It is raining, and it is raining.”

“Either it is raining, or it is raining.”

communicate the same thing - “It is raining.” Thus we have three
equivalences called the idempotent laws

¬(¬P) ≡ P and P ∧ P ≡ P and P ∨ P ≡ P

6.1.4 Absorption Laws

The next pair of equivalences are perhaps the least intuitive and least
reflect a situation in English. For now, we will justify them by truth ta-
bles. They will become much more intuitive when we discuss switching
networks. The equivalences are

P ∧ (P ∨Q) ≡ P and P ∨ (P ∧Q) ≡ P

Here is a truth table for P ∧ (P ∨Q)

P Q P ∨Q P ∧ (P ∨Q)

T T T T
T F T T
F T T F
F F F F

Notice that when P is true this statement is true. When P is false,
this statement is false. Hence they are equivalent.

44

6.1.5 Distributive Laws

Consider the statement “It is raining, and either Hal forgot his hat or
he forgot his coat.” If this is true, what do we know? We know it is
raining. We know that Hal forgot either his hat or his coat. In the first
case, it is raining and he forgot his hat. In the second, it is raining and
he forgot his coat. The statement seems to say “It is raining and Hal
forgot his coat, or it is raining and Hal forgot his hat.” This reflects
our next pair of equivalences:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

and

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

These resemble the way in which we distribute multiplication over ad-
dition.

6.1.6 DeMorgan’s Laws

Consider the sentence “It is not true that Sam passed math and En-
glish.” What does this mean? Let P be “Sam passed math,” and let Q
be “Sam passed English.” The statement we are looking at is ¬(P ∧Q).
In order for this to be true, P ∧Q needs to be false. This happens if at
least one of P and Q is false. Thus our sentence appears to be ¬P ∨¬Q
- “Either Sam did not pass math, or sam did not pass English.” This
is an example of one of DeMorgan’s Laws:

¬(P ∧Q) ≡ ¬P ∨ ¬Q and ¬(P ∨Q) ≡ ¬P ∧ ¬Q

You can think of DeMorgan’s Laws as distributing negation over ∧ and
∨ - except that the negation applies to everything, even the ∧ and the
∨.

6.1.7 Disjunctive Implication

We already saw this equivalence as an example earlier. Here it is

P → Q ≡ ¬P ∨Q

This reflects what was said in the first chapter that P → Q can be
phrased as “Not P unless Q.”

45

6.1.8 Contrapositive

Suppose you know this statement is true “If Sam won his game, he is
going to play in the championship game.” If someone tells you that Sam
is not going to play in the championship game, then you immediately
conclude that Sam did not win his game. You are intuitively aware of
this final logical equivalence

P → Q ≡ ¬Q→ ¬P

The statement ¬Q→ ¬P is called the contrapositive of P → Q. You
should be careful not to confuse it with the statement ¬P → ¬Q known
as the inverse of P → Q or with Q → P known as the converse of
P → Q. These statements are not equivalent to P → Q. Here are all
of the basic equivalences together:

Basic Logical Equivalences

α ∧ β ≡ β ∧ α commutative law
α ∨ β ≡ β ∨ α commutative law
α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ associative law
α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ associative law
¬(¬α) ≡ α idempotent law
α ∧ α ≡ α idempotent law
α ∨ α ≡ α idempotent law
α ≡ α ∨ (α ∧ β) absorption law
α ≡ α ∧ (α ∨ β) absorption law
α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) distributive law
α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ) distributive law
¬(α ∧ β) ≡ ¬α ∨ ¬β DeMorgan’s Law
¬(α ∨ β) ≡ ¬α ∧ ¬β DeMorgan’s Law
α→ β ≡ ¬α ∨ β disjunctive implication
α→ β ≡ ¬β → ¬α contrapositive
α↔ β ≡ (α→ β) ∧ (β → α) biconditional

In all of these equivalences, remember that α, β, and γ are wffs and
may represent any wff in the appropriate language.

46

6.2 Special Equivalences

Suppose that α is a contradiction and that β is any wff in the same
language as α. If we draw a table to illustrate the possible truth values
of α ∨ β, it would look like this:

α β α ∨ β
F T T
F F F

Notice that α ∨ β always has the same truth value as β, so α ∨ β ≡ β.
We summarize this by saying that F ∨ β ≡ β. A similar result holds
for tautologies and conjunctions:

Theorem 6.3: (Equivalences, Tautologies, Contradictions)

F ∨ β ≡ β and T ∧ β ≡ β.

6.3 Algebra with equivalences

The equivalences above can be used to demonstrate more complicated
equivalences. For example, the sentence ¬(A ∧ ¬B) is equivalent to
A → B. We can use the basic equivalences to show this. Notice
that ¬(A ∧ ¬B) is of the form of one of DeMorgan’s Laws, so we can
“distribute” the negation to get ¬(A ∧ ¬B) ≡ ¬A ∨ ¬(¬B). Next,
notice the double negation. We can use one of the idempotent laws
to get ¬A ∨ ¬(¬B) ≡ ¬A ∨ B. This last wff looks just like part of
disjunctive implication, which tells us that ¬A ∨ B ≡ A→ B. This is
what we were looking for. Here is our work all together:

¬(A ∧ ¬B) ≡ ¬A ∨ ¬(¬B) DeMorgan’s Law
≡ ¬A ∨B Idempotent Law
≡ A→ B Disjunctive Implication

Notice how we set up our work here. To show that ¬(A∧¬B) ≡ A→ B,
we begin with one formula on the left of an equivalence sign (here we
use ¬(A ∧ ¬B), but we could very well have started with the other
statement). We then apply equivalences to this sentence, listing the
results to the right of equivalence signs until we arrive at A→ B. Here
are more examples:

47

Example 6.4: Show A→ (P ∨R) ≡ (A→ P) ∨ (A→ R)

Solution:

(A→ P) ∨ (A→ R) ≡ (¬A ∨ P) ∨ (¬A ∨R) (disjunctive implication)
≡ ¬A ∨ (P ∨ (¬A ∨R)) (associative law
≡ ¬A ∨ ((P ∨ ¬A) ∨R) (associative law)
≡ ¬A ∨ ((¬A ∨ P) ∨R) (commutative law)
≡ ¬A ∨ (¬A ∨ (P ∨R)) (associative law)
≡ (¬A ∨ ¬A) ∨ (P ∨R) (associative law)
≡ ¬A ∨ (P ∨R) (idempotent law)
≡ A→ (P ∨R) (disjunctive implication)

This looks a little confusing with all of the associative law applications. It is
actually much simpler. If we abuse a little notation, the work looks like:

(A→ P) ∨ (A→ R) ≡ (¬A ∨ P) ∨ (¬A ∨R) (disjunctive implication)
≡ ¬A ∨ P ∨ ¬A ∨R (associative law)
≡ ¬A ∨ ¬A ∨ P ∨R (commutative law)
≡ ¬A ∨ P ∨R (idempotent law)
≡ ¬A ∨ (P ∨R) (associative law)
≡ A→ (P ∨R) (disjunctive implication)

Usually, we will abuse notation like this and ignore parenthesis when associa-
tivity allows it. In fact, we will usually apply associativity and commutativity
without calling attention to it.

Example 6.5: Show (A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡ (A ∨B)

Solution:
(A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡

≡ (A ∨B) ∨ (P ∧A) ∨ (P ∧B) (commutative law)
≡ (A ∨B) ∨ (P ∧ (A ∨B)) (distributive law)
≡ (A ∨B) ∨ ((A ∨B) ∧ P) (commutative law)
≡ (A ∨B) (absorption law)

The second step in this example can be thought of as “factoring” or “undis-
tributing” a common P from the last two terms. Commutativity actually lets
us distribute from both directions, so we could shorten this to

(A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡

≡ (A ∨B) ∨ ((A ∨B) ∧ P) (commutative law)
≡ (A ∨B) (absorption law)

Example 6.6: Show (P → B) ∧ (Q→ B) ≡ (P ∨Q)→ B

48

Solution:

(P → B) ∧ (Q→ B) ≡ (¬P ∨B) ∧ (¬Q ∨B) (disjunctive implication)
≡ (¬P ∧ ¬Q) ∨B (distributive law)
≡ ¬(P ∨Q) ∨B (DeMorgan’s Law)
≡ (P ∨Q)→ B (disjunctive implication)

6.4 Exercises

Use the basic logical equivalences to show that these statements are equiva-
lent.

1. (P → R) ∨ (Q→ R) ≡ (P ∧Q)→ R

2. ¬(A ∨B) ∨ P ≡ (A→ P) ∧ (B → P)

3. (A ∨B) ∧ (C ∨D) ≡ (A ∧ C) ∨ (B ∧ C) ∨ (A ∧D) ∨ (B ∧D)

4. A ∨ (B ∨ C) ≡ (A ∨B) ∨ (A ∨ C)

6.5 Simplification

Logical equivalences often can be used to simplify statements. For example,

Example 6.7: Use equivalences to simplify the statement “It is not
true that I passed and you did not.”

This sounds a little confusing. Let I be “I passed,” and let Y be “You
passed.” The statement we are considering is ¬(I ∧ ¬Y). Using DeMorgan’s
Law and then the idempotent law, we see ¬(I ∧ ¬Y) ≡ ¬I ∨ ¬¬Y ≡ ¬I ∨ Y .
Thus the original statement is equivalent to the simpler statement “Either I
did not pass, or you did.”

Logical equivalences can be used to simplify instructions or conditions.
For example, suppose you are building a machine with a warning light and
you are told that “The warning light should come on if either the temperature
is high while the pressure is high and the door is open or the temperature is
high while it is not the case that both the pressure is not high and the door
is closed.” This is a baffling condition.

Example 6.8: Simplify the statement, “The warning light should
come on if either the temperature is high while the pressure is high
and the door is open or the temperature is high while it is not the
case that both the pressure is not high and the door is closed.”

Let T be “The temperature is high.” Let P be “The pressure is high,”
and let D be “The door is open.” Our condition for the warning light to come

49

on is (T ∧ P ∧D) ∨ (T ∧ ¬(¬P ∧ ¬D)). This is confusing, and the circuitry
to build the warning light could be quite complicated. However, notice

(T ∧ P ∧D) ∨ (T ∧ ¬(¬P ∧ ¬D)) ≡

≡ T ∧ ((P ∧D) ∨ (P ∨D)) (distributive law)
≡ T ∧ (((P ∧D) ∨ P) ∨ ((P ∧D) ∨D)) (distributive law)
≡ T ∧ (P ∨D) (absorption law)

so the condition is equivalent to the much simpler statement “The tempera-
ture is high and either the pressure is high or the door is open.”

6.6 Exercises

Convert each of the following statements into symbols using logical connec-
tives. You will have to introduce symbols (letters) for parts of the statments
to do so. Use logical equivalences to simplify each statement. Then translate
each statement back into words.

1. It is not true that both it is not cold and it is raining or snowing.

2. The possible combinations of toppings on the sandwich are meat and
pickles and cheese, or meat and onions and cheese, or meat and pickles
and tomatoes.

3. You will pass if either you pass both the midterm and the final, or if
you do not fail both the major project and the final.

4. If we beat the “Cats” and the “Dogs” but not the “Penguins,” or if we
beat the “Cats” and the “Penguins” but not the “Dogs,” or if we beat
all three, then we will go to the playoffs.

6.7 Disjunctive Normal Form

Consider the following list of equivalences:

P ∧ (A→ Q) ∧ ¬R ≡

≡ P ∧ (¬A ∨Q) ∧ ¬R (disjunctive implication)
≡ ((P ∧ ¬A) ∨ (P ∧Q)) ∧ ¬R (distributive law)
≡ (P ∧ ¬A ∧ ¬R) ∨ (P ∧Q ∧ ¬R) (distributive law)

This last wff is in a special form. It is the disjunction (∨) of statements which
are conjunctions (∧) of atomic statements and negated atomic statements.
Such a wff is said to be in disjunctive normal form. Every wff is equivalent
to a statement in disjunctive normal form.

There is a simple strategy for converting any statement to disjunctive
normal form (the strategy is simple, but applying it can get messy). First,

50

apply disjunctive implication to get rid of any implications. Second, apply
DeMorgan’s Laws along with the idempotent law repeatedly until the only
statements which are negated are atomic statements. Next, distribute ∧s over
∨s repeatedly. Along the way, you may simplify things with absorption and
the special equivalences from Theorem 6.3. Here is an example.

Example 6.9: Place R∧¬((A∧B)→ (P ∧Q)) in disjunctive normal
form.

R ∧ ¬((A ∧B)→ (P ∧Q)) ≡

≡ R ∧ ¬(¬(A ∧B) ∨ (P ∧Q)) (disjunctive implication)
≡ R ∧ (¬¬(A ∧B) ∧ ¬(P ∧Q)) (DeMorgan’s Law)
≡ R ∧ ((A ∧B) ∧ ¬(P ∧Q)) (idempotent law)
≡ R ∧ ((A ∧B) ∧ (¬P ∨ ¬Q)) (DeMorgan’s Law)
≡ R ∧ ((A ∧B ∧ ¬P) ∨ (A ∧B ∧ ¬Q)) (distributive law)
≡ (R ∧A ∧B ∧ ¬P) ∨ (R ∧A ∧B ∧ ¬Q) (distributive law)

It is possible to end up with a disjunction of more than two statements. For
example, you may have (A∧B)∨ (A∧C)∨ (B ∧C). It is also possible to end
up with simply a conjunction of atomic statements and negations of atomic
statements.

6.8 Exercises

Write each of the following wffs in disjunctive normal form.

1. A→ ¬(B ∨ C)

2. (A→ B) ∧ ¬(A→ C)

3. A ∧ (¬B → (C ∧D))

4. (A→ B) ∧ (¬A→ ¬B)

6.9 Building Statements

We can build wffs to have any desired set of truth values we like. For example,

Example 6.10: Find a statement which has a truth table that looks
like

P Q · · · ?
T T F
T F T
F T T
F F F

51

To construct the statement, locate the rows where we want truth. In this
case, these are the middle two rows. These two rows give two conditions. The
first row would require P to be true and Q to be false. A statement which
would give truth here is P ∧ ¬Q. The second true row requires P to be false
and Q to be true. A statement which has truth in this instance is ¬P ∧Q. To
construct the statement we need, we simply join these two statements with
an ∨: (P ∧¬Q)∨(¬P ∧Q). This statement will have the desired truth values.

The strategy is this: For each true row in the truth table form a conjunc-
tion. Each letter involved should appear once in the conjunction. If in that
row the letter is assigned a value of F, negate it in the conjunction. Form a
conjunction like this for each true row. Then join these together with ∨.

Example 6.11: Find a wff which would have these truth assignments:

P Q R · · · ?
T T T T
T T F F
T F T T
T F F T
F T T F
F T F T
F F T T
F F F F

A solution is:

(P ∧Q∧R)∨ (P ∧¬Q∧R)∨ (P ∧¬Q∧¬R)∨ (¬P ∧Q∧¬R)∨ (¬P ∧¬Q∧R)

6.10 Exercises

1. Find a statement which has this truth table

P Q R · · · ?
T T T F
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F T

52

2. Find a statement which has this truth table

P Q R · · · ?
T T T F
T T F T
T F T F
T F F F
F T T F
F T F F
F F T F
F F F T

3. Find a statement which has this truth table

P Q R · · · ?
T T T T
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F T

4. Find a compound statement using four atomic statements which is true
when three or more of the atomic statements is true.

5. Find a compound statement using four atomic statements which is true
when exactly two of the atomic statements is true.

6. Find a wff for each of the 16 final truth table columns listed at the
beginning of this chapter.

6.11 Implications

There are many cases in our natural language when an implication may be
expressed without the words “if...then..” For example, the sentence

The square of any even integer is even.

is logically the same as the implication

If n is an even integer, then n2 is even.

The statement

All kittens are cute.

can be expressed as

53

If it is a kitten, then it is cute.

The sentence

When it rains, it pours.

can be expressed

If it is raining, then it is pouring.

Using disjunctive implication, the contrapositive, and varying English trans-
lations, we can rewrite these sentences in a variety of ways:

Original: When it rains, it pours.

Implication: If it is raining, then it is pouring.

Contrapositive: If it is not pouring, then it is not raining.

Disjunction: Either it is not raining, or it is pouring.

Necessary: In order for it to rain, it is necessary that it
pours.

Sufficient: In order for it to pour, it is sufficient for it to
rain.

6.12 Exercises

Translate each of these sentences into an implication. Then rewrite each with
the contrapositive, as a disjunction, using “necessary,” and using “sufficient.”

1. All men are liars.

2. When the sun shines, she dances.

3. She cries when it rains.

4. All primes greater than 2 are odd. (Hint: “If n is...”)

5. If you build it, he will come.

6.13 Fewer Logical Connectives

Not all of our logical connectives are necessary. The biconditional can be
expressed with conjunction and implication. Disjunctive implication lets us
express the implication with ¬ and ∨. In fact, DeMorgan’s Laws let us write
∨ with ¬ and ∧:

P ∨Q ≡ ¬(¬P ∧ ¬Q).

54

We can also express ∧ with ¬ and ∨:

P ∧Q ≡ ¬(¬P ∨ ¬Q).

We could write all of our well-formed formulas using fewer logical connectives.
However, having all of our connectives makes it easier to translate between
the wffs and English (and easier to think in terms of the wffs).

6.14 Exercises

1. Use the comments above to express every connective in terms of ¬ and
∧.

2. Use the comments above to express every connective in terms of ¬ and
∨.

3. Express every connective in terms of ¬ and →.

4. Define a new connective (called the Sheffer Stroke) by P |Q = ¬(P ∧Q).
Express all of the logical connectives using |. For example, ¬P = P |P
and P ∧ Q = (P |Q)|(P |Q). (Check these.) This means that we could
do all of our logic with only one logical connective.

5. Is the Sheffer stroke operation associative?

6. Is the Sheffer stroke operation commutative?

Chapter 7

Switching Networks

Switching networks were initially inspired by electronic applications; however,
it is not necessary to know anything about electronics to study switching
networks. The notions we employ here apply in any environment in which
some current (such as electricity, water, or light) is flowing along a path (such
as a wire, a pipe, or optic fiber) and is controlled by some type of switching
mechanisms or valves which can be turned on and off. The ultimate goal of
this chapter is to gain more insight about logic and to see an application of
what we have learned so far. We will see that the design of such things as
electronic circuits is tied to the rules of logic we have been studying.

7.1 Switches and Switching Networks

A switch is a device with two states, “on” and “off.” A switch controls the
flow of a current. When a switch is on, a current may flow through the switch.
When a switch is off, it may not. Our currents will flow along things called
paths. When switches are placed on a collection of paths to regulate the flow
of the current, what results is called a switching network. All of our switching
networks have a single path through which the current enters the network.
This is the input path. Each network has a single path through which the
current may leave – the output path. If current can flow from the input to the
output path, then the network is on. Otherwise, the network is off. In this
chapter, we will be drawing pictures of switching networks. In the pictures,
switches will be symbolized by filled circles, and paths will be symbolized by
line segments. For example

An example of a switching network.

55

56

If a line segment passes through a circle it symbolizes that the corresponding
switch controls the flow of the current along that path.

7.2 Switches and Logical Operators

We can draw switching networks to represent logical statements in such a
way that a network is on precisely when the logical statement is true. Let P
be the symbol of a logical statement. We can label switches in a switching
network with the symbol P . When we do so, we assume that when P is true,
then the switches labeled P are on. When P is false, they are off.

Here is a very small switching network.
P

A switching network for the statement P .

When P is true, this network is on. When P is false, this network is off.
We can draw networks for compound statements also. This is a network

for P ∧Q.
P Q

A network for P ∧Q.

The only way that current can flow through this network is for both switches
to be on. That happens when both statements are true, so P ∧Q is true. If
current does not flow, one of the switches is off. This means either P or Q is
false, so P ∧Q is false. The switches in the network for P ∧Q are said to be
connected in series. We will always associate series with ∧. Here is a network
for P ∨Q.

P

Q

A network for P ∨Q.

Current will flow through this network exactly when one of the switches is
on, which is when one of the statements is true, which is exactly when P ∨Q
is true. The switches in the network for P ∨ Q are said to be connected in
parallel. We will always associate parallel with ∨.

In order to draw a network for negation, we cheat. We can label switches
by the negation of a symbol for a statement. For example, if P is a statement,
we can label a switch as ¬P . This switch would be on when P is false and
off when P is true. The network would look like this.

57

¬P

A switching network for the statement ¬P .

To be able to draw switching networks for more complicated compound state-
ments, we will assume that we can give more than one switch the same label.
For instance, a network may have many switches labeled by P . All of these
switches would be on when P is true. All would be off when P is false.

7.3 Networks for Compound Statements

We can draw switching networks for any wff.

Example 7.1: Draw a switching network for A ∧ (B → C).

To handle→, we will use the logical equivalence B → C ≡ ¬B ∨C. Thus
we will draw a network for A ∧ (¬B ∨ C). First, we list the subformulas
of our wff (as we did when we drew truth tables): A, B, C, ¬B, ¬B ∨ C,
A∧(¬B∨C). We draw networks for each subformula progressing from simpler
to more complex.

¬B
A Network for ¬B

¬B

C

¬B ∨ C is formed by placing ¬B
and C in parallel.

¬B

C

A A ∧ (¬B ∨ C) is formed by
placing A and ¬B ∨ C in series.

Example 7.2: Draw a network for the statement

¬(A ∧B) ∧ (P → (A ∨B)).

58

First, we must use disjunctive implication to rewrite this as

¬(A ∧B) ∧ (¬P ∨ (A ∨B)).

Next, DeMorgan’s Law gives

¬(A ∧B) ∧ (¬P ∨ (A ∨B)) ≡ (¬A ∨ ¬B) ∧ (¬P ∨ (A ∨B)).

We now make a list of subformulas: A, B, P , ¬A, ¬B, ¬P , A∨B, ¬A∨¬B,
¬P ∨ (A ∨B). Finally, we can start drawing. We will not draw networks for
A, B, P , ¬A, ¬B, or ¬P .

A

B

A ∨B

¬A

¬B

¬A ∨ ¬B

A

B

¬P
To make ¬P ∨ (A ∨B) we place
¬P and A ∨B in parallel.

A

B

¬P

¬A

¬B

We put ¬A ∨ ¬B and
¬P ∨ (A ∨B) in series to arrive

at the entire sentence.

59

7.4 Absorption Laws

We commented earlier that the absorption laws would make more sense with
switching networks. The network for P ∧ (P ∨Q) looks like

Q

P

P

A network for P ∧ (P ∨Q).

If P is true, then the switches labeled P are on and the current can flow
through the top half of this network (regardless of Q). If P is false, then the
first switch labeled P prevents the current from flowing (again, regardless of
Q). The network is on precisely when P is true. It seems reasonable, then,
that this statement should be equivalent to P .

The network for P ∨ (P ∧Q) looks like

QP

P

A network for P ∨ (P ∧Q).

If P is true, current can flow through the top of the network. If P is false,
it cannot flow through either half of the network. Again, the network is on
exactly when P is true.

7.5 Designing a Network

Example 7.3: Design a switching network to operate a hallway light
with two switches.

If the light is on and either switch is flipped, then the light should go off.
If the light is off and either switch is flipped, the light should come on. We
are going to construct a logical statement which mimics the behavior of the
desired network, and then we will draw the network.

We will have two sentence symbols P and Q since there are to be two
physical switches in the hallway. We assume that the light is on if both
switches are on. If we flip the switch corresponding to Q off (so P is true and
Q is false), the lights should turn off (the statement is false). Similarly, if we
start with both on and turn the switch for P off (so P is false and Q is true),
then the lights should go off (the statement is false). At this point, if we turn

60

the switch for Q off (P and Q are now both false), the lights should turn on
(the statement is true). This gives the desired truth table

P Q · · · ?
T T T
T F F
F T F
F F T

Using our earlier technique, we construct the statement

(P ∧Q) ∨ (¬P ∧ ¬Q).

This should have the appropriate truth values. We now have a logical state-
ment which mimics the desired switching network. We need to draw the net-
work for (P ∧Q) ∨ (¬P ∧ ¬Q). Since the statement is in disjunctive normal
form, drawing it is simple.

P Q

¬P ¬Q
A switching network to operate a hall light.

7.6 Exercises

Draw switching networks for each of the following statements.

1. (P ∧ ¬Q) ∨ (¬P ∧Q)

2. ((¬P ∨Q) ∧R) ∨ ¬Q
3. P → (A ∧B)

4. ¬(A ∨ (B ∧ C)) ∧ (P ∨Q)

5. A ∨ (B ∧ (C ∨D))

6. (A ∧ ¬B ∧ C) ∨ (A ∧B ∧ ¬C) ∨ (A ∧B ∧ C)

7. (A ∧ ¬B) ∨ (B ∧ ¬C) ∨ (C ∧ ¬D) ∨ E
8. (A ∧B) ∨ (¬A ∧B) ∨ (A ∧ ¬B) ∨ (¬A ∧ ¬B)

9. A light is to be operated by three switches. The light is to be on when
two or more of the switches are on. Draw a switching network to control
such a light.

10. A light is to be operated by three switches labeled A, E, and T . If the
letters corresponding to the switches which are on can be used to spell
an English word, the light should be on. Otherwise, the light is to be
off. Draw a switching network to accomplish this.

Chapter 8

Deduction

In Chapter 5 we saw one way of concluding the truth of a wff α from a
collection Σ of other wffs. In that chapter, we said that Σ logically implies
α if every truth assignment that makes every statement in Σ true also makes
α true. In this chapter, we investigate a more mechanical way in which to
construct α from Σ when Σ implies α. It should not be obvious that the
notion of implication we define here corresponds to the notion in Chapter 5.
We will prove the concepts are equivalent later.

8.1 Modus Ponens and Proofs

The most fundamental entailment example from Chapter 5 was Example 5.1:

{α→ β, α} |= β.

This is the basis for our most important rule of inference:

Modus Ponens: From α→ β and α, infer β.

Modus Ponens is the basis for our notion of proof.

Proof Suppose that Σ is a set of wffs and α is a wff. A proof or
deduction of α from Σ is a list γ1, γ2, . . . , γn so that γn = α and each
sentence γi in the list

1. is a tautology or

2. is in Σ or

3. follows from two earlier sentences by the rule Modus Ponens.

If there is a proof of α from Σ, then we say that α is provable or deducible
from Σ. We express this in symbols as Σ ` α.

61

62

When listing the sentences in a proof of a wff α from a set Σ of wffs, we
list the statements in an organized fashion so it is clear where the statements
in the list come from. This organized list will consist of two columns – one
containing the sentences, and one containing reason for the sentences. In
these proofs, we will call the statements in Σ premises – statements that are
being assumed to establish α.

Example 8.1: {(P ∨Q)→ R,P} ` R

1. (P ∨Q)→ R Premise
2. P Premise
3. P → (P ∨Q) Tautology
4. P ∨Q Modus Ponens 3,1
5. R Modus Ponens 1,4

Of course, to write this proof, we need to know that the sentence in line
3 is a tautology. We could draw a truth table to verify this (though it should
almost be clear by thinking of the meaning of the sentence). Our definition of
proof allows for all tautologies. We do not need to allow all tautologies, but
doing so simplifies proofs. Most of the tautologies we use will be of the form
α→ β where α ≡ β is one of the equivalences in our list of basic equivalences
in Chapter 5.

Example 8.2: Modus Tollens: {α→ β,¬β} ` ¬α

1. α→ β Premise
2. ¬β Premise
3. (α→ β)→ (¬β → ¬α) Tautology
4. ¬β → ¬α Modus Ponens 1, 3
5. ¬α Modus Ponens 4,2

8.2 Derived Rules of Inference

If the only rule of inference we have is Modus Ponens, then our proofs will
be somewhat complicated. We will derive some additional rules of inference
from Modus Ponens. Because these will be derived using generic wffs and
Modus Ponens, any inference we make in a proof based on these derived rules
will be valid.

We already have Modus Ponens and Modus Tollens:

Modus Ponens: {α→ β, α} ` β (Our main inference.)

Modus Tollens: {α→ β,¬β} ` ¬α (derived above)

63

Many of the rest of our rules of inference will come in pairs based on the
commutativity of ∨ and ∧.

Disjunctive Syllogism (or ∨-Elimination): {α ∨ β,¬α} ` β

1. α ∨ β Premise
2. ¬α Premise
3. (α ∨ β)→ (¬α→ β) Tautology
4. ¬α→ β Modus Ponens 3,1
5. β Modus Ponens 4,2

Because of the commutativity of ∨, we also have this form of Disjunctive
Syllogism:

Disjunctive Syllogism (or ∨-Elimination): {α ∨ β,¬β} ` α

Simplification (or ∧-elimination): {α ∧ β} ` α

1. α ∧ β Premise
2. (α ∧ β)→ α Tautology
3. α Modus Ponens 2,1

Because of the commutativity of ∧, we also have this form of Simplifica-
tion:

Simplification (or ∧-elimination): {α ∧ β} ` β

Addition (or ∨-Introduction): α ` α ∨ β

1. α Premise
2. α→ (α ∨ β) Tautology
3. α ∨ β Modus Ponens 2,1

Because of the commutativity of ∨, we also have this form of Addition:

Addition (or ∨-Introduction): β ` α ∨ β

Conjunction (or ∧-Introduction): {α, β} ` α ∧ β

64

1. α Premise
2. β Premise
3. α→ (β → (α ∧ β)) Tautology
4. β → (α ∧ β) Modus Ponens 1,3
5. α ∧ β Modus Ponens 2,4

Equivalence: If α ≡ β, then α ` β.

1. α Premise
2. α→ β Tautology
3. β Modus Ponens 1,2

Transitivity: {α→ β, β → γ} ` α→ γ

1. α→ β Premise
2. β → γ Premise
3. ¬α ∨ β Equivalent 1
4. ¬β ∨ γ Equivalent 2
5. ¬α ∨ β ∨ γ Addition 3
6. ¬α ∨ ¬β ∨ γ Addition 4
7. (¬α ∨ β ∨ γ) ∧ (¬α ∨ ¬β ∨ γ) Conjunction 5,6
8. (¬α ∨ γ) ∨ (β ∧ ¬β) Equivalent 7
9. ¬α ∨ γ Equivalent 8
10. α→ γ Equivalent 9

For your convenience, here is a list of our rules of inference. We will derive
more proof techniques later in Chapter 8

Rules of Inference
Modus Ponens . {α→ β, α} ` β
Modus Tollens . {α→ β,¬β} ` ¬α
Disjunctive Syllogism (or ∨-Elimination) {α ∨ β,¬β} ` α
Simplification (or ∧-elimination){α ∧ β} ` α
Addition (or ∨-Introduction) .α ` α ∨ β
Conjunction (or ∧-Introduction) {α, β} ` α ∧ β
Equivalence . If α ≡ β, then α ` β.
Transitivity . {α→ β, β → γ} ` α→ γ

Remember that the commutativity of ∧ and ∨ gives us symmetric versions
of some of these.

65

8.3 Applying Rules of Inference

We demonstrate how the rules of inference can be applied repeatedly to a
list of premises to eventually arrive at a desired conclusion. The list we form
will be in three columns. The first column will be statements. These will be
numbered so that we can refer to them. The second column will be the rules
of inference we applied to get those statements. The third column will be the
numbers of the statements to which the rules were applied. We begin with
two premises.

1. (P ∨Q)→ (R ∧ ¬S)

2. ¬R ∨ S

From these two premises we will build a chain of inferences concluding even-
tually with ¬P .

To begin with, premise (2) is logically equivalent via DeMorgan’s Law to
¬(R ∧ ¬S). Thus from the rule of inference E, we can infer ¬(R ∧ ¬S). We
now have a list of three statements:

Statement Rule Specifics
1. (P ∨Q)→ (R ∧ ¬S) premise
2. ¬R ∨ S premise
3. ¬(R ∧ ¬S) Equivalence 2

We can now apply Modus Tollens to statements (1) and (3) in our list to infer
¬(P ∨Q). This now gives us four statements:

Statement Rule Specifics
1. (P ∨Q)→ (R ∧ ¬S) premise
2. ¬R ∨ S premise
3. ¬(R ∧ ¬S) Equivalence 2
4. ¬(P ∨Q) Modus Tollens 1, 3

Next, we can apply DeMorgan’s Law to (4) to infer ¬P ∧¬Q via Equivalence:

Statement Rule Specifics
1. (P ∨Q)→ (R ∧ ¬S) premise
2. ¬R ∨ S premise
3. ¬(R ∧ ¬S) Equivalence 2
4. ¬(P ∨Q) Modus Tollens 1, 3
5. ¬P ∧ ¬Q Equivalence 4

Statement (5) is more than we are looking for. We only want half of the

66

conjunction, so we apply Simplification to get the half we want.

Statement Rule Specifics
1. (P ∨Q)→ (R ∧ ¬S) premise
2. ¬R ∨ S premise
3. ¬(R ∧ ¬S) Equivalence 2
4. ¬(P ∨Q) Modus Tollens 1, 3
5. ¬P ∧ ¬Q Equivalence 4
6. ¬P Simplification 5

8.4 Exercises

1. Apply Modus Tollens to these premises:

P → (Q ∧R)

¬(Q ∧R)

2. Apply Simplification and then Modus Ponens to these two premises:

P ∧Q
P → R

3. Apply Modus Ponens and then Disjunctive Syllogism to these three
premises:

P → (Q ∨R)

P

¬R

4. Apply Addition and then Modus Ponens to these premises

(P ∨R)→ (S ∧ T)

P

8.5 Examples of Proofs

Here are a few exmaples of how to write proofs.

Example 8.3: Write a proof to show that

{P ∧Q,P → R} ` R

First, we write down our premises:

Statement Rule Specifics
1. P ∧Q premise
2. P → R premise

67

Now, how can we get R? We have P → R, so if we had P , we could apply
Modus Ponens to get R. We can get P from statement (1) by Simplification.
Thus we first add P to our list of statements using simplification:

Statement Rule Specifics
1. P ∧Q premise
2. P → R premise
3. P Simplification 1

We can then add R by applying Modus Ponens to statements (2) and (3):

Statement Rule Specifics
1. P ∧Q premise
2. P → R premise
3. P Simplification 1
4. R Modus Ponens 2, 3

This completes our proof. Notice how we arrived at this proof. We looked
at the conclusion and decided what we might need in order to infer the con-
clusion. We then looked at the premises and tried to build what we needed
from these using rules of inferences. We worked from both ends to arrive at
a proof. This process is typical of how proofs are written.

Example 8.4: Write a proof to show that

{P → (Q ∨R), P,¬R} ` Q

We again begin by listing our premises:

Statement Rule Specifics
1. P → (Q ∨R) premise
2. P premise
3. ¬R premise

We want to end up at Q. The only Q is in statement (1) after the arrow.
Modus Ponens is the only rule of inference which gives us statements which
appear after an arrow. The first two statements are set up for Modus Ponens,
so we try it.

Statement Rule Specifics
1. P → (Q ∨R) premise
2. P premise
3. ¬R premise
4. Q ∨R Modus Ponens 1, 2

Remember that we are looking for Q. This new statement says that either Q
is true or R is true. If we can exclude R, then we will be there by Disjunctive

68

Syllogism. Statement (3) does the trick. So:

Statement Rule Specifics
1. P → (Q ∨R) premise
2. P premise
3. ¬R premise
4. Q ∨R Modus Ponens 1, 2
5. Q Disjunctive Syllogism 4, 3

Do not let the fact that (4) and (3) do not come in the right order for Dis-
junctive Syllogism bother you. Knowing (3) and (4) is the same as knowing
(4) and (3).

Example 8.5: Write a proof to show that

{(P ∨R)→ (S ∧ T), P} ` T

We need T . The only T is in the second half of the implication in the
first premise. Thus if we can make the first half of the implication (P ∨ R)
true we can get to the second half by Modus Ponens. We could then apply
simplification to get to T . We know that P is true from the second premise.
This is enough to get P ∨Q by Addition. Thus we arrive at this proof:

Statement Rule Specifics
1. (P ∨R)→ (S ∧ T) premise
2. P premise
3. P ∨R Addition 2
4. S ∧ T Modus Ponens 1, 3
5. T Simplification 4

Again notice how we worked from both ends of the proof.

Example 8.6: Write a proof to show that

{P → (Q ∧R),¬Q} ` ¬P

We want ¬P . P shows up as the first half of an implication in the first
premise. Thus we might try to use Modus Tollens. In order to do this, we
need ¬(Q ∧ R). We can get this by beginning with the premise ¬Q, adding
¬R to get ¬Q ∨ ¬R and then applying DeMorgan’s Law. Hence we have:

Statement Rule Specifics
1. P → (Q ∧R) premise
2. ¬Q premise
3. ¬Q ∨ ¬R Addition 2
4. ¬(Q ∧R) Equivalence 3
5. ¬P Modus Tollens 1, 4

69

Example 8.7: Write a proof to show that

{P → Q,P → R,P} ` Q ∧R

It should be clear that we can get Q and R individually from Modus
Ponens. To get Q ∧R, we simply need to use Conjunction:

Statement Rule Specifics
1. P → Q premise
2. P → R premise
3. P premise
4. Q Modus Ponens 1, 3
5. R Modus Ponens 2, 4
6. Q ∧R Conjunction 4, 5

Our next example emphasizes the importance of beginning with premises
that are true. From this we learn that if we assume a contradiction is true,
anything can happen.

Example 8.8: Write a proof to show that

{P ∧ ¬P} ` Q

This will make more sense if we show the proof and then discuss where it
came from:

Statement Rule Specifics
1. P ∧ ¬P premise
2. P Simplification 1
3. ¬P Simplification 1
4. P ∨Q Addition 2
5. Q Disjunctive Syllogism 4, 3

Knowing both P and ¬P sets up up for using Disjunctive Syllogism on any
disjunction involving P . Thus all we need to do is create a disjunction involv-
ing P and Q. This is easily done with Addition. Premises such as the ones
in this argument which either contain or can be used to prove a contradiction
are called inconsistent. Premises which cannot prove a contradiction are
called consistent.

Example 8.9: Write a proof to show that

{α→ (γ → β), α→ γ} ` α→ β

70

1. α→ (γ → β) Premise
2. α→ γ Premise
3. ¬α ∨ ¬γ ∨ β Equivalent 1
4. ¬α ∨ γ Equivalent 2
5. (¬α ∨ ¬γ ∨ β) ∧ (¬α ∨ γ) Conjunction 3,4
6. ¬α ∨ ((¬γ ∨ β) ∧ γ) Equivalent 5
7. ¬α ∨ ((¬γ ∧ γ) ∨ (β ∧ γ)) Equivalent 6
8. ¬α ∨ (β ∧ γ) Equivalent 7
9. (¬α ∨ β) ∧ (¬α ∨ γ) Equivalent 8

10. ¬α ∨ β Simplification 9
11. α→ β Equivalent 10

8.6 Exercises

Prove the following deductions:

1. {(¬P ∨R)→ ¬Q,Q} ` P ∧ ¬R

2. {¬P → (Q ∨R),¬P ∧ S,¬R} ` Q

3. {P → (R ∧ S),¬R} ` ¬P

4. {P → Q,¬(Q ∨R)} ` ¬P

5. {P → (Q ∧R), R→ S, P} ` S

6. {(P ∨R)→ Q,S → P, S} ` Q

7. {P ∨Q)→ R,¬R, T → Q} ` ¬T

8. {(P ∨ ¬Q)→ R,S → (T ∧ U), S ∧ P} ` R ∧ U

9. {(P ∧ ¬Q)→ R,S → P,Q→ ¬U,U ∧ S} ` R

10. {(P → Q)→ R,¬(Q ∨R)} ` P

11. {(P → Q)→ (P → R), Q ∧ P} ` R

12. {P → (Q→ R), Q} ` P → R

13. {A→ B,C → D,A ∨ C} ` B ∨D

14. {A ∨B,¬A ∨ C} ` B ∨ C

15. In this section, we used Modus Ponens as our fundamental rule of in-
ference. This is (almost) arbitrary. In this exercise, you are to prove
that we could instead have used ∧-introduction and ∧-elimination.

Suppose that we had defined a deduction in this manner: A deduction
of α from Σ is a sequence of wffs so that α is the last member of the
sequence and so that each wff in the sequence

• Is in Σ, or

71

• Is a tautology, or

• Is equivalent to an earlier wff in the sequence, or

• Follows from two earlier wffs in the sequence by ∧-introduction,
or

• Follows from an earlier wff by ∧-elimination.

Provide such a deduction for {α→ β, α} ` β.

16. Is it possible to derive Modus Ponens from ∨-introduction and ∨-
elimination as we did in the previous exercise for ∧?

72

Chapter 9

Soundness, Completeness,
and Compactness

We have introduced two possible manners in which one may conclude the
truth of a sentence α from the truth of a collection Σ of sentences.

In Chapter 5 we saw the idea of logical implication and said that Σ |= α if
every truth assignment that makes the sentences in Σ true also makes α true.
This is a semantic notion based on the meanings of the sentences involved
and on truth.

In Chapter 8, we studied the idea of deducibility and proof. We defined
Σ ` α to mean that there is a proof of α from Σ based on the single rule of
inference Modus Ponens. This is a syntactic notion based on mechanical rules
of derivation.

In this chapter, we address the relationship between these two notion.
On the surface, the two ideas seem quite different. Aside from the fact that
one idea is about meaning and one is about mechanical rules, proof is a
finite notion – a proof is a finite list of wffs each involving a finite number of
symbols – while logical implication may involve infinitely many statements. In
this chapter, we discuss the somewhat surprising fact that these two different
notions of implication are equivalent. This means that our notion of proof is
sound in the sense that any statement proven from true premises must also be
true. It also means that our notion of proof is complete in the sense that every
logical implication can be supported by a proof. For mathematicians, who
spend their time trying to establish the truth of theorems which are usually
logical implications, this means that proof is the proper tool to use.

9.1 Soundness and Completeness

Recall the definition of proof from Chapter 8

73

74

Proof Suppose that Σ is a set of wffs and α is a wff. A proof or
deduction of α from Σ is a list γ1, γ2, . . . , γn so that γn = α and each
sentence γi in the list

1. is a tautology or

2. is in Σ or

3. follows from two earlier sentences by the rule Modus Ponens.

We can use this definition to prove that if every sentence in Σ is true, and
if Σ ` α, then α must also be true. An informal way of saying this is that
“proof preserves truth.” This is called the Soundness Theorem. Suppose that
we have a proof γ1, γ2, . . . , γn from a set Σ of wffs and that all of the wffs
in Σ are true. If some γi is in the proof because of reason (1), then it is a
tautology and is true. If some γi is in the proof because of reason (2), then it
is in Σ and is true because everything in Σ is true. Finally, if some γi is in the
proof because of reasosn (3), then it is true because Modus Ponens preserves
truth, as in example 5.1 in Chapter 5. Thus every statement in the proof –
including the conclusion γn – must be true. We have:

Theorem 9.1: Soundness Theorem:

If Σ ` β, then Σ |= β.

A rigorous proof of this theorem would require induction based on a re-
cursive characterization of provability as discussed in Chapter 13.

The converse of the Soundness Theorem is known as the Completeness
Theorem. This theorem tells us that our deductive system is “complete”
or strong enough to prove all valid logical implications. We can observe a
restricted version of the Completeness Theorem in which Σ is finite easily.

Theorem 9.2: Finite Completeness Theorem:

If {α1, α2, . . . , αn} |= β, then {α1, α2, . . . , αn} ` β.

If {α1, α2, . . . , αn} |= β, then (α1 ∧ α2 ∧ . . . ∧ αn) → β is a tautology by
exercise 13 in 5.4, so we can offer this proof of β from {α1, α2, . . . , αn}.

1. α1 Premise
2. α2 Premise
...

...
n. αn Premise
n+ 1. (α1 ∧ α2 ∧ . . . ∧ αn) Conjunction
n+ 2. (α1 ∧ α2 ∧ . . . ∧ αn)→ β Tautology
n+ 3. β Modus Ponens

75

9.2 The Deduction Theorem

The most fundamental proof technique in mathematics is Direct Proof, which
will be discussed in Chapter 10. The basis for this proof technique is the De-
duction Theorem, which we can now establish with the help of the Soundness
Theorem. You should compare this theorem to Example 5.6.

Theorem 9.3: Deduction Theorem:

Σ, α ` β if and only if Σ ` α→ β.

Since proof is a finite notion, it is adequate to consider the case when Σ
is finite:

{γ1, γ2, . . . , γn, α} ` β if and only if {γ1, γ2, . . . , γn} ` α→ β.

For this discussion, let σ = γ1 ∧ γ2 ∧ . . . ∧ γn.

• If {γ1, γ2, . . . , γn, α} ` β, then (σ ∧ α) ` β by the rule of inference
Simplification.

• If (σ ∧ α) ` β, then (σ ∧ α) |= β by the Soundness Theorem.

• If (σ ∧ α) |= β, then (σ ∧ α) → β is a tautology (see Exercise 11 in
Section 5.4).

• If (σ∧α)→ β is a tautology, then σ → (α→ β) is a tautology because
these statements are equivalent.

• If σ → (α→ β) is a tautology, then σ ` (α→ β) by Modus Ponens.

• If σ ` (α→ β) then {γ1, γ2, . . . , γn} ` (α→ β) by the rule of inference
Conjunction.

Applying the rule of inference Transitivity to these implications gives

If {γ1, γ2, . . . , γn, α} ` β then {γ1, γ2, . . . , γn} ` α→ β.

On the other hand, the implication

If {γ1, γ2, . . . , γn} ` α→ β then {γ1, γ2, . . . , γn, α} ` β

follows immediately from Modus Ponens.

The Deduction Theorem provides an important means for demonstrating
that an implication α→ β is provable. To demonstrate such, simply assume
α and use this to prove β. This is known as Direct Proof, and we will explore
this technique in Chapter 10. Note that Direct Proof does not actually provide
a proof of α→ β, it simply argues that a proof exists.

76

9.3 Consistency and Satisfiability

The Completeness and Soundness Theorems so far tell us that if Σ is finite
then Σ |= β and Σ ` β are equivalent. However, what if Σ is infinite? Is
it possible that assuming infinitely many truths somehow could surpass the
power of proof and imply logical consequences that cannot be directly proven?
The answer is no, but we will have to wait for the Compactness Theorem 9.8
to see why. For the Compactness Theorem, we need the notions of consistency
and satisfiability. We first look at an example which has a moral.

Example 9.4: Write a proof to show that

P ∧ ¬P ` Q

1. P ∧ ¬P Premise
2. P Simplification 1
3. ¬P Simplification 1
4. P ∨Q Addition 2
5. Q Disjunctive Syllogism 4,3

The moral is: anything can be proven from a contradiction. For this
reason, we make the following definition. A set Σ of wffs is consistent if no
contradiction can be proven from Σ. Σ is inconsistent if a contradiction (such
as α ∧ ¬α) can be proven from Σ. From the previous example, any wff can
be proven from an inconsistent set of wffs.

Theorem 9.5: If Σ is inconsistent, then Σ ` α for any wff α.

Suppose that Σ is inconsistent. Then for any wff α in the same language,
Σ ` α ∧ ¬α. This implies that Σ |= α ∧ ¬α. If a truth assignment s made
every wff in Σ true, then Soundness would give us s(α ∧ ¬α) = T . This
cannot happen. Thus, there is no truth assignment that will make all of the
wffs in Σ true. Thus we define: A set Σ of wffs is satisfiable if there is a
truth assignment s so that s |= Σ. What we just observed is that if Σ is not
consistent, then Σ is not satisfiable. The contrapositive of this is:

Theorem 9.6: Soundness Theorem (Version 2): If Σ is satisfi-
able, then Σ is consistent.

We have named this as Version 2 of the Soundness Theorem because it
happens to be equivalent to Version 1 of the Soundness Theorem above. We
will not prove this equivalence.

We also have a second (and equivalent) version of the Completness The-
orem. At this point, we can only address the finite version of this theorem.

77

Theorem 9.7: Finite Completeness Theorem (Version 2): If
{α1, α2, . . . , αn} is consistent, then {α1, α2, . . . , αn} is satisfiable.

To see this, we will argue that if {α1, α2, . . . , αn} is not satisfiable, then
{α1, α2, . . . , αn} is not consistent. Let α be any wff. Since {α1, α2, . . . , αn}
is not satisfiable, then for any truth assignment s, it is not the case that
s |= {α1, α2, . . . , αn}. Therefore, the implication

If s |= {α1, α2, . . . , αn} then s |= (α ∧ ¬α)

is vacuously true (since it is of the form F → F). This means that

{α1, α2, . . . , αn} |= (α ∧ ¬α).

By Version 1 of the Finite Completeness Theorem,

{α1, α2, . . . , αn} ` (α ∧ ¬α).

But then, {α1, α2, . . . , αn} is inconsistent. We see that if {α1, α2, . . . , αn} is
not satisfiable, then {α1, α2, . . . , αn} is not consistent. This is the contrapos-
itive of Version 2 of the Finite Completeness Theorem.

Since proof is a finite notion, and since consistency is defined in terms of
proof, it seems that this version of the Finite Completeness Theorem leaves
open the possibility that an infinite set Σ of wffs might be consistent (no finite
subset of them can prove a contradiction), but taken as a whole they may not
be satisfiable. This is not possible. To prove this, we need the Compactness
Theorem 9.8.

9.4 Exercises

At least in the finite case, consistency and satisfiability are equivalent. We
can use this to determine if a set of wffs is consistent. If we can find truth
values for the atomic symbols involved which make all of the wffs true, then
the set of wffs is satisfiable and consistent. If a contradiction can be proven
from the wffs, then the set of wffs is not consistent and not satisfiable.

Decide if each the following sets of wffs is or is not consistent/satisfiable.
For those that are satisfiable, provide an assignment of truth values which
makes all of the wffs true. For those that are not satisfiable, provide a proof
from the wffs of a contradiction.

1. {P → ¬Q,P ∧Q}

2. {A→ B,C → D,A ∨ C,¬B}

3. {A ∨B,¬A ∨ C,¬(B ∨ C)}

4. {A→ B,B → C,A ∧ ¬C}

78

5. {(A ∧ ¬A) ∨B}

6. {A→ B, (A ∧B)→ C,D → C,¬D}

7. {A→ B,B → A,A ∧ ¬B}

8. {(A ∧B)→ C,A→ ¬C,B → A,B}

9. {(A ∧ ¬B)→ C, (¬A ∧B)→ ¬C,A ∨B}

10. {A→ ¬A,B → ¬B,A ∨B ∨ C}

9.5 Compactness

Compactness is a notion that essentially declares that logical implication and
satisfiability (like proof and consistency) are finite concepts. The Compact-
ness Theorem comes in two equivalent forms like the Soundness and Com-
pleteness Theorems. To keep our system of naming these theorems parallel,
the first version of the Compactness Theorem we will see will actually be
called Version 2. Call a set Σ of wffs finitely satisfiable if every finite set of
wffs in Σ is satisfiable.

Theorem 9.8: Compactness Theorem (Version 2): If Σ is
finitely satisfiable, then Σ is satisfiable.

We will not attempt a proof of this version of the Compactness Theorem
here, but we will describe a rough approach. Suppose that Σ is a finitely
satisfiable set of wffs in a sentential language L. List all of the wffs in the
language as α1, α2,

1 We consider each αn one at a time. Either Σ, αn

is finitely satisfiable, or Σ,¬αn is finitely satisfiable.2 If Σ, αn is finitely
satisfiable, then add αn to Σ to form a larger set of wffs. Otherwise, add ¬αn

to Σ. Do this for all α1, αn, . . . to form a new finitely satisfiable set Γ of wffs
which contains Σ so that for every wff α, Γ contains either α or ¬α (such a
Γ is said to be maximally consistent because adding any α to Γ would make
it inconsistent). Since Γ is a set of wffs, some of the atomic symbols in our
language may be in Γ, while some may not be. Define a truth assignment
s so that for any atomic symbol A, if A is in Γ then s(A) = T . Otherwise
S(A) = F . It can be proven that for any wff α, s(α) = T if and only if α is in

1This approach relies on the language in question being countable. Zorn’s Lemma
can be used to avoid this, but that is beyond the intended scope of these notes.

2Suppose not. Then there are finite sets Γ1 and Γ2 of wffs from Σn so that Γ1, αn

and Γ2,¬αn are not satisfiable. If a truth assignment s made all of the wffs in Γ1

and Γ2 true, then s(αn) or s(¬αn) would have to be true – thus satisfying one of
Γ1, αn and Γ2,¬αn. Neither of these can happen, so Γ1 and Γ2 cannot be satisfied
together. Therefore, Γ1 and Γ2 together would form a finite unsatisfiable set of wffs
from Σn.

79

Γ. In particular, s |= Γ, so s |= Σ. With the right details, this construction
will prove this version of the Compactness Theorem.

We can use the Satisfiability version of the Compactness Theorem to prove
a version of the Compactness Theorem (which happens to be equivalent) that
refers to logical implication. Suppose that Σ |= α. This implies that Σ,¬α is
not satisfiable (since α and ¬α cannot be true at the same time). By Version
2 of the Compactness Theorem, there is some finite set Σ0 of wffs in Σ so
that Σ0,¬α is not satisfiable. But then Σ0,¬α |= α vacuously. By Example
5.6 of Chapter 5, Σ0 |= ¬α→ α. Since (¬α→ α) ≡ α, we have Σ0 |= α. This
proves the following version of the Compactness Theorem.

Theorem 9.9: Compactness Theorem (Version 1): If Σ |= α,
then there is some finite set Σ0 of wffs in Σ so that Σ0 |= α.

9.6 Completeness

We are now ready to use the Compactness Theorems to extend our Finite
Completeness Theorems to arbitrary sets. First, if Σ |= β, then by Version 1
of the Compactness Theorem, Σ0 |= β for some finite set Σ0 of wffs in Σ. By
Version 1 of the Finite Completeness Theorem, Σ0 ` β. Since every wff in Σ0

is in Σ, this implies Σ ` β. We have

Theorem 9.10: Completeness Theorem (Version 1):
If Σ |= β, then Σ ` β.

The “consistent implies satisfiable” version of the Completeness Theorem
is proven using Version 2 of Compactness. Suppose that Σ is consistent.
Then every finite set of wffs in Σ is consistent (since proofs only involve
finitely many sentences). By Version 2 of the Finite Completeness Theorem,
this means that every finite set of wffs in Σ is satisfiable. Thus Σ is finitely
satisfiable. By Version 2 of the Compactness Theorem, Σ is satisfiable. Thus
we have

Theorem 9.11: Completeness Theorem (Version 2): If Σ is
consistent, then Σ is satisfiable.

9.7 Summary

We now have proven two theorems each referring to Soundness, Completeness,
and Compactness. We list the pairs of theorems together here.

80

Theorem 9.12: Soundness Theorems
• If Σ ` α, then Σ |= α.

• If Σ is satisfiable, then Σ is consistent.

Theorem 9.13: Completeness Theorems
• If Σ |= α, then Σ ` α.

• If Σ is consistent, then Σ is satisfiable.

Theorem 9.14: Compactness Theorems
• If Σ |= α, then there is some finite set Σ0 of wffs in Σ so that

Σ0 |= α.

• If Σ is finitely satisfiable, then Σ is satisfiable.

The first Soundness Theorem and the first Completeness Theorem tell us
that implication and provability are equivalent ideas. The second Soundness
Theorem and second Completeness Theorem tell us that satisfiability and
consistency are equivalent. The Compactness Theorems tell us that these are
finite notions.

Chapter 10

Temporary Assumptions

The formal deduction scheme defined in Chapter 8 allowed only Modus Ponens
as a rule of inference. We simplified writing proofs in this environment by
deriving other rules of inference based on Modus Ponens. We will simplify
deductions further in this chapter through a method called Direct Proof. This
method is based on the Deduction Theorem (Theorem 9.3).

10.1 Direct Proof

Recall the Deduction Theorem:

Theorem 10.1: Deduction Theorem (9.3):

Σ, α ` β if and only if Σ ` α→ β.

To prove an implication α→ β, we can assume α and use this to establish
β. By the Deduction Theorem, this is good enough to demonstrate that α→ β
could have been derived with Modus Ponens. We call this method of proof
Direct Proof

Direct Proof: To prove α → β, assume α and use this to establish
β. Conclude α→ β.

When we introduce a temporary assumption for direct proof, we will lead
every line in our proof in which we use that assumption with a vertical line
to indicate a temporary assumption is “in play.” The statements which are
bound by the vertical line cannot be referenced outside of the vertical line.

Example 10.2: Write a proof to show that

{P → Q,P → R} ` P → (Q ∧R)

81

82

1. P → Q Premise
2. P → R Premise

3.
∣∣∣ P Temp. Assumption

4.
∣∣∣ Q Modus Ponens 1,3

5.
∣∣∣ R Modus Ponens 2,3

6.
∣∣∣ Q ∧R Conjunction 4,5

7. P → (Q ∧R) Direct Proof 3-6

We can even nest temporary assumptions:

Example 10.3: Write a proof to show that

{P → Q, (Q ∧R)→ S} ` P → (R→ S)

1. P → Q Premise
2. (Q ∧R)→ S Premise

3.
∣∣∣ P Temp. Assumption

4.
∣∣∣ Q Modus Ponens 1,3

5.
∣∣∣ ∣∣∣ R Temp. Assumption

6.
∣∣∣ ∣∣∣ Q ∧R Conjunction 4,5

7.
∣∣∣ ∣∣∣ S Modus Ponens 2,6

8.
∣∣∣ R→ S Direct Proof 5-7

9. P → (R→ S) Direct Proof 3-8

10.2 Proving a Disjunction

Suppose that we want to prove a disjunction P ∨Q. Note that by disjunctive
implication, P ∨ Q ≡ ¬P → Q. We can prove ¬P → Q by Direct Proof.
Thus, a strategy to prove P ∨Q is

Disjunction Proof: To prove α∨β, assume ¬α. Use this to establish
β. Conclude α ∨ β.

For example:

Example 10.4: Write a proof to show that

{A→ B,C → D,A ∨ C} ` B ∨D

83

1. A→ B Premise
2. C → D Premise
3. A ∨ C Premise

4.
∣∣∣ ¬B Temp. Assumption

5.
∣∣∣ ¬A Modus Tollens 1,4

6.
∣∣∣ C Disjunctive Syllogism 3,5

7.
∣∣∣ D Modus Ponens 2,6

8. B ∨D Disjunction Proof 4-8

10.3 Cases

Suppose we want to prove a statement of the form (P ∨ Q) → R. From
Example 6.6, we know that (P ∨ Q) → R ≡ (P → R) ∧ (Q → R). Thus, it
is good enough to prove that P → R and Q→ R. This is known as proof by
cases.

Proof by Cases: To prove (α ∨ β) → γ, Prove α → γ and β → γ.
Conclude (α ∨ β)→ γ

For example:

Example 10.5: Write a proof to show

{¬R→ ¬(P ∨ S), Q→ (R ∧ T)} ` (P ∨Q)→ R

1. ¬R→ ¬(P ∨ S) Premise
2. Q→ (R ∧ T) Premise

3.
∣∣∣ P Temp. Assumption

4.
∣∣∣ P ∨ S Addition 3

5.
∣∣∣ R Modus Tollens 1, 4

6. P → R Direct Proof 3-5

7.
∣∣∣ Q Temp. Assumption

8.
∣∣∣ R ∧ T Modus Ponens 2,7

9.
∣∣∣ R Simplification 8

10. Q→ R Direct Proof 7-9
11. (P ∨Q)→ R Cases 6,10

84

10.4 Contrapositive

When we are trying to prove an implication P → Q, it is sometimes easier to
prove the contrapositive ¬Q→ ¬P . For example, proving “If n2 is even, then
n is even” is difficult; however, it is easy to prove “If n is not even, then n2 is
not even.” Note that we can use direct proof to establish the contrapositive.

Example 10.6: Write a proof to show that

{¬R→ ¬(P ∨ S)} ` P → R

1. ¬R→ ¬(P ∨ S) Premise

2.
∣∣∣ ¬R Temp. Assumption

3.
∣∣∣ ¬(P ∨ S) Premise

4.
∣∣∣ ¬P ∧ ¬S Equivalent 3

5.
∣∣∣ ¬P Simplification 4

6. ¬R→ ¬P Direct Proof 2-5
7. P → R Equivalent (Contrapositive) 6

10.5 Contradiction

Suppose that we are trying to prove a sentence α. Suppose further that
by assuming ¬α we can prove a contradiction β (a statement which is false
for every truth assignment). Since we have proven ¬α → β, we know the
contrapositive ¬β → α must also hold. Since ¬β is a tautology, then it follows
that α must hold. This is known as indirect proof, reductio ad absurdum, or
proof by contradiction.

Proof by Contradiction: To prove α by contradiction, assume ¬α.
Use this to establish a contradiction such as β ∧ ¬β. Conclude α.

An example:

Example 10.7: Write a proof to show that

{A→ B,C → D,A ∨ C} ` B ∨D

85

1. A→ B Premise
2. C → D Premise
3. A ∨ C Premise

4.
∣∣∣ ¬(B ∨D) Temp. Assumption (BWOC)

5.
∣∣∣ ¬B ∧ ¬D Equivalent 4

6.
∣∣∣ ¬B Simplification 5

7.
∣∣∣ ¬D Simplification 5

8.
∣∣∣ ¬A Modus Tollens 1,6

9.
∣∣∣ ¬C Modus Tollens 2,7

10.
∣∣∣ ¬A ∧ ¬C Conjunction 8,9

11.
∣∣∣ ¬(A ∨ C) Equivalent 10

12.
∣∣∣ (A ∨ C) ∧ ¬(A ∨ C) Conjunction 3,11

13. (B ∨D) Contradiction 4-12

10.6 Exercises

Write proofs for these deductions.

1. {P → ¬Q,Q ∨R, (R ∨ S)→ T} ` P → T

2. {P → S,Q→ T, (S ∧ T)→ R} ` (P ∧Q)→ R

3. {P,Q→ R} ` (P → Q)→ R

4. {P → R,¬S → P} ` R ∨ S

5. {P → R,¬T → Q, (R ∧ T)→ (S ∧ U)} ` (P → Q) ∨ S

6. {A, (B ∧ C)→ D} ` (A ∧ ¬B) ∨ (C → D)

7. {P ∨ S,Q ∨ U, (S ∧ U)→ R} ` P ∨Q ∨R

8. {¬P ∨R, (Q ∨ S)→ R} ` (P ∨Q)→ R

9. {¬A ∨C, (A ∨E)→ F, F → D,B → F,¬B ∨A} ` (A ∨B)→ (C ∧D)

10. {¬D → ¬C, S → T, (B∨¬S)→ D,¬T, (A∧¬S)→ D} ` (A∨B∨C)→
D

86

Chapter 11

Arguments

An argument is a list of statements called premises followed by a statement
called the conclusion.

The argument with premises P1, P2, . . . , Pn and conclusion C can be writ-
ten as

P1, P2, . . . , Pn ∴ C

or as
P1

P2

...
Pn

∴ C

The three dots ∴ symbolize “therefore.” This is not a logical symbol. It is a
symbol to emphasize the conclusion.

An argument P1, P2, . . . , Pn ∴ C is valid if {P1, P2, . . . , Pn} |= C. That is,
the argument is valid if the premises logically imply the conclusion. Otherwise,
the argument is invalid.

By the Completeness and Soundness Theorems, an argument is valid if
and only if it has a proof. To demonstrate that an argument is valid, we can
write a proof for the argument. To demonstrate that an argument is invalid,
we can either draw a truth table or exhibit a truth assignment that makes
the premises true and the conclusion false.

Example 11.1: Demonstrate that this argument is invalid:

P → Q
Q
∴ P

We could use the truth table approach. For this approach, we draw a truth
table that includes all of the premises and the conclusion of the argument.

87

88

We then note that there is a row in which all of the premises are true but the
conclusion is false. A truth table that works for this argument is:

P Q P → Q
T T T
T F F
F T T
F F T

Note that in the third line of this table, both premises Q and P → Q are
true but the conclusion P is false. Thus the premises do not logically imply
the conlcusion. The argument is invalid. We do not need to draw the entire
truth table to show that this argument is invalid. It is enough to note that if
P is F and Q is T then the premises are true but the conclusion is false.

11.1 Exercises

Show each of these arguments is invalid.

1. P → Q,¬P ∴ ¬Q

2. P → Q,P → R ∴ Q→ R

3. (P ∧Q)→ R,P ∴ R

4. (P ∧Q)→ R,¬R,∴ ¬P

For each of the arguments in words below, introduce appropriate atomic
sentence symbols and translate the argument into sentential logic. Then either
write a proof for the argument to show that it is valid or find truth values
demonstrating that the argument is invalid.

5. Jeremy will buy either the red pillow or the blue pillow. The blue pillow
is quite comfortable. If he buys it, he will sleep in and miss his meeting
with the President. If Jeremy misses the meeting with the President,
the Cabinet will be misled by Jeremy’s adversaries. Either the Cabinet
will not be misled, or we will go to war. Therefore, either Jeremy will
buy the red pillow or we will go to war.

6. If Paul buys one more piece of candy, he will not be able to afford to
buy both his math book and his history book. Paul must major in
either math or government or he will lose his scholarship. If Paul loses
his scholarship, he will drop out of college and will never become a
lawyer or a doctor. If Paul does not buy his math book, he will fail
math and will not be able to major in math. If he does not buy his
history book, he will not be able to major in government. Therefore,
if Paul does not buy one more piece of candy, he will either become a
lawyer or a doctor.

89

7. Sue is good at basket weaving and at logic. If she majors in basket
weaving, she will always be able to find a job in a remote village of
South America. If she majors in logic, she will at least be able to work
at Wal-Mart. Since Sue is good at logic, she is not good at basket
weaving. Therefore, if Sue majors in basket weaving and in logic, then
she will one day sell her baskets in a Wal-Mart in South America.

8. Either fuzzy glow worms eat yellow leaves, or they eat green leaves.
Either fuzzy glow worms are green, or the leaves they eat are green.
If fuzzy glow worms eat yellow leaves, then they turn orange. Either
fuzzy glow worms are not orange, or they are eaten by large purple
birds. If large purple birds eat fuzzy glow worms, then large purple
birds exist. Therefore, either large purple birds exist, or fuzzy glow
worms eat green leaves.

11.2 Fallacies

There are mistakes that are frequently made in arguments in which people
invoke supposed rules of inference which look similar to our rules of inference
above but which are actually invalid arguments. Short invalid arguments such
as these are called logical fallacies. Some common fallacies are listed below.

11.2.1 Affirming the Consequent

This fallacy is also called the fallacy of the converse. It assumes an impli-
cation and the consequent of that implication and then invokes Modus Ponens
not on the stated implication but on its converse.

P → Q
Q
∴ P

11.2.2 Denying the Antecedent

This fallacy is also called the fallacy of the inverse. It assumes an implica-
tion and the negation of the antecedent of that implication and then invokes
Modus Ponens not on the stated implication but on its inverse.

P → Q
¬P
∴ ¬Q

11.2.3 Affirming a Disjunct

This fallacy stems from confusing an inclusive or with an exclusive or.

90

P ∨Q
P
∴ ¬Q

The fields of philosophy and rhetoric provide a rich study of other fallacies
which are arguments that are problematic for reasons other than their logical
form.

11.3 Exercises

For each fallacy listed above, find or make two examples – one in which the
conclusion is false and one in which the conclusion is true.

Chapter 12

Three Valued Logic

Before we close our look at sentential logic, we consider systems in which
there are more than two truth values. Various forms of logic with three truth
values have been suggested over the centuries beginning with Aristotle. The
third truth value has been described somtimes as unknown, unknowable, or
maybe. In these exercises, we select truth values to extend sentential logic to
three truth values. Note that there is more than one way to do this!

12.1 Exercises

1. Draw truth tables for the connectives ¬, ∧, ∨, →, and ↔ using three
truth values T , M , and F . Your tables should agree with the tables in
4.2 in the rows with Ts and Fs. The first two columns of your truth
tables with two letters should look like:

α β
T T
T M
T F
M T
M M
M F
F T
F M
F F

Explain which truth values require some thought and why you made
the decision you did.

2. Which logical equivalences from sentential logic still hold in your logic
with three variables?

3. Does this inference hold in your logic?

91

92

If α→ β and α are T, then β is M.

4. Does this inference hold in your logic?

If α→ β and α are M, then β is M.

5. Does this inference hold in your logic?

If α→ β and α are M or T, then β is M or T.

6. Which of the above rules of inferences seems to you to be the most
desireable extension of Modus Ponens?

7. • Is it true that α ∨ ¬α is always T in your logic?

• Is it true that α ∧ ¬α is always F in your logic?

• Can you adjust your truth values to make these eqivalences hold?

8. Draw truth tables for the connectives ¬, ∧, ∨, →, and ↔ using four
truth values T , P , N , and F . Your tables should agree with the tables
in 4.2 in the rows with Ts and Fs. The first two columns of your truth
tables with two letters should look like:

α β
T T
T P
T N
T F
P T
P P
P N
P F
N T
N P
N N
N F
F T
F P
F N
F F

Explain which truth values require some thought and why you made
the decision you did.

9. Which logical equivalences from sentential logic still hold in your logic
with four variables?

10. Does this inference hold in your logic?

If α→ β and α are P or T, then β is P or T.

93

11. Does this inference hold in your logic?

If α→ β and α are not false, then β is not false.

12. • Is it true that α ∨ ¬α is always T in your logic?

• Is it true that α ∧ ¬α is always F in your logic?

• Can you adjust your truth values to make these eqivalences hold?

94

Chapter 13

Recursion and Induction

13.1 Recursive Definitions

In Chapter 3 we gave this definition of the well formed formulas in a sentential
language with a set L of basic sentence symbols:

Well-Formed Formulas over L
1. Every sentence symbol in L is a wff.

2. If α and β are wffs, then so are

(¬α), (α ∧ β), (α ∨ β), (α→ β), and (α↔ β).

3. No expression can be a wff except for these reasons.

This definition is self-referential or recursive because we use wff here to
define what a wff is. This type of definition is useful for a number of reasons.

• The definition allows quite complex wffs while only referring to rela-
tively simple wffs with at most two symbols.

• The definition makes it easy to program a machine to generate wffs:

1. Make a list containing the basic sentence symbols.

2. For each pair of entries α and β in the list, form

(¬α), (α ∧ β), (α ∨ β), (α→ β), and (α↔ β)

and add these to the list.

3. Goto 2

• The definition allows one to easily define notions such as truth assign-
ments across all wffs by only referring to basic symbols and the logical
connectives.

95

96

• The definition allows for a powerful proof technique called induction
that we will discuss in 13.7.

13.2 Exercises

The following exercises begin an exploration of a few “toy” languages defined
recursively.

1. We will call this type of language a TL1 language (for “Toy Language
1”). If L is any set of basic sentence symbols then the wffs in the TL1
language over L are defined so that:

• Every sentence symbol in L is a wff.

• If α is a wff and if x is any sentence symbol in L, then xα is a wff.

• No expression can be a wff except for these reasons.

(a) List several wffs in the TL1 language with basic sentence symbols
A and B.

(b) List several wffs in the TL1 language with basic sentence symbol
A.

2. Let L be any set of basic sentence symbols. The wffs in the TL2 lan-
guage over L are defined so that:

• Every sentence symbol in L is a wff.

• If α is a wff and if x is any sentence symbol in L, then xxα is a
wff.

• No expression can be a wff except for these reasons.

(a) List several wffs in the TL2 language with basic sentence symbols
A and B.

(b) Find some expressions which cannot be wffs in the TL2 language
with basic sentence symbols A and B.

(c) List several wffs in the TL2 language with basic sentence symbol
A.

3. Let L be any set of basic sentence symbols. The wffs in the TL3 lan-
guage over L are defined so that:

• Every sentence symbol in L is a wff.

• If α and β are wffs, then so are (¬α) and (α ∧ β).

• No expression can be a wff except for these reasons.

(a) List several wffs in the TL3 language with basic sentence symbols
A and B.

97

(b) Find some expressions which cannot be wffs in the TL3 language
with basic sentence symbols A and B.

(c) List several wffs in the TL3 language over with basic sentence
symbol A.

4. TL4 will be a language built from the basic symbols A and B.

• A and ABA are wffs.

• If α is a wff, then so are AαA and αα.

• No expression can be a wff except for these reasons.

(a) List several wffs in TL4.

(b) Find some expressions which cannot be wffs in TL4.

5. TL5 is a language which will use two symbols 1 and S.

• 1 is a wff.

• If α is any wff, then Sα is a wff.

• That’s all folks.

(a) List several wffs in this language.

(b) List several wffs not in this language.

13.3 Truth Assignments

One of the benefits of our recursive definition of sentential wffs is that we are
able to establish truth values for an entire language by simply assigning truth
values to the basic sentences involved and defining how the logical connectives
affect truth values. This allows a machine to generate a list of wffs in a
language along with truth values for the wffs at the same time. This should
be reminiscent of the machine that Leibniz dreamed of that could determine
which statements about natural numbers are true and which are false.

13.4 Exercises

The following exercises explore recursively defining “assignments” on the toy
languages defined in the exercises from Section 13.2.

1. Let L be a set of basic sentence symbols. We recursively define how to
assign either the letter O or the letter E to each wff in the TL1 language
over L. For each wff α, we will write s(α) for the letter assigned to α.

98

Suppose that α is a wff, that x is a basic sentence symbol, and that
s(α) and s(x) have been assigned. Then

s(xα) =

 E s(x) = E and s(α) = E
E s(x) = O and s(α) = O
O otherwise

(a) Consider the TL1 language with basic sentence symbols A and B.
Suppose that s(A) = O and s(B) = E.

i. Find s(AA), s(ABA), s(BBAA), s(BAB), and s(AAAB).

ii. Guess how to determine quickly what s(α) is for any α.

(b) Consider the TL1 language with basic sentence symbols A and B.
Suppose that s(A) = E and s(B) = E.

i. Find s(AA), s(ABA), s(BBAA), s(BAB), and s(AAAB).

ii. Guess how to determine quickly what s(α) is for any α.

(c) Consider the TL1 language with basic sentence symbols A and B.
Suppose that s(A) = O and s(B) = O.

i. Find s(AA), s(ABA), s(BBAA), s(BAB), and s(AAAB).

ii. Guess how to determine quickly what s(α) is for any α.

2. Let L be a set of basic sentence symbols. We recursively define how to
assign a number from {0, 1, 2, 3, 4, 5, . . .} to each wff in the TL2 language
over L. For each wff α, we will write n(α) for the number assigned to
α. Suppose that α is a wff, that x is a basic sentence symbol, and that
n(α) and n(x) have been assigned. Then n(xxα) = n(x) +n(x) +n(α).

(a) Consider the TL2 language with basic sentence symbols A and
B Suppose that n(A) = 1 and n(B) = 2. Find each of n(AAA),
n(BBA), n(BBBBB), and n(AABBA).

(b) Consider the TL2 language with basic sentence symbols A and B
Suppose that n(A) = 1 and n(B) = 0.

i. Find each of n(AAA), n(BBA), n(BBBBB), and n(AABBA).

ii. Guess how to determine quickly what n(α) is for any α.

3. Let L be a set of basic sentence symbols. We recursively define how
to assign a color from {red, orange, yellow} to each wff in the TL3
language over L. For each wff α, we will write c(α) for the color assigned
to α. If α and β are wffs for which c(α) and c(β) have been defined
then define

c(α ∧ β) =

 red c(α) = c(β) = red
yellow c(α) = c(β) = yellow
orange else

99

and

c(¬α) =

 red c(α) = yellow
orange c(α) = orange
yellow c(α) = red

(a) Consider the TL3 language with basic sentence symbols R, O, and
Y . Suppose that c(R) = red, c(O) = orange, and c(Y) = yellow.
Find each of c(¬(R ∧ Y)), c((¬R ∧ ¬O) ∧ (¬Y)), c(¬(¬R ∧ Y)),
c(α ∧ ¬α).

(b) Draw a “color table” for ∧ and for ¬. The tables should be shaped
like this (we abbreviate the names of the colors):

α β α ∧ β
r r
r o
r y
o r
o o
o y
y r
y o
y y

and

α ¬α
r
o
y

(c) For TL3 languages, define α∨β = ¬(¬α∧¬β) and α→ β = ¬α∨β.
Draw color tables for ∨ and →.

(d) Look back at the tables you drew in the previous exercises. Which
logical equivalences appear to hold in TL3 languages?

4. Recursively assign either O or E to each wff in TL5 in the following
way:

• s(1) = O

• if s(α) has been defined, then

s(Sα) =

{
O s(α) = E

E s(α) = O

(a) Calculate s(1), s(S1), s(SS1), s(SSS1), s(SSSS1), s(SSSSS1),
and s(SSSSSS1).

(b) Make a conjecture about how to quickly determine s.

13.5 Deduction

For truth assignments, we recursively define which wffs are true or false. We
had two categories being defined at once. The notion of “provable” is actually

100

quite similar. For any set Σ of wffs, we can define a wffs to either be provable
or not provable from Σ. Based on the definition of proof in Chapter 8, we
can offer this recursive characterization of those wffs provable from a set Σ of
wffs.

Recursive Characterization of Wffs Provable from Σ
1. Every wff in Σ is provable from Σ.

2. Every tautology is provable from Σ.

3. If α → β and α are provable from Σ, then β is also provable
from Σ.

4. The only wffs provable from Σ are provable for one of these
reasons.

There really is nothing magical about the words true, false, or provable.
We could have defined wffs to be good, bad, or ugly. In the exercises below,
we explore recursively defining different categories of our toy languages.

13.6 Exercises

Here, we explore recursively defining different categories of our toy languages.
So as not to confuse the toy notions here with provability, we will use the
word “constructible” in a manner similar to “provable” above.

1. Let L be a set of basic sentence symbols. We give a recursive definition
of which TL2 wffs are constructible from a set Σ of TL2 wffs.

• Every wff in Σ is constructible from Σ.

• If α and β are wffs so that α and ααβ are constructible from Σ,
then so is β.

List all wffs in the TL2 language with basic sentence symbols A and B
which are constructible from

Σ = {A,AAB,AABBABBA,BBAABAABBBA}.

2. Let L be a set of basic sentence symbols. This exercise refers to the
TL3 language over L defined in 13.2 and colorings of such languages as
defined in 4.4.

Define two wffs α and β to be equivalent if for every coloring c, c(α) =
c(β). Suppose that Σ is a set of TL3 wffs over L. We give a recursive
definition of of which wffs are constructible from L.

• Every wff in Σ is constructible from Σ.

101

• Every wff which is equivalent to a wff constructible from Σ is
constructible from Σ.

• If α and β are constructible from Σ, then so is α ∧ β.

• If α ∧ β is constructible from Σ, then so is α.

(a) List some wffs which are equivalent to each of α ∧ α and α ∧ β
(b) List some wffs constructible from Σ = {A,B,C ∧ ¬D}

13.7 Proof by Induction

Recursive definitions give us a powerful proof technique called induction.

Induction Suppose that S is a set of wffs in a language L. If these
two conditions are satisfied:
• Every sentence symbol is in S.

• Whenever α and β are in S, then so are

(¬α), (α ∧ β), (α ∨ β), (α→ β), and (α↔ β).

Then S is the set of all wffs of L.

We take the principle of induction as an axiom (an assumption) based
on our recursive definition of wffs. Here is an example of using induction
to prove a fact about a sentential language. Note that this is a proof about
sentential languages, not a proof in a sentential language. We sometimes will
refer to the second bullet by saying that S is closed under logical connectives.
Induction can be simply described by saying that if S contains the basic
sentence symbols in L and if S is closed under logical connectives, then S
contains all wffs over L.

Theorem 13.1: Every wff in a sentential language is equivalent to a
wff which involves at most the connectives ¬ and ∧.

We will prove this with induction. Let S be the set of all wffs in a
sentential language with basic symbols L which are equivalent to a wff which
involves at most the connectives ¬ and ∧. Note that every basic sentence
symbol is in S since these involve no logical connectives. Now suppose that α
and β are in S. There are wffs α̂ and β̂ which involve at most the connectives
¬ and ∧ so that α ≡ α̂ and β ≡ β̂. Then ¬α ≡ ¬α̂, α ∧ β ≡ α̂ ∧ β̂,
α∨β ≡ ¬(¬α̂∧¬β̂), α→ β ≡ ¬(α̂∧¬β̂), and α↔ β ≡ ¬(α̂∧¬β̂)∧¬(β̂∧¬α̂).
Since each of these wffs contains only basics symbols, ¬ and ∧, they are all
in S. Thus S contains the basic sentence symbols and is closed under logical
connectives. By induction, S contains all wffs over L. Thus, every wff over L
is equivalent to a wff which involves at most the connectives ¬ and ∧.

102

Note about the word “induction”: Proof by induction should not
be confused with the method of reasoning called inductive reasoning
which is prevalent in the sciences. Deductive reasoning is reasoning
through logical inferences as we have been doing in the past few chap-
ters. When one begins with true premises, any conclusion drawn by
deductive reasoning is necessarily true. Science relies on inductive
reasoning. Inductive reasoning does not prove conclusions. Rather, it
gathers evidence for conclusions. When one begins with true premises,
any conclusion drawn by inductive reasoning may be true, but it may
also be false. Science does not provide proof, it provides evidence.
Proof by induction is actually a deductive technique. It does not
suffer from the weaknesses of scientific inductive reasoning.

13.8 Exercises

1. Let L be a sentential language. Let S be the set of all wffs in L with
the same number of left and right parenthesis. Use induction to prove
that S contains all wffs over L.

2. Let Σ be a set of wffs in a sentential language with basic symbols L.
The recursive characterization of wffs provable from Σ gives rise to an
induction strategy for proving facts about those wffs provable from Σ:

Induction for Wffs Provable from Σ
Suppose that S is a set of wffs. If these conditions are met:
• Every wff in Σ is in S.

• Every tautology is in S.

• If α→ β and α are in S, then β is in S.
then S contains the set of all wffs provable from Σ.

We will describe this by saying S must contain all of Σ and all tautolo-
gies and must be closed under Modus Ponens.

Let s be a truth assignment over L and suppose that s |= Σ (that is,
s makes all of Σ true). Let S be the set of all wffs which s makes
true. Use the induction strategy described here to prove that every wff
provable from Σ is in S. As a result, any wff provable from a set of true
premises is also true.

3. Every recursive definition gives an induction strategy. Give an induc-
tion strategy based on the recursive definition of TL2 languages.

4. Give an induction strategy for TL4 languages.

5. Use induction to prove that every wff in the TL2 language with basic
sentence symbol A (from 13.2) has an odd number of A’s.

103

6. Use induction to prove that every wff in the language TL4 begins with
an A.

7. This exercise refers to coloring and constructibility in TL3 languages.
Give an induction strategy for those TL3 wffs constructible from a set
Σ of TL3 wffs.

8. Use induction to prove that if every TL3 wff in Σ is red, then every wff
constructible from Σ is red.

9. Is it true that if every TL3 wff in Σ is orange, then every wff con-
structible from Σ is orange?

13.9 Recursively Enumerable Sets

The recursive definitions early in this chapter defined what we called lan-
guages, but we can use recursive definitions to define many types of sets. In
this section, we will consider recursive definitions which list subsets of the
natural numbers: N = {0, 1, 2, 3, . . .}. We call such sets recursively enumer-
able1. Each of these definitions will include the ingredients of the recursive
definitions from earlier in the chapter:

• A basis condition for inclusion in the set. (Such as, “The symbols in L
are contained in S.”)

• A transition or step condition for inclusion in the set. (Such as, “If α
and β are in S then so is α∧β.”) This is the condition which is usually
self-referential.

• A terminal or closure condition. (Such as, “No element is in the set
except for one of these reasons.”)

Example 13.2: Give a recursive definition of the set E of even nat-
ural numbers.

The set E of even natural numbers can be defined recursively by:

• The number 0 is in E.

• If a number n is in E, then so is n+ 2.

• No number is in E except for one of these reasons.

Example 13.3: Give a recursive description of the set N of all natural
numbers.

The set N can be described recursively by:

1OK. So a lot of mathematicians would have a problem with this definition, but
it works for our purposes.

104

• The number 0 is in N.

• If a number n is in N, then so is n+ 1.

• No number is in T except for one of these reasons.

Example 13.4: Give a recursive description of the set S of natural
numbers which are not multiples of 3.

• 1 and 2 are in S.

• If n is in S then so is n+ 3.

• That’s all.

Example 13.5: Give a recursive description of this set:

{1, 2, 3, 5, 8, 13, 21 . . .}

When arranged in increasing order, when two adjacent numbers are in
the set, then so is their sum. This definition is not rigorous because the word
adjacent does not mean anything within a set. However, we can recursively
define a sequence whose entries are the numbers in this set:

• f1 = 1.

• f2 = 1.

• If fn and fn+1 have been defined, then fn+2 = fn + fn+1. (This is the
adjacency condition.)

Let us use this definition to calculate some values.

• Since f1 and f2 are defined for us, f3 = f1 + f2 = 1 + 1 = 2.

• Since f2 and f3 are defined for us, f4 = f2 + f3 = 1 + 2 = 3.

• Since f3 and f4 are defined for us, f5 = f3 + f4 = 2 + 3 = 5.

• Since f4 and f5 are defined for us, f6 = f4 + f5 = 3 + 5 = 8.

• Since f5 and f6 are defined for us, f7 = f5 + f6 = 5 + 8 = 13.

These numbers are called the Fibonacci Numbers. They arise from a problem
posed in 1202 about the growth of a rabbit population with these assumptions:

1. A newly born pair of rabbits, one male, one female, are put in a field.

2. Rabbits are able to mate at the age of one month so that at the end of
its second month a female can and will produce another pair of rabbits.

3. Rabbits never die.

4. Rabbits will mate any chance they get but are monomogous.

5. A mating pair always produces one new pair (one male, one female)
every month from the second month on.

The number fn is the number of pairs in the population after n months.

105

13.10 Exercises

Provide recursive descriptions of each of the following sets of natural numbers.

1. The set of odd natural numbers.

2. The set of multiples of 3.

3. The set of powers of 2.

4. The set of numbers which are not multiples of 4.

5. The set {1, 3, 7, 15, 31, 62, . . .}

6. The set {1, 2, 4, 7, 11, 16, 22, 29, . . .}

13.11 Truth Machines

We can think of a recursive definition of a set as a design for a machine which
will list the elements of the set. Suppose that I have a recursively enumerable
set S and that I have built the machine which lists the elements of S. If I
have any number n, I can wait while the machine generates numbers. If n is
in the set, then the machine will eventually generate the number n. However,
it may take a long time. While I am waiting, if I have not seen n come out
of the machine, then either n is in S and I just have to wait a bit longer, or
maybe n is not in S. I do not know which. One of two things happens. Either
I eventually see n and know that n is in S, or I wait for ever not knowing
whether or not n is in S.

Now suppose that S and the set of numbers not in S are both recursively
enumerable. I can build two machines – one listing those numbers in S and
one listing those numbers not in S. Now consider any number n. Either n
is in S or it is not. This means that one of the two machines will eventually
list the number n. All I have to do is wait. There is no danger that both
machines will run forever without generating n. Thus, I can build a machine
(the two together) which will tell me whether or not a number n is in S. In
this case, we say that S is computable or recursive.

Recall that Leibniz dreamed of building a truth machine into which he
could feed statements and which would output (correctly) whether the state-
ment was true or false. Leibniz was asking whether or not the set of true
statements (in some language) is computable (or recursive). We could just as
well ask whether or not a set of true statements is recursively enumerable.

106

Chapter 14

Phrase Structure
Grammars

In the previous chapter we explored recursive definitions of wffs in a sentential
language. In this chapter we investigate a manner of specifying grammatically
correct sentences in a language in a way that more closely mimics the process
we use in our spoken language.

14.1 Building a Sentence in English

We begin with a question: What is a sentence? Well, there are many answers
to this, but a first approximation is that a sentence is a noun phrase followed
by a verb phrase. Pictures will be helpful in this chapter. A picture indicating
that a sentence is a noun phrase followed by a verb phrase might look like:

sentence

noun phrase verb phrase
This is called a tree. This is all well and good, but what is a noun phrase?

A noun phrase can be many things. One example is that a noun phrase can
be an article followed by an adjective followed by a noun:

sentence

noun phrase

article adjective noun

verb phrase

An article is a word like a, an, or the. We will replace the word article
with one of these.

107

108

sentence

noun phrase

article

the

adjective noun

verb phrase

There are many adjectives. Some are tired, hungry, happy, sloppy. We
can replace the word article with any of these.

sentence

noun phrase

article

the

adjective

hungry

noun

verb phrase

There are many nouns too. Some are rabbit, student, professor. Any of
them can be used here.

sentence

noun phrase

article

the

adjective

hungry

noun

rabbit

verb phrase

We can now play the same game with the verb phrase. A verb phrase
might be a verb followed by an adverb.

sentence

noun phrase

article

the

adjective

hungry

noun

rabbit

verb phrase

verb adverb

Here are some verbs: eats, jumps, sleeps. Here are some adverbs: quickly,
lazily, violently. We choose one of each:

109

sentence

noun phrase

article

the

adjective

hungry

noun

rabbit

verb phrase

verb

eats

adverb

quickly

Any way we pick an article, an adjective, a noun, a verb, and an adverb
from our lists will be guaranteed to make a grammatically correct sentence.
Some of these will have meaning like the one above. Others will be nonsense
such as.

A hungry student sleeps violently.

This tree which we drew to indicate how our sentence is built is called a
derivation tree.

14.2 Phrase Structure Grammars

Let us formalize the process we followed in the last section to write a sentence.
First, we have a set of symbols which we will call our vocabulary. For this
example, the symbols involved were:

sentence, noun-phrase, verb-phrase, article, adjective, noun, ver
adverb, a, an, the, tired, hungry, happy, sloppy, rabbit, student,
professor, eats, jumps, sleeps, quickly, lazily, violently

Notice how we connected noun-phrase and verb-phrase to indicate these pairs
of words represent single symbols. A string or expression is just a list of
symbols from our vocabulary. The symbol sentence has a special place in our
discussion. It is our start symbol. We began in the last section with our start
symbol – sentence. We then replaced this with a string of symbols – noun-
phrase verb-phrase. We then replace each of these and then did some more
replacing. Our replacing has to follow certain rules. This is what guarantees
the grammatical correctness of our sentences. We call these rules replacement
rules or production rules. The replacement rules we considered in the example
can be written this way:

• sentence→noun-phrase verb-phrase

• noun-phrase→article adjective noun

• verb-phrase→verb adverb

• article→a, article→an, article→the

• adjective→tired, adjective→hungry, adjective→happy, adjective→sloppy

110

• noun→rabbit, noun→student, noun→professor

• verb→eats, verb→jumps, verb→sleeps

• adverb→quickly, adverb→lazily, adverb→violently

While constructing our sentence in the previous section, we replaced some
symbols following these production rules, but we did not have to replace every
symbol. For example, we did not replace the symbol eats. Those symbols in
our vocabulary that do not need to be replaced are called terminal symbols.
We have now identified all of the ingredients of a phrase structure grammar.

A phrase structure grammar consists of

• A set of symbols called the vocabulary.

• A designated symbol in the vocabulary called the start symbol.

• A set of symbols in the vocabulary called the terminal symbols.

• A set of production or replacement rules.

The expressions which are derivable from a phrase structure grammar are
recursively defined by

• The start symbol is derivable.

• If α is derivable and if β is constructed by applying a production rule
to α, then β is derivable.

• These are the only ways in which an expression is derivable.

The language generated by a phrase structure grammar is the set of all deriv-
able expressions which contain only terminal symbols.

14.3 Some Examples

Example 14.1: Make up production rules for the phrase structure
grammar which will generate all arithmetical expressions involving
only the variables x and y, the operation +, and parenthesis. Then
draw a derivation tree of the expression

((x+ y) + (x+ y))

We will use the word “expression” as a start symbol. Since the sum of
two expressions should also be an expression, we must include the production
rule

expression→(expression+expression)

Notice how we build parenthesis into the production rule to avoid confusion
about associativity. Next, inside of a sum, an expression might simply be a
single variable, so we include

111

expression→ x and expression→ x

Our rules are

• expression→(expression+expression)

• expression→ x

• expression→ y

Here is a derivation tree for ((x+ y) + (x+ y))
expression

(expression

(expression

x

+ expression

y

)

+ expression

(expression

x

+ expression

y

)

)

Example 14.2: Add production rules to the example in section 14.1
that will allow for compound sentences.

As in the last example, we need to allow two sentences to be joined to-
gether. In the arithmetic expression example, the sentences are joined with
a +. In English, we need a conjunction. One rule will allow two sentences to
be joined with a conjunction. The other rules will say what a conjunction is.

• sentence→sentence conjunction sentence

• conjunction→and, conjunction→but, conjunction→or

Example 14.3: Make up production rules for the language which
consists of all strings of the form AB, AABB, AAABBB where there
are the same number of As and Bs.

We will approach this two ways. Each uses a different trick. The first
approach is to replace the start symbol with AB and then to replace AB with
AABB to increase the number of As and Bs. That is right – we can replace
a string of symbols.

• start→ AB

• AB → AABB

The second approach uses an empty string. We first replace the start
symbol with AstartB and repeat this until we have the desired number of As
and Bs. Then we replace the start symbol with an empty string – thereby
removing it. In our notation, to indicate the empty string, we will use λ (so,
when you see λ there really is nothing there).

112

• start→ AstartB

• start→ λ

14.4 Exercises

1. Make up two more sentences in the language generated by the grammar
in section 14.1 and draw derivation trees for each.

2. Make up two sentences in the language generated by the grammar in
Example 14.2 and draw derivation trees for each.

3. List three expressions in the language generated by the phrase structure
grammar with vocabulary {start, A,B} and production rules

• start→ AB

• AB → ABAB

• AB → B

The letters A and B are both terminal.

4. List three expressions in the language generated by the phrase structure
grammar with vocabulary {start, A,B} and production rules

• start→ ABA

• A→ ABA

• BAB → ABA

The letters A and B are both terminal.

5. Make a phrase structure grammar that will generate all expressions of
the form AABBBB, ABBB, AAAABB with any positive number of
As and Bs.

6. Make a phrase structure grammar for first order sentential logic.

Chapter 15

Predicate Logic

The sentential logic we have developed is powerful – it gives a reasonable
picture of a large segment of natural reasoning and a model of many of the
types of reasoning involved in doing mathematics. It has a natural deductive
calculus which is complete in the sense that all logical implications can be
proven from Modus Ponens and sound in the sense that proofs only establish
sentences which are logical consequences of the assumptions.

However, sentential logic has a glaring weakness in that the notion of
“sentence” is a bit too vague. Real reasoning requires us to say a bit about
what makes up a sentence, what a sentence can “say,” and how sentences can
be related beyond constructions with logical connectives.

This argument

Bob is a man. All men are mortal. Therefore, Bob is mortal.

Makes perfect sense, but the best sentential logic could do with this is to
identify three seemingly unrelated atomic sentences. To sentential logic, this
argument looks like A,B ∴ C – which is invalid. The problem is that the
idea of basic sentence symbols is a bit too coarse for many forms of actual
reasoning. Sentences (such as the ones here) can be related by what they say
as well as how they are put together with connectives. In this chapter, we
introduce the ideas of predicates and quantifiers to address this problem.

15.1 Predicates

We begin with the first sentence in the argument above, “Bob is a man.” The
sentences “Larry is a man,” “Lola is a man,” and “Glenda is a man” are all
related to this sentence. They are all of the form “x is a man.” Each has
a different name (or person) substituted for the letter x. The sentence “x
is a man” is an example of a predicate. A predicate is a sentence involving
variables which takes on a truth value once specific objects are substituted
for the variables.

113

114

We will use capital letters such as A, B, C, . . . to represent predicates. If
a predicate has a variable x, and if we want to name the predicate P , we will
usually refer to the predicate as P (x) (read “P of x”). The same predicate
with “Bob” substituted for x would be P (Bob). For example, if P (x) is “x
is a man” then P (Bob) would be “Bob is a man.” P (Glenda) is “Glenda is a
man.”

Predicates can have more than one variable. If Q(x, y) is “x is married
to y,” then Q(Bob,Glenda) is “Bob is married to Glenda.” Q(1, 2) is “1 is
married to 2” (which makes no sense). Suppose that B(x, y, z) is “y is between
x and z.” Then B(1, 2, 3) is “2 is between 1 and 3.” B(Bob,Frank,Hank) is
“Frank is between Bob and Hank.”

The number of variables in a quantifier will be called the rank of the
predicate. Here, P has rank 1, Q has rank 2, and B has rank 3. We can also
say that Q is a 2-place predicate or that B is a 3-place predicate.

15.2 Quantifiers

Now that we are aware of predicates, we move on to the second sentence in the
argument from above: “All men are mortal.” There is clearly the predicate
“x is mortal” at play here. The difference between this and the first sentence
is that here we try to substitute all men for x at the same time. We can
rewrite this sentence in this way to account for all men:

For all x, if x is a man, then x is mortal.

Here there are two predicates which have been combined: “x is a man” and
“x is mortal.” We also have an implication in the form of “if...then...” What
is new is the “For all x.” This is a quantifier. We will have two quantifiers,
one to mean “For all” and one to mean “For some.”

The universal quantifier is the symbol ∀. The expression ∀x can be read
as “For all x.” If P (x) is any predicate, then ∀xP (x) can be read “For all x,
P (x).”

The existential quantifier is the symbol ∃. The expression ∃x can be read
as “For some x.” If P (x) is any predicate, then ∃xP (x) can be read “For
some x, P (x).” (Note: Here “some” means “at least one.”)

We make the following assumption:

Definition of the Existential Quantifier The existential quantifier
∃xP (x) is defined to mean ¬∀x¬P (x).

This should seem reasonable. For example, “Some men are mortal” should
mean (about) the same thing as “It is not the case that all men are not
mortal.”

Let us return now to “All men are mortal.” We have translated this into

115

For all x, if x is a man, then x is mortal.

Let P (x) be “x is a man,” and let Q(x) be “x is mortal.” We can express
this symbolically as ∀x(P (x)→ Q(x)). The argument from the introduction
to the chapter can now be expressed symbolically as

P (Bob),∀x(P (x)→ Q(x)) ∴ Q(Bob).

As with our logical connectives, there are a variety of ways to translate
quantifiers into English. Some translations of ∀xP (x) are

For all x, P (x).
For any x, P (x).
P (x), for all x.

Some translations of ∃xP (x) are

For some x, P (x).
For at least one x, P (x).

There exists an x so that P (x).
There is an x so that P (x).

There is at least one x so that P (x).
P (x) for some x.

P (x) for at least one x.

The task before us is to mimic the work we did with sentential logic now
with predicate logic: We need to address:

• Which expressions are wffs for predicate languages?

• Truth values.

• Logical Equivalences.

• Logical implication and deduction.

• Completeness and Compactness.

Because of the work we have already done, this will not be as difficult as it
may sound. We will begin with some translations to get used to our new
symbols.

15.3 Exercises

Define these predicates:

• C(x) is “x is a cat.”

• D(x) is “x is a dog.”

• B(x, y) is “x is bigger than y.”

116

• H(x, y) is “x chases y.”

• P (x) is “x is pink.”

• Y (x) is “x is yellow.”

• F (x) is “x has fleas.”

Translate the following English sentences into symbols.

1. There is a yellow cat.

2. Every cat is either yellow or
pink.

3. If it is pink, it is not a cat.

4. Every dog is bigger than every
cat.

5. Every dog is bigger than some
cat.

6. Some dog is bigger than some
cat.

7. Some dog is bigger than any
cat.

8. If it is a cat, then it is a dog.

9. Every yellow cat is not bigger
than any pink dog.

10. If it is pink, then it is either a
dog or a cat.

11. If it is yellow and it is bigger
than some dog, then it is a cat.

12. All dogs have fleas.

13. Some dogs have fleas.

14. Not every dog has fleas.

15. Some dogs do not have fleas.

16. No dog has fleas.

17. Every dog chases some cat.

18. Every dog chases every cat.

19. Some dog chases every cat.

20. Some dog does not chase any
cat.

21. No dog chases every cat.

15.4 Predicate Languages

In Chapter 2, we gave a recursive definition of what composed a grammatically
correct sentence or well-formed formula in sentential logic. We mimic that
process here with predicate logic.

The languages we build here are designed to exploit predicates and allow
quantification over elements. This is first order predicate logic. If we were to
allow quantification over sets, then we would be working in second order logic.
We will often call our system “predicate logic.” The “first order” is supposed
to be understood.

To build a first order predicate language we need these logical symbols:

parenthesis) and (
logical connectives ∧, ∨, ¬, →, and ↔

quantifiers ∀ and ∃
variables v1, v2, v3 . . .

117

The new additions here are the quantifiers and the variables (which will be
placed inside of predicates).

Suppose that L is a set of predicate symbols (each symbol in L represents
a predicate and has a rank associated to it). Any list of logical symbols and
symbols from L is an expression. We define the well-formed formulas over L
recursively as follows

1. If vi and vj are variables, then vi = vj is a wff.

2. If P is an n-place predicate symbol from L, and if x1, x2, . . . , xn are
variables, then P (x1, x2, . . . , xn) is a wff.

3. If α and β are wffs, then so are

(¬α), (α ∧ β), (α ∨ β), (α→ β), and (α↔ β).

4. If v is a variable an α is a wff, then ∀vα is a wff.

5. If v is a variable an α is a wff, then ∃vα is a wff.

6. No expression can be a wff except for these reasons.

The wffs in (1) and (2) are atomic formulas. The intention in (2) is that
x1, x2, . . . , xn are among the v’s. In (4) ∀vα is called a generalization of α.

In most practical exercises, this formal recursive definition of wffs can
practically be ignored. As with sentential logic, the recursive definition of
wffs gives us a framework for proof by induction. It also gives us an outline
for making definitions in relation to wffs. The recursive definition also sets us
up for a discussion of computability questions later.

Because of our assumption that ∃xP (x) means the same thing as ¬∀x¬P (x),
and because of the logical equivalences for sentential logic, we note that we
could have defined wffs only with ∀ and ¬ and ∧ (or ¬ and ∨ or ¬ and →).

15.5 Free Variables

Any wff contains variables. Some of these variables may be affected by quan-
tifiers while others may not. For example, in ∀x(P (x) ∧ Q(y)), x is affected
by the ∀, but y is not. We say that x is bound and y is free. We also say that
x is in the scope of the ∀.

Formally: Suppose that α is a wff. Any x in ∀xα is in the scope of
the ∀x. A variable which is in the scope of a quantifier is bound. Any
variable which is not bound is free.

A wff with free variables is akin to a predicate with variables. Neither
can have a truth value until some object is substituted for the variables. For
this reason, when we start speaking of truth in predicate logic, we must speak

118

only about wffs with no free variables. We will call a wff with no free variables
a sentence. A formula with free variables will be called an open formula or
open statement (or even predicate sometimes).

15.6 Substitution in formulas

If we view wffs with free variables as predicates, then we will be wanting to
substitute objects for the free variables in a wff. Suppose that α is a wff. We
will write α(v1, v2, . . . vn) to indicate that the free variables in α are among
v1, v2, . . . , vn. We will use α(x1, x2, . . . , xn) for the expression obtained by
replacing in α every free occurrence of v1 by an object x1, and v2 by x2, and
so on. For example, suppose α is

∃v1∀v2(P (v1, v3)→ Q(v2, v4)).

In α, v1 and v2 are bound but v3 and v4 are free. We could refer to α as
α(v1, v2, v3, v4) (even though v1 and v2 cannot be “substituted for”) or as
α(v3, v4) (which is really an abuse of notation). We generally would not use
both expressions in the same context. The expressions α(a, b, c, d) and α(c, d)
would both would mean

∃v1∀v2(P (v1, c)→ Q(v2, d)).

Sometimes, we will really abuse notation and use α(vi) for a formula with
a free variable vi even if there are other free variables. In these cases, we will
assume that all substitution is for free occurrences of vi.

15.7 Logical Axioms

In this section, we lay out basic assumptions that we make in order to give
the desired meanings to our logical symbols. These assumptions are logical
axioms. We call this set of axioms (for a fixed predicate language) ∆.

The set ∆ of logical axioms is the set of all generalizations of these types
of formulas.

Tautologies:

• If α is any tautology of sentential logic, then any formula
obtained by replacing the sentence symbols in α by well-
formed predicate formulas is an axiom of predicate logic.

For example, (P → Q) ↔ (¬P ∨ Q) is a tautology of sentential logic
(Disjunctive Implication). If we replace the P s in this formula with ∀xR(x)
and the Qs with ∃y∀z(R(y, z) ∨ S(y)) then we get

(∀xR(x)→ ∃y∀z(R(y, z) ∨ S(y))↔ (¬∀xR(x) ∨ ∃y∀z(R(y, z) ∨ S(y))).

119

This would be an axiom of predicate logic. These axioms are assumed to
allow us to use the logical equivalences of sentential logic.

Quantifier Axioms:

• For any wff α and variable x, ∃xα↔ ¬∀x¬α is an axiom.

(This axiom merely defines the existential quantifier in terms
of the universal quantifier.)

• Suppose that α is a wff and that x is any symbol. Then
∀viα(vi)→ α(x) is an axiom.

(This axioms says that if α is true everywhere, then α is
true in one specific instance.)

• If α and β are wffs and v is a variable then ∀v(α → β) →
(∀vα→ ∀vβ) is an axiom.

(This axioms says that if α always implies β, and if α is
always true, then β is always true.)

• If a variable v does not occur free in α, then α→ ∀vα is an
axiom.

(Basically, if v has no relationship to α, and if α is true, it
follows that ∀vα is true.)

The first axiom defines the existential quantifier. It gives ¬∀vα ↔ ∃v¬α
and ¬∃vα ↔ ∀v¬α. That is, “not all” is “some not” and “not some” is “all
not.” The second axiom will be the basis for the rule of inference Universal
Instantiation in Chapter 16. The third and fourth axioms will be used in
establishing the rule of inference Universal Generalization in Chapter 16.

Equality Axioms:

• x = x

• (x = y)→ (α↔ α′) where α′ is obtained from α by replac-
ing some occurrences of x by y.

15.8 Exercises

These exercises emphasize the relationships

¬∀vα↔ ∃v¬α and ¬∃vα↔ ∀v¬α.

That is, “not all” is “some not” and “not some” is “all not.” They will also
emphasize that truth for predicate logic is handled a little differently than
truth for sentential logic. Rather than truth assignments, we must consider
small universes or models. Here are eight sets of “holes.” Some are filled (the
dark ones). Some are not filled.

120

A. ◦ ◦ ◦

B. ◦ ◦ •

C. ◦ • ◦

D. ◦ • •

E. • ◦ ◦

F. • ◦ •

G. • • ◦

H. • • •

Let F (x) be “x is filled.” Translate the following statements into symbols
and then decide which sets of holes satisfy the statement.

1. All holes are filled.

2. Some holes are filled.

3. A hole is filled.

4. There is a hole which is filled.

5. There is a hole which is not
filled.

6. All holes are not filled.

7. Some holes are not filled.

8. A hole is not filled.

9. It is not the case that all holes
are filled.

10. It is not the case that some
holes are filled.

11. It is not the case that all holes
are not filled.

12. It is not the case that some
holes are not filled.

13. Not all holes are filled.

14. Not all holes are not filled.

Chapter 16

Implication and Deduction

We studied two ways in which a set Σ of of wffs in sentential logic could
imply a sentence α. First we considered logical implication or entailment
Σ |= α. This type of implication means that every truth assignment which
make every sentence in Σ true also makes α true. In symbols, for any truth
assignment s, if s |= Σ, then s |= α. We then considered deductive implication
Σ ` α. This type of implication means that a proof of α can be constructed
from (finitely many) sentences in Σ. We learned in the Completeness and
Soundness Theorems that these two notions of implication coincide.

We now proceed with a similar line of reasoning in predicate logic. We
will follow the example of sentential logic with the adjustments that we need
a replacement for truth assignments and that our rules of inference for proof
must account for quantifiers.

This process with Predicate logic will give three possible types of implica-
tion. First, we define a deductive calculus which allows us to prove some wffs
from others. Then we consider what it means for a collection Σ of predicate
wffs to imply a predicate wff α when all of the wffs are treated as objects in
sentential logic (in either of the two equivalent manners |= or `). Finally, in
Chapter 19 we replace the notion of truth assignment from sentential logic
with the idea of a model. If every model of a collection Σ of wffs satisfies α,
then we say that Σ logically implies α.

Our deductive mechanisms will be such that all three of these notions of
implication will coincide.

16.1 Deduction and Proof

We first define a deduction of α from Σ in a manner almost identical to
sentential logic.

121

122

Proof Suppose that Σ is a set of wffs and that α is a wff. A proof
or deduction of α from Σ is a list γ1, γ2, . . . , γn of wffs so that γn = α
and each wff γi in the list
• is either an axiom or

• is in Σ or

• follows from two earlier wffs by Modus Ponens.

If there is a proof of α from Σ, then we say that α is provable or deducible
from Σ. In symbols, we express this as Σ ` α.

This is the definition from sentential logic with one change. Here, some
of the γis may be axioms, where in sentential logic, they were tautologies.
Recall that predicate versions of the sentential tautologies are included in our
axioms. Thus the mechanisms for deduction in predicate logic should be just
as strong as those in sentential logic. The difference here is that we have
variables and quantifiers within our wffs.

We will mimic the notation from sentential logic for our proofs in predicate
logic. Notice in this example how the logical axioms allow us to manipulate
the quantifiers.

Example 16.1: Write a proof to show that

{∀x(P (x)→ Q(x)), P (y)} ` Q(y)

1. ∀x(P (x)→ Q(x)) premise
2. P (y) premise
3. [∀x(P (x)→ Q(x))]→ [P (y)→ Q(y)] axiom
4. P (y)→ Q(y) Modus Ponens 1, 3
5. Q(y) Modus Ponens 4,2

Proofs will be quite tedious if all we have to work with are Modus Po-
nens and axioms. We will shortly derive other rules of inference and proof
techniques which will make it easier to write proofs.

16.2 Sentential Implication

Suppose that L is a predicate language. A prime formula over L is any atomic
formula or a formula of the form ∀xα or ∃xα. That is, a formula is prime if it
is either atomic, or if the entire formula is in the scope of a single quantifier.

123

Example 16.2: These formulas are prime

v1 = v2, ∀x(P (x) ∧ ∃y(Q(x, y)→ R(x))), ∀x(P (x) ∨Q(x, y)).

These formulas are not prime

(v1 = v2) ∨ (v1 = v3), ∀xP (x) ∧ ∃yQ(y).

Any formula over L can be constructed by combining prime formulas with
our logical connectives. This observation leads to another possible interpreta-
tion of logical implication. Let L′ be the sentential language whose sentence
symbols are the prime formulas from L. Then every first order formula over L
is a sentential formula over L′. If Σ is any collection of wffs over L and if α is
a wff in L, then we will say that Σ sententially implies α if Σ logically implies
α in sentential logic over L′. We will express this in symbols as Σ |=S α.

Recall that ∆ is the collection of all the logical axioms we declared for
predicate logic in Chapter 9. We can use induction along with the Complete-
ness and Soundness Theorems from sentential logic to prove:

Theorem 16.3: Sentential Implication Theorem: Suppose that
Σ is a collection of wffs in a predicate language and that α is a wff in
the same language. Then Σ ` α if and only if Σ,∆ |=S α.

Proof: Let S be the set of all sentences α for which Σ ` α. Suppose that
s is a truth assignment that makes every sentence in Σ ∪∆ true. We use an
induction argument to show that s(α) = T for every α in S. Suppose that
α ∈ S. If α ∈ Σ or α ∈ ∆, then s(α) = T by assumption. Suppose then that
γ → α and γ are in S and that s(γ → α) = s(γ) = T . Since {γ → α, γ} |=S α,
it follows that s(α) = T . By induction s(α) = T for all α ∈ S. Consequently,
if Σ ` α (that is, if α ∈ S), then Σ,∆ |=S α.

Now suppose that Σ,∆ |=S α. By the compactness theorem for sentential
logic, there is a finite subset {γ1, γ2, . . . , γn} of Σ∪∆ so that {γ1, γ2, . . . , γn} |=S

α. It follows that

γ1 → (γ2 → (· · · → (γn → α) · · ·))

is a tautology and, hence, an axiom and is in ∆ (see exercise 9 in 5.4). Then
repeated applications of Modus ponens to {γ1, γ2, . . . , γn} along with this
axiom will give α. Thus, if Σ,∆ |=S α then Σ ` α. �

16.3 Derived rules of inference

As with sentential logic, proofs in predicate logic with just modus ponens
get somewhat laborious. Since we have at our disposal the tautologies from
sentential logic within our axioms we could prove all of the derived rules of

124

inference from Chapter 8 for predicate logic. In fact, their proofs would be
identical (with the word “tautology” replaced by “axiom.” We will, then,
assume we have these derived rules at our disposal. Of course, these derived
rules do not even acknowledge the quantifiers we are using. We will also derive
rules that allow us to work with the quantifiers in a way that is compatible
with their meaning. The easiest way of doing so uses proofs with temporary
assumptions. We can derive the proof techniques from sentential logic which
use temporary assumptions if we have an extension of the Deduction Theorem
to predicate logic. Here is such an extension.

Theorem 16.4: Deduction Theorem for Predicate Logic: Sup-
pose that Σ is a set of wffs in a predicate language and that α and β
are wffs in the same language. Then Σ, α ` β if and only if Σ ` α→ β.

Proof: Our proof uses the Sentential Implication Theorem of the previous
section along with the Deduction Theorem for Sentential Logic.

Σ, α ` β
if and only if Σ,∆, α |=S β Sentential Implication Theorem
if and only if Σ,∆ |=S α→ β Deduction Theorem, Sentential Logic
if and only if Σ ` α→ β Sentential Implication Theorem

�
Since we have the Deduction Theorem, we could now derive all of the

proof techniques of sentential logic which employ temporary assumptions.
Their derivations would be virtually identical for predicate logic.

We now have at our disposal in predicate logic all derived rules of inference
and all temporary assumption techniques which we used in sentential logic.
We use these now to derive some techniques involving quantifiers. Our first
new rule of inference is based on the fourth quantifier axiom of predicate logic
(you should look at that). This inference basically says that if we want to
prove ∀xα(x), we simply need to prove α(a) for some arbitrary symbol a.

Universal Generalization: If Σ ` α(x) and x does not occur free
in Σ, then Σ ` ∀xα(x).

To prove ∀xα(x), it suffices to prove α(a) for some unused (arbitrary)
symbol a.

We include a proof here by induction only to illustrate the use of the
axioms of predicate logic.

Proof: Suppose that x does not occur in Σ. We wish to prove that Σ
proves ∀xα for any α provable from Σ. To do so, we use induction based on

125

the recursive definition of formulas provable from Σ. Let S be the set of all
α provable from Σ for which Σ ` ∀xα. We prove this is all formulas provable
from Σ.

If α is a logical axiom, then ∀xα is also a logical axiom, so Σ ` α.
If α is in Σ, then x does not occur in α. Then α → ∀xα is an axiom. It

follows then that Σ ` ∀xα by Modus Ponens.
Suppose now that γ and γ → α are in S. Then Σ ` ∀xγ and Σ ` ∀x(γ →

α). Now, ∀x(γ → α)→ (∀xγ → ∀xα) is an axiom. By Modus Ponens, we get
Σ ` (∀xγ → ∀xα). Another application of Modus Ponens now gives Σ ` ∀xα.

We now have by induction that S is the set of all formulas provable from
Σ. �

Our next rule of inference says that if we know that α(v) is true for every
possible value of v, then it is true for a specific value of v. This is based on
the second quantifier axiom.

Universal Instantiation: If x is a symbol and v is a variable, from
∀vα(v) infer α(x).

1. ∀vα(v) premise
2. ∀vα(v)→ α(x) axiom
3. α(x) Modus Ponens 2,1

Our next rule of inference allows us to prove an existential. To prove
∃vα(v), we simply need to establish α(x) for (almost) any x. The proof
exploits the definition of ∃ in terms of ∀.

Existential Generalization: If v is a variable which does not occur
free in α(x), then from α(x) infer ∃vα(v).

To prove ∃vα(v), prove α(x) for some symbol x.

1. α(x) premise

2.
∣∣∣ ¬∃vα(v) Temp. Assumption BWOC

3.
∣∣∣ ∀v¬α(v) Equivalent 2

4.
∣∣∣ ¬α(x) Universal Instantiation

5.
∣∣∣ α(x) ∧ ¬α(x) Conjunction 1,4

6. ∃vα(v) Contradiction 2-5

Our last new rule of inference uses the definition of ∃ along with universal
generalization. This rule simply allows us to give names to objects which we
know to exist. If ∃vα(v) is true, we can name the object that makes α true.
The restriction is that we should use a symbol that has not been used before.

126

Existential Instantiation: If x does not occur in α(v), β, or in Σ,
and if Σ, α(x) ` β, then Σ,∃vα(v) ` β. To prove that Σ,∃vα(v) ` β,
suppose α(x) and prove β.

Proof: By the deduction theorem, Σ ` α(x) → β. Using the contrapos-
itive, Σ ` ¬β → ¬α(x). The deduction theorem now gives Σ,¬β ` ¬α(x).
By universal generalization, Σ,¬β ` ∀v¬α(v). Now, ∀v¬α(v) is equivalent to
¬∃vα(v), so Σ,¬β ` ¬∃vα(v). The deduction theorem and the contrapositive
now give Σ,∃vα(v) ` β. �

16.4 Examples

Here are several examples of how to combine our derived rules of inference,
our rules with temporary assumptions, and our rules involving quantifiers to
write proofs in predicate logic.

Example 16.5: Write a proof to show that

{∀x(P (x)→ Q(x)),∃xP (x)} ` ∃xQ(x)

1. ∀x(P (x)→ Q(x)) premise
2. ∃xP (x) premise
3. P (y) Existential Instantiation 2
4. P (y)→ Q(y) Universal Instantiation 1
5. Q(y) Modus Ponens 4,3
6. ∃xQ(x) Existential Generalization 5

Note the strategy in this example. First we applied instantiation rules to
manufacture statements without quantifiers. We first do existential instanti-
ation to “name” elements that the premises declare must exist. Then we use
sentential rules of inference (derived rules if necessary). Then we generalize
with one of the generalization rules.

Example 16.6: Write a proof to show that

{∀x(P (x) ∨Q(x)),∀x(R(x) ∧ ¬Q(x))} ` ∀xP (x)

1. ∀x(P (x) ∨Q(x)) premise
2. ∀x(R(x) ∧ ¬Q(x)) premise
3. P (a) ∨Q(a) Universal Instantiation
4. R(a) ∧ ¬Q(a) Universal Instantiation
5. ¬Q(a) Simplification 4
6. P (a) Disjunctive Syllogism 3, 5
7. ∀xP (x) Universal Generalization 6

127

The a in lines 3 and 4 represents some arbitrary element. In a paragraph
proof, these lines would be preceeded by a comment like “Let a be arbitrary.”
This is to set up universal generalization in line 7. Universal generalization
can only be applied with a generic or arbitrary element such as this.

Example 16.7: Write a proof to show that

{∀x(T (x)→ P (x)),∃x[¬(Q(x) ∧ S(x))→ (T (x) ∧ ∀zU(z))]}

` ∃x(P (x) ∨Q(x))

1. ∀x(T (x)→ P (x)) premise
2. ∃x[¬(Q(x) ∧ S(x))→ (T (x) ∧ ∀zU(z))] premise
4. ¬(Q(b) ∧ S(b))→ (T (b) ∧ ∀zU(z)) Existential Inst. 2
5. T (b)→ P (b) Universal Inst. 1

6.
∣∣∣ ¬P (b) Temp. Assumption

7.
∣∣∣ ¬T (b) Modus Tollens 5,6

8.
∣∣∣ ¬T (b) ∨ ¬∀zU(z) Addition 7

9.
∣∣∣ ¬(T (b) ∧ ∀zU(z)) Equivalent 8

10.
∣∣∣ Q(b) ∧ S(b) Modus Tollens 4,9

11.
∣∣∣ Q(b) Simplification 10

12. P (b) ∨Q(b) Disjunctive Proof 6-11
13 ∃x(P (x) ∨Q(x)) Existential Gen. 12

16.5 Exercises

Write a proof for the stated deduction.

1. {∀x[(P (x) ∧Q(x))→ S(x)],∃x[P (x) ∧Q(x)]} ` ∃x[S(x) ∨ T (x)]

2. {∃xP (x),∃xQ(x)} ` ∃u∃v[P (u) ∧Q(v)]

3. {∀x[P (x) ∨Q(x)],∀x[Q(x)→ ¬S(x)],∀xS(x)} ` ∀xP (x)

4. {∃x[P (x) ∧ ¬P (x)]} ` ∀yQ(y)

5. {∀x[P (x) ∨Q(x)],∀x[P (x) ∨R(x)]} ` ∀x[(¬R(x) ∨ ¬Q(x))→ P (x)]

6. Make up an example of a sentential deduction whose proof requires
direct proof. Provide the proof.

7. Make up an example of a sentential deduction whose proof requires
disjunctive syllogism and modus tollens. Provide the proof.

8. Make up an example of a sentential deduction whose proof requires
disjunctive proof, Modus Ponens, and addition. Provide the proof.

128

9. Make up an example of a sentential deduction whose proof requires
cases and simplification. Provide the proof.

10. Convert each of your examples to examples involving quantifiers.

Chapter 17

Sets

In the last chapter, we defined the notation and made assumptions to lay the
base of predicate logic. We would like now to follow the steps we took with
sentential logic and address truth, logical implication, and deductions. We
immediately hit a wall when we try to address truth. If we consider a sentence
such as

For all x, x weighs less than a pound.

and ask if the sentence is true or false, then our answer depends on what the
variable x represents. If x can only be selected from the collection of all living
canaries, then the statement is true. If x can be any living human, then the
statement is false. When considering the sentences in a predicate language,
we will usually have a “universe” in mind that provides objects to which the
quantifiers refer. This universe will be accompanied by interpretations of the
predicate symbols of the language. This universe and the meanings of the
predicates form what we will call a model of the predicate language. Before
we can address models (and then truth, and then implication) we need to
know some basics about set theory.

17.1 Sets

In any spoken language, at any point in time, there are only finitely many
words. This has surprising consequences when you try to define words. Sup-
pose we try to define the word “little.” We may write an expression which
describes what this word means. Our definition relies on the meanings of all
of the words in our expression. We could then write expressions to define the
words used in the definition. Then we could try to define these words, and so
on. Since there are only finitely many words in the English language, one of
two things must happen – either we reuse words (and end up with a circular
definition) or we find words that are not defined.

129

130

An extreme example of this can be found if you look up “little.” Many
dictionaries will have this definition: “small in size.” The same dictionaries
will define “small” as “little in size.” If we do not know what “little” or
“small” means, these dictionaries are useless.

To avoid circular definitions, mathematicians begin with primitives – un-
defined terms. The most fundamental primitive in all of mathematics is set.
We will not define what a set is. Presumably, collection is a synonym. Sets
contain (another primitive) things which we call elements. To indicate that
an element x is in a set A, we write x ∈ A. This notation can be read as “x
is an element of A,” or as “x is in A,” or if necessary, “x in A.” To express
that x is not in A, we would write x 6∈ A.

If we can list the elements of a set, we will do so between braces. For
example, the set containing the symbols a, b, 1, and 2 is {a, b, 1, 2}. We can
even use braces to list infinite sets if there is a clear pattern. For example,
the even integers are {. . . ,−4,−2, 0, 2, 4, 6, . . .}. Order and repetition within
braces do not matter. For example, the sets {a, b, c} and {c, b, a, a, b, c, c} are
the same sets.

Two important sets which we will use frequently are the integers

Z = {0,−1, 1,−2, 2,−3, 3, . . .}

and the natural numbersa

N = {0, 1, 2, 3, . . .}.
aHistorically, the definition of the natural numbers did not include 0.

Many modern mathematicians include 0 in N. Doing so pains me greatly.
Most societies took centuries to realize the need for 0 as a number, so this
number does not seem remotely natural. However, including 0 here will
make the lives of my students easier, and it provides for elegant parallels
between arithmetic in N and set theory. So, after decades of resistance, I
am finally conceding and allowing 0 to be a natural number – at least for
this class.

To describe a set which is too big or complicated to simply list, we can
sometimes use set builder notation. This notation looks like:

{x : P (x)} or {x ∈ S : P (x)}.

The colon inside the braces is read as “such that.” The notation on the left
is defined to mean the set of all x such that P (x) is true. This means that an
element x is in the set if and only if the predicate P (x) is true. The notation
on the right is similar; however, this notation lets us restrict our attention to
things which are in the set S. This is the set of all x in the set S for which
the statement P (x) is true.

Some examples of the use of set builder notation are:

131

Example 17.1: If H(x) is “x is a horse” and B(x) is “x is brown”
then

{x : H(x) ∧B(x)}

is the set of all brown horses.

Example 17.2: The set of days of the week in set builder notation
is

{x : x is a day of the week}.

Of course, we could also simply list the elements of this set:
{Sunday, Monday, Tuesday, Wednesday, Thursday, Fri-
day, Saturday}.

Example 17.3: If L is a sentential language, and s is a truth assign-
ment on L, then the set of all wffs which s makes true is

{α : s(α) = T}.

We could be slightly more specific

{α : α is a wff over L and s(α) = T.}

Example 17.4: Suppose that L is a sentential language. Let W be
the set of all wffs over L, and let Σ be a collection of wffs over L.
Then

{α ∈W : Σ ` α}

is the set of all sentences provable from Σ.

Example 17.5: The set of even integers can be expressed this way:

{x : ∃n[(n ∈ Z) ∧ (x = 2n)]}

or we can cheat a bit. This is a common way to describe the set of
even integers:

{2n : n ∈ Z}

Example 17.6: The set of positive integers can be expressed as

{x : (x ∈ Z) ∧ (x > 0)}

or
{x ∈ Z : x > 0}.

132

17.2 Subsets

A set A is a subset of another set B if every element of A is also an element
of B. We denote this relationship by A ⊆ B. This notation is read as
“A is a subset of B.” For example, {1, 2, 3} is a subset of {1, 2, 3, 4}, so
{1, 2, 3} ⊆ {1, 2, 3, 4}.

Caution: It is very important not to confuse the symbols ∈ and ⊆. The
notation X ∈ Y implies that Y is a set and X is a single element of that set.
The notation X ⊆ Y implies that X and Y are both sets and X is a subset of
Y . However, there are times when X and Y might both be sets and we still
have X ∈ Y . For example, this happens if X = {1, 2} and Y = {{1, 2}, 3}.
Note here that Y is a set with two elements. They are {1, 2} and 3.

The empty set (denoted ∅) is the set {} which contains no elements. The
empty set is a subset of every set (including itself) since the implication “If
x ∈ ∅ then x ∈ A” is always true because x ∈ ∅ is always false.

17.3 Exercises

Let E(x) be “x is even.” Let O(x) be “x is odd.” Let P (x) be “x is prime.”
Recall that Z is the set of integers, so to say “x is an integer” you can write
x ∈ Z. Write the following sets in set-builder notation.

1. The set of integer multiples of 3.

2. The set of odd integers less than 10.

3. The set of all integers which are either even or greater than 10.

4. The set of all integers which are prime.

5. The set of all even prime integers.

List the elements of these sets

6. {x ∈ N : x2 < 10}
7. {x ∈ N : (x < 20) ∧ ∃y[(y ∈ N) ∧ ((x = 3y) ∨ (x = 5y))]}
8. {n : (n ∈ N) ∧ ∃m[(m ∈ N) ∧ (n = m2)] ∧ (n < 20)}
9. {x ∈ N : ∃a∃b[(a ∈ N) ∧ (b ∈ N) ∧ (a > 1) ∧ (b > 1) ∧ (a < 5) ∧ (b <

5) ∧ (x = ab)]}
These exercises explore the number of subsets of a finite set.

10. List all of the subsets of ∅
11. List all of the subsets of {1}
12. List all of the subsets of {1, 2}
13. List all of the subsets of {1, 2, 3}
14. How many subsets does {1, 2, 3, 4} have?

133

17.4 Set Operations

In sentential logic, we had logical connectives or logical operators which we
used to create new statements from existing statements. We also have set
operations by which we can create new sets from existing sets.

Set Operations: Suppose that A and B are sets.
Intersection: The intersection of A and B is the set

A ∩B = {x : (x ∈ A) ∧ (x ∈ B)}.

Union: The union of A and B is the set

A ∪B = {x : (x ∈ A) ∨ (x ∈ B)}.

Difference: The difference of A and B is the set

A−B = {x : (x ∈ A) ∧ (x 6∈ B)}.

Note that the symbol for intersection resembles that for “and.” This is
no accident. The word “and” is important in the definition of intersection.
Similarly, note that the symbol for union resembles that for “or.”

17.5 Exercises

Let A = {a, b, c, d, e}, B = {c, d, f}, and C = {a, f}. Find the indicated sets.

1. A ∪B

2. A ∩B

3. A−B

4. (A ∩B) ∪ C

5. A− (B ∪ C)

6. (A−B) ∪B

7. (A−B) ∪ (B −A)

8. (A ∪B)− (A ∩B)

17.6 Identities

The definitions of our set operations are intimately related to our logical
connectives. A result of this fact is that logical equivalences can be used to

134

demonstrate certain equalities or identities among sets. We illustrate this
here and list some identities which directly mimic our logical equivalences.

Let A, B, and C be sets and consider A ∩ (B ∪ C). By applying the
definitions above and the distributive law of ∧ over ∨, we see that

x ∈ A ∩ (B ∪ C)
iff (x ∈ A) ∧ (x ∈ B ∨ x ∈ C) definition
iff (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C) distributive law
iff (x ∈ (A ∩B)) ∨ (x ∈ (A ∩ C)) definition.
iff x ∈ (A ∩B) ∪ (A ∩ C) definition.

Thus, ∩ distributes over ∪. We can apply other logical equivalences to derive
these identities for set operations.

Identities for Set Operations
The following are true for any sets A, B, and C.

A ∩B = B ∩A commutative law
A ∪B = B ∪A commutative law
A ∩ (B ∩ C) = (A ∩B) ∩ C associative law
A ∪ (B ∪ C) = (A ∪B) ∪ C associative law
A ∩A = A idempotent law
A ∪A = A idempotent law
A ∩ (A ∪B) = A absorption law
A ∪ (A ∩B) = A absorption law
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) distributive law
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) distributive law
A− (B ∩ C) = (A−B) ∪ (A− C) DeMorgan’s Law
A− (B ∪ C) = (A−B) ∩ (A− C) DeMorgan’s Law

17.7 Venn Diagrams

Diagrams can be drawn to help visualize set operations. Each set is repre-
sented by an oval or a circle. The intersection, union, and difference of the
sets can then be seen geometrically:

BA

A ∩BA−B

135

The union of A and B would be all of the area inside either circle. These
diagrams of circles are called Venn Diagrams. Venn Diagrams can also be
used to visualize more complicated set operations:

C

BA

(B ∩ C)−A

17.8 Exercises

Draw three circles as above and shade each of the following sets.

1. (A ∩B) ∪ (A ∩ C)

2. A− (A ∩B ∩ C)

3. (C − (A ∩B))− (A ∩ C)

4. Draw Venn Diagrams to convince yourself of the absorption laws.

136

Chapter 18

Relations

Predicates express properties of and relationships between the variables in-
volved. For example

x is taller than y.

expresses a relationship between x and y. The sentence

x robbed the bank.

expresses the property that x may have of having robbed the bank. Math-
ematicians use the notion of a relation to describe abstract properties and
relationships.

P is 1-ary (or unary) relation on a set A if P is a subset of A. When
thinking of a subset P as a relation, we will write P (x) for x ∈ P . If we let
P be the set of all people who robbed the bank. Then P (x) and x ∈ P both
mean the same thing as the predicate “x robbed the bank.”

P is a 2-ary (or binary) relation on a set A if P is a set of ordered pairs
of A (such as (x, y)). When thinking of P as a relation, we will write P (x, y)
for (x, y) ∈ P . If we let P be the set of all pairs of people (x, y) so that x is
the father of y, then P (x, y) and (x, y) ∈ P both mean the same thing as the
predicate “x is the father of y.”

P is a 3-ary (or ternary) relation on a set A if P is a set of ordered
triples of A (such as (x, y, z)). When thinking of P as a relation, we will write
P (x, y, z) for (x, y, z) ∈ P .

We can continue this process indefinitely. If n is a positive integer, then
P is an n-ary relation on a set A if P is a set of n-tuples of A (such as
(x1, x2, . . . , xn)). When thinking of P as a relation, we will write

P (x1, x2, . . . , xn) for (x1, x2, . . . , xn) ∈ P.

For emphasis, we will also say

“P (x1, x2, . . . , xn) is true” to mean that “(x1, x2, . . . ,n) ∈ P is true.”

137

138

The notation we are using for relations is intended to match exactly the
notation we have used for predicates and open formulas. The three concepts
are intimately related. An open formula α(x, y) can be used to define a set –
the set P of all pairs (x, y) for which α(x, y) is true (whatever that means).
In set builder notation, P = {(x, y) : α(x, y)}. This set of ordered pairs can
be treated as a relation. In this case, P (x, y) means that (x, y) ∈ P , which
means that α(x, y) is true. Both P (x, y) and α(x, y) can be interpreted as the
predicate “The ordered pair (x, y) is in P .”

Example 18.1: Suppose that A = {1, 2, 3, 4}. Define this relation
on A:

P = {(x, y, z) : y is strictly between x and z}.

Then we would say that P (1, 2, 3) is true but P (2, 1, 3) is not. We
equate P (x, y, z) with the defining predicate “y is strictly between x
and z.”

Example 18.2: Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let

P = {x ∈ A : x is prime}.

Then we equate the expression P (x) with the predicate “x is prime.”
Thus P (3) is true, but P (4) is not. We can list the elements of P as
{2, 3, 5, 7}.

We will often use special notation for binary relations. For some binary
relations, we will write xRy for R(x, y). Equality is a binary relation, but we
do not write = (x, y). Instead, we write x = y. Another example is ≤. We
write x ≤ y rather than ≤ (x, y).

Example 18.3: Let A be the set {2, 3, 4, 5, 6}. Define a binary rela-
tion D on A so that for all x, y ∈ A, xDy exactly when y is a multiple
of x. Then 2D4 and 3D6, but it is not the case that 2D3. We could
write these statements also as D(2, 4) and D(3, 6) but not D(2, 3). As
a set of ordered pairs, D is

D = {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.

As a predicate, xDy means “y is a multiple of x.”

139

Example 18.4: Let A be the set of lines in this figure:

a

c

d b

So A = {a, b, c, d}. Define a relation I on A so that xIy exactly when
line x intersects line y. Then (for example) aId and aIb but it is not
the case that aIc.

18.1 Exercises

1. List two more pairs which are not in the relation I of Example 18.4 and
two more pairs that are.

2. Define a relation S on N so that S(x, y) means that x + 1 = y. List a
few pairs in the relation S. We will see later that most of the properties
of the natural numbers which we studied in arithmetic can be derived
from this relation.

3. Let A = {1, 2, 3, 4, 5, 6}. Define R on A so that xRy means that x−y ∈
A. List the pairs in R.

4. Let E and F be two unary relations on N so that E(x) means “x is
even” and F (x) means “x is a multiple of 4.”

(a) Find an x which makes E(x) ∧ F (x) true.

(b) Find an x which makes E(x) ∧ ¬F (x) true.

(c) Which of these is true?

i. ∀x(E(x)→ F (x))

ii. ∀x(F (x)→ E(x))

iii. ∃x(E(x)→ F (x))

iv. ∃x(F (x)→ E(x))

140

Chapter 19

Models

The truth value of a sentential wff was defined in terms of truth values as-
signed to the basic sentence symbols. In predicate logic, each basic predicate
symbol may be sometimes true and sometimes false based on what objects are
substituted for the variables involved. Thus truth values will also be affected
by what objects are allowed to be substituted for variables.

Suppose that L is a set of predicate symbols. To discuss truth values
of sentences over L, we will first restrict our attention to a set A which we
will call our universe that contains elements which are “legal” to substitute
for variables. Each predicate symbol in L is associated to an actual relation
on A. The set A with the associated relations will be called an L-structure.
Truth or falseness of sentences and formulas can then be considered within
this structure or toy world. Elements of A can be substituted for variables in
formulas. Truth values then become a question of containment in relations.

19.1 Structures

Suppose that L is a set of predicate symbols. An L-structure is a set A (called
the universe of the structure) along with for any n-ary predicate symbol P in
L an n-ary relation PA on A.

Suppose that L contains a single binary predicate symbol R. Then an
L-structure is simply a set A along with a binary relation RA on A. The
superscripted A just reflects that RA is a specific relation on the set A. If we
are working in an environment where there is not much chance of confusion,
we will drop the superscript. We will usually express an L-structure this way:

A = 〈A,R〉.

We use plaintext for the set which is the universe and boldfaced text for the
name of the structure.

141

142

Example 19.1: Suppose L contains a single binary predicate symbol
R. Let B = {1, 2, 3, 4, 5}. Define R on B so that xRy means x ≤ y.
Then B = 〈B,R〉 is an L-structure.

Example 19.2: Let A = {1, 2, 3} and define R on A so that 1R2 and
2R3 and 3R1. Let A = 〈A,R〉. Then A is also an L-structure where
L is as in the previous example.

Example 19.3: Suppose that M contains a ternary predicate P and
a binary predicate symbol Q. Let C = {0, 1, 2, 3, 4, 5}. Define P on C
so that P (x, y, z) means that x+ y = z. Define Q on C so that xCy
means x+ y = 5. Then C = 〈C,P,Q〉 is an M -structure.

Example 19.4: Let D be the set of all living people in the United
States. Define F on D so that F (x) means x is female. Define M on
D so that M(x) means x is male. Define R(x, y) to mean x is married
to y. Then D = 〈D,F,M,R〉 is an L-structure where L = {F,M,R}.

We can draw pictures of structures of languages which have only one
binary relation. The picture consists of one point for each element of the
universe of the structure. For each relation xRy, there is an arrow in the
picture from x to y. Such a pictorial representation is called a directed graph
or a digraph.

Example 19.5: The directed graph for the structure in Example 19.2
can be draw this way:

•1 •2 •3//WW //

What matters in directed graphs is how the points are connected by
arrows, not the physical arrangement of the points in the picture.
Thus, this is another depiction of the graph from Example 19.2:

•1 •2

•3

//��

WW

143

Example 19.6: The directed graph for the structure in Example 19.1
can be draw this way:

•1 •2 •3 •4 •5// GG II JJ// GG GG// ==//
�� �� �� �� ��

19.2 Satisfaction

We give here a recursive characterization of what it means for a sentence to
be true in a structure. However, while the recursive definition is good for
induction proofs and for making further definitions about satisfaction, it may
do little for reasoning. When deciding the truth value of a sentence in a model,
interpret ∀ and ∃ in the obvious way, substitute elements of the universe for
variables, and use the relations of the model and what we know about the
logical connectives to determine truth values. (This means you might want
to skip to the examples and come back to read the definition later.)

Suppose that γ is a wff in a predicate language L and that the free vari-
ables in γ are among v1, . . . , vn. Suppose also that A is an L-structure and
that a1, a2, . . . an ∈ A. We define recursively what it means for γ(a1, a2, . . . , an)
to be true. Our definition is based on the recursive definition of wffs in Chap-
ter 9. It mimics in part the recursive definition of how to extend a truth
assignment given in Chapter 2.

1. If γ(v1, . . . , vn) is vi = vj , then for any a1, . . . , an ∈ A γ(a1, . . . , an) is
true if and only if ai = aj .

2. If γ(v1, . . . , vn) is P (v1, . . . , vn) for some predicate symbol P , then for
any a1, . . . , an ∈ A γ(a1, . . . , an) is true if and only if PA(a1, . . . , an).

3. Suppose that α(v1, . . . , vn) and β(v1, . . . , vn) have been given truth val-
ues for every assignment of variables in A. The truth values of ¬α, α∨β,
α ∧ β, α → β, and α ↔ β are defined according the their respective
sentential logical connectives.

4. Suppose that α(v1, . . . , vn, v) is a wff whose truth values have been
assigned for all substitutions of its free variables. Let a1, . . . , an ∈ A.

(a) If γ is ∀vα. Then γ(a1, . . . , an) is true if and only if α(a1, . . . , an, b)
is true for every b in A.

144

(b) If γ is ∃vα. Then γ(a1, . . . , an) is true if and only if α(a1, . . . , an, b)
is true for at least one b in A.

Notice that if α is a sentence (i.e. α has no free variables) then in any
model, this definition gives a truth value for α which does not depend on any
substitution of variables. If α is true in a structure A, we will write A |= α.
In this case, we say that A models or satisfies α. If Σ is a set of sentences in
L, then A |= Σ means that A |= α for every sentence in Σ.

If a wff α has a free variable v, then we say that a α is true in a structure
A (or that A satisfies α, or A |= α) if ∀vα is true in A.

As we said before, the recursive definition is good for induction proofs
and for making further definitions about satisfaction, but it may do little for
reasoning. When deciding the truth value of a sentence in a model, interpret ∀
and ∃ in the obvious way, substitute elements of the universe for variables, and
use the relations of the model and what we know about the logical connectives
to determine truth values.

Example 19.7: The structure B of Example 19.1 satisfies these sen-
tences:

1. ∃x∀y(xRy)

2. ∀x∀y(xRy ∨ yRx)
The structure does not satisfy these sentences:

3. ∃x∃y[(x 6= y) ∧ xRy ∧ yRx]

4. ∃x¬(xRx)

Sentence (1) says that there is an element which is related to every ele-
ment. In this case, that means that there is an element which is less than or
equal to every element. Sentence (2) says that any two elements are related
one way or the other.

Sentence (3) says that there are nonequal elements which are related “both
ways.” Here this means that there are two distinct numbers which are each
less than the other. Sentence (4) says that there is a number not related to
itself. Here, this means that there is a number which is not less than or equal
to itself.

Example 19.8: The structure C of Example 19.3 satisfies these sen-
tences:

1. ∀x∀y∀z[P (x, y, z)↔ P (y, x, z)]

2. ∀x∃y(xCy)
The structure does not satisfy these sentences:

3. ∀xP (x, x, x)

4. ∃x∀y(xCy)

145

Sentence (1) says that x + y = z if and only if y + x = z. Sentence (2)
declares that for each x in M the number 5− x is in M .

Sentence (3) says that x + x = x is always true. Sentence (4) says that
there is a single x which you can add to any y to get 5. This would imply
that 5− y is the same number for every value of y.

Example 19.9: The structure D of Example 19.4 satisfies these sen-
tences:

1. ∃x∀y¬R(x, y)

2. ∀x∀y(R(x, y)→ R(y, x)

3. ¬∃x∃y∃z[(x 6= y) ∧R(x, z) ∧R(y, z)]

4. ∀x[(F (x) ∨M(x)) ∧ ¬(F (x) ∧M(x))]
Until recently, D satisfied

5. ∀x, y[R(x, y)→ ([F (x) ∧M(y)] ∨ [M(x) ∧ F (y)])]

The structure does not satisfy these sentences:

6. ∃xR(x, x)

7. ∃x∃y∃z[(x 6= y) ∧R(x, z) ∧R(y, z)]

Sentence (1) says that there is someone who is not married to anyone.
Sentence (2) says that if x is married to y, then y is married to x. Sentence
(3) declares that marriage is monogomous. Sentence (4) declares that every
persons is male or female and not both. Sentence (5) declares that every
married couple includes a male and a female.

Sentence (6) declares that some person is married to himself or herself.
Sentence (7) declares that someone is married to two distinct people.

19.3 Models

Suppose that L is a set of predicate symbols and that Σ is a set of sentences
over L. A model of Σ is an L-structure A for which A |= Σ (that is, every
sentence in Σ is true in A).

Suppose that R is a binary relation on a set A. Let A = 〈A,R〉. R is
reflexive if A satisfies

∀x(xRx).

R is symmetric if A satisfies

∀x∀y(xRy → yRx).

R is antisymmetric if A satisfies

∀x∀y[(x 6= y)→ ¬(xRy ∧ yRx)].

146

R is transitive if A satisfies

∀x∀y∀z[(xRy ∧ yRz)→ xRz].

These four possible properties of a binary relation are inspired by prop-
erties of = and ≤. Any reflexive, symmetric, and transitive relation is called
an equivalence relation. Any reflexive, antisymmetric, and transitive relation
is called an order relation. If R is an order relation on a set A, then 〈A,R〉 is
called an ordered set.

Some examples of ordered sets are:

Example 19.10: The usual order ≤ on the natural numbers N =
{0, 1, 2, 3, . . .} is an order relation, so 〈N,≤〉 is an ordered set.

Example 19.11: If A is any set the the set of subsets of A with the
relation ⊆ is an ordered set. If A = {1, 2, 3}, then the ordered set of
subsets of A contains eight elements: ∅, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3}.

Example 19.12: Define a relation | on N so that x|y means that y
is a multiple of x (or x is a factor of y). Then | is an order relation.

Let G be the language with two unary predicate symbols P and L and a
binary predicate symbol ON . We will call any model of these sentences:

∀x(P (x) ∨ L(x))

¬∃x(P (x) ∧ L(x))

∀x∀y(xONy → ((P (x) ∧ L(y)) ∨ (P (y) ∧ L(x)))

∀x∀y(xONy → yONx)

a geometry. The formula L(x) is intended to mean “x is a line.” P (x) is
intended to mean “x is a point.” The relation xONy is intended to mean
“x is on y.” The first two sentences here guarantee that each “thing” in our
model is either a point or a line. The second insists that points and lines are
different. The third sentence allows points to be on lines and lines to be on
points but not points on points or lines on lines. The last sentence insists
that saying a point is on a line is the same as saying the line is on the point.

Example 19.13: Let L be the set of all lines on the plane. Let P be
the set of all points on the plain. Let A = L∪P . Treat the subsets L
and P as unary relations. Let ON be the set of all pairs (p, l) where p
is a point and l is a line with p on l. Then 〈A,P, L,ON〉 is a geometry.

147

We can draw pictures to depict structures which are geometries. Those
x for which P (x) is true (the points) will be represented with •s. Those x
for which L(x) is true (the lines) will be represented with line segments or
curves. The relationship ON should be almost obvious.

Example 19.14: Here are two depictions of geometries.
This geometry has three points and three lines.

• •

•

This geometry has four points and six lines. Notice that lines only
intersect at the corners of the square.

• •

••

19.4 Exercises

1. Let A = {0, 1, 2, 3, 4, 5} and B = {0, 1}. Consider 〈A,≤〉, 〈B,≤〉,
〈N,≤〉, and 〈Z,≤〉 with the usual orders. Which of these structures
are models of these sentences?

(a) ∀x∀y∀z[(x = y) ∨ (x = z) ∨ (y = z)]

(b) ∃x∀y(x ≤ y)

(c) ∃x∃z∀y[(x ≤ y) ∧ (y ≤ z)]
(d) ∀x∃y(x ≤ y)

(e) ∃x∃y∃z[(x 6= y) ∧ (x 6= z) ∧ (y 6= z)]

2. Draw the digraph of a model of each of these sentences. Your language
has one binary relation symbol ⇒.

(a) ∀x(x⇒ x)

(b) ∃x∀y(x⇒ y)

(c) ∀x∀y(x⇒ y)

(d) ∃x∃y∃z[(x⇒ y) ∧ (y ⇒ z)]

(e) ∀x∀y¬[(x⇒ y) ∧ (y ⇒ x)]

(f) ∀x∀y([(x⇒ y) ∨ (y ⇒ x)] ∧ ¬[(x⇒ y) ∧ (y ⇒ x)])

3. Let sentences α1, α2, α3, α4 be define this way.

α1 is ∀x∀y[(P (x) ∧ P (y))→ ∃z(xONz ∧ yONz)]
α2 is ∀x∀y[(L(x) ∧ L(y))→ ∃z(zONx ∧ zONy)]
α3 is ∃x[P (x) ∧ ∀y(L(y)→ xONy)]
α4 is ∃x[L(x) ∧ ∀y(P (y)→ yONx)]

148

Draw geometries which satisfy these statements or explain why this is
not possible.

(a) α1, α2, α3 but not α4

(b) α1, α2, α4 but not α3

(c) α1, α3, α4 but not α2

(d) α2, α3, α4 but not α1

19.5 Definable Subsets and Relations

If L is a predicate language and A is an L-structure, then the predicate
symbols in L can be used to define new relations or subsets or even elements
of A.

Example 19.15: In 〈N,≤〉, let P (x) be the predicate ∀y(x ≤ y). The
only element of N for which P (x) is true is x = 0. That is, P (0) is
true, but P (x) is false for x 6= 0. We say that P (x) uniquely defines
the element 0.

Here, P defines the least element of N.

Example 19.16: Suppose that A = 〈A,≤〉 is an ordered set. We can
define a binary relation < on A so that x < y means (x ≤ y)∧(x 6= y).
The relationship between ≤ and < is the usual relationship between
these symbols on sets of numbers.

Example 19.17: Suppose that A = 〈A,≤〉 is an ordered set. Define
a relation ≺ on A so that x ≺ y means (x ≤ y) ∧ ∀z[((x ≤ z) ∧ (z ≤
y)) → ((x = z) ∨ (y = z))]. Then x ≺ y means that x ≤ y and that
there are no elements of our model between x and y. The relation ≺
is called the covering relation of A.

The covering relation of an ordered set can allow us to draw pictures
called Hasse diagrams of finite ordered sets. Points labeled by the elements
of the ordered set are arranged on the page so that if x ≤ y, then the point
for x is lower on the page than that for y. Then lines or curves are drawn
from x up to y if x ≺ y.

149

Example 19.18: The Hasse diagram of {1, 2, 3} under the usual
order ≤ is

•1

•2

•3

In this model, each element is uniquely definable. 1 is the only element
which is less than or equal to every element. 2 is the only element
which is both strictly less than and strictly greater than some ele-
ments. 3 is the only greater than or equal to every element.

Example 19.19: The Hasse diagram of the set of subsets of {1, 2, 3}
looks like

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

19.6 Exercises

Write sentences describing these subsets of an ordered set.

1. The least element.

2. The set of minimal (bottom) elements of the ordered set.

3. The set of elements which are not minimal or maximal.

4. The set of elements which are comparable to every element in the or-
dered set (x and y are comparable if either x ≤ y or y ≤ x).

Within the natural numbers with the usual order, write sentences which define
the following elements and sets.

1. The number 1

2. The number 2

150

3. The set {0, 1, 2}

4. The set {3, 4, 5, . . .}

1. Is 0 definable in 〈Z,≤〉?

2. Is 0 definable in Z if you can use +?

3. Is 0 definable in Z if you can use ·?

4. What operations in Z would you need to define 1?

5. What operations in Z would you need to define the natural numbers?

Draw a Hasse diagram of an ordered set satisfying each of these sentences.

1. ∃x∀y(x ≤ y)

2. ∃x∃z∀y[(x ≤ y) ∧ (y ≤ z)]

3. ∃x∃y[(x 6= y) ∧ ∀z([x ≤ z] ∨ [y ≤ z])]

4. ∃x∃y¬[(x ≤ y) ∨ (y ≤ q)]

5. ∃x∃y∃z∃w[(x ≤ y) ∧ (z ≤ y) ∧ (z ≤ w)]

19.7 Logical Implication

Suppose that Σ is a set of wffs of a first order language L and that α is any
wff over L. We say that Σ logically implies α if every model of Σ satisfies α.
In symbols we express this as Σ |= α (read as “Σ entails α” or “Σ logically
implies α”).

This definition of logical implication is quite similar to logical implication
for sentential logic. In fact, any entailment from sentential logic will carry
over to predicate logic. The reason for this is how we recursively defined
satisfaction to coincide with truth assignments. The question is whether the
tie to models in predicate logic forces some entailments to hold beyond those
carried over from sentential logic. That is, do predicates, quantifiers, and the
possible complexity of models make entailment more complicated?

As with sentential logic, the most important example of entailment is this
one.

Example 19.20: Modus Ponens: {α→ β, α} |= β
If a structure satisfies α → β and α, then by the recursive definition
of satisfaction it must also satisfy β.

151

19.8 Consistency, Completeness, Compactness

We have defined three manners of implication in first order logic:

Logical Implication: Σ |= α if every model of Σ must satisfy
α.

Deduction: Σ ` α if there is a proof of α from Σ.

Sentential Implication: Σ |=S α if Σ logically implies α when
these are viewed as sentential wffs over a language whose sentence
symbols are the prime formulas in the predicate language.

The Sentential Implication Theorem 16.3 provides a connection between
` and |=S . This, combined with the fact that ` and |= are equivalent for
sentential logic via the Soundness and Compactness Theorems, should hint
that there is a strong connection between these notions for predicate logic.

We can establish Soundness for first order predicate logic in the following
manner. Suppose that Σ ` α. We can (or could) prove by induction that
Σ |= α. If α ∈ Σ, then clearly Σ |= α. If α is provable because Σ ` γ → α
and Σ ` γ, then Σ |= α will follow from the fact that Modus Ponens preserves
truth. The hard part of the induction is if α is a logical axiom (a member
of ∆). In this case, we must prove (by induction) that |= α – that is, every
model of our predicate language must satisfy α. This proof would require a
deeper discussion of substitution than we have had (or will have). We must
be content with the idea that our axioms are reasonable enough to hold in any
model. In summary, if our axioms are valid, since Modus Ponens preserves
truth, ` should imply |=.

Our definition of consistency for predicate logic is identical to that in
sentential logic: Σ is consistent if Σ cannot prove any contradiction. Σ is
inconsistent if Σ can be used to prove a contradiction. Using the same tricks
from sentential logic, we can prove that an inconsistent set of wffs can be used
to prove anything.

Satisfiability for first order predicate logic appears more complicated than
sentential logic because truth assignments have been replaced (in some sense)
with models. A collection Σ of first order formulas is satisfiable if there is
a structure A which models Σ (ie if there is a structure which satisfies the
formulas in Σ). We may use the words “can be modelled” for “is satisfiable.”

Suppose that Σ has a model. If Σ were inconsistent and could be used to
prove a contradiction, then that contradiction would have to be true in the
model. Since this is not possible, then Σ must be consistent. This combined
with the discussion above about Modus Ponens preserving truth (would) give
us Soundness Theorems.

152

Theorem 19.21: Soundness Theorems – First Order Logic
• If Σ ` α, then Σ |= α.

• If Σ is satisfiable, then Σ is consistent.

Here is a flawed attempt at extending Completeness to first order logic:
Suppose that Σ |= α. Then any truth assignment to prime formulas which
makes the formulas in Σ true must also make α true. That is, Σ |=S α. It
follows that Σ,∆ |=S α since any truth assignment that makes Σ ∪ ∆ true
must make Σ true, and hence, α also. But by the Sentential Implication
Theorem 16.3, this implies that Σ ` α.

The problem with this argument is in the italicized sentence. Σ |= α
means that whenever the formulas in Σ are true in a model, then α is true
in that model. Suppose that there is a truth assignment to prime formulas
that cannot be realized in a model. Σ |= α can say nothing about this truth
assignment. This assignment may make the formulas in Σ true, but since there
is no model to connect this truth to α, we would have no idea about the truth
value of α. To extend Completeness to first order logic, we need a version of
the Completeness Theorem claiming consistency implies satisfiability. This is
well beyond the tools we have here, so we will simply note the Completeness
and Compactness Theorems for Predicate Logic.

Theorem 19.22: Completeness Theorems - First Order Logic
• If Σ |= α, then Σ ` α.

• If Σ is consistent, then Σ is satisfiable.

Theorem 19.23: Compactness Theorem – First Order Logic
• If Σ |= α then there is some finite set Σ0 of wffs in Σ so that

Σ0 |= α.

• If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Chapter 20

Some Geometry

In Chapter 19 we introduced geometries as structures in a language with
two unary predicates P and L and a binary predicate ON that satisfy these
axioms:

G1 ∀x(P (x) ∨ L(x))

G2 ¬∃x(P (x) ∧ L(x))

G3 ∀x∀y(xONy → ((P (x) ∧ L(y)) ∨ (P (y) ∧ L(x)))

G4 ∀x∀y(xONy → yONx)

The predicates P and L are used to refer to points and lines, respectively.
The first two axioms insist that every element is either a point or a line but
not both. The third axiom insists that points may be on lines or lines on
points, but not points on points or lines on lines. The fourth axiom declares
that saying a point is on a line is the same as saying that the line is on the
point. In this chapter we investigate these geometries to get practice with
some concepts in first order predicate logic. First, we use P , L, and ON to
define new terms.

• Two lines m and n are said to intersect at a point x if x is on both m
and n.

• Two lines m and n are parallel if either m = n (so they are not really
two) or if m and n do not intersect. This is expressed as m ‖ n.

• Three points x, y, and z are collinear if there is a line n which is on all
three points.

20.1 Exercise

Express each of the definitions above in predicate logic.

153

154

20.2 Properties of Geometries

Using our predicates and defined terms, we can make statements which a
geometry may or may not satisfy:

1. Any two points are on exactly one line.

2. Each line is on at least two points.

3. Any two lines intersect in at most one point.

4. No line is on every point.

5. There is a line.

6. There is a point.

7. Every point is on a line.

8. Given any point, there exist two other points so that the three are not
collinear.

9. No point is on every line.

10. If p is a point which is not on a line l, then there is a line through p
parallel to l.

11. There is a line which is on exactly two points.

12. Any two lines intersect.

13. No two lines intersect.

Figure 20.1: Several finite geometries.

155

20.3 Exercises

1. Convert each of the statements above to predicate logic.

2. For each property in the list above, list the geometries from Figure 20.1
which satisfy that property.

20.4 Linear Spaces

Any geometry which satisfies these three axioms is a linear space1.

L1 Any two distinct points are on at least one line.

L2 No two distinct points are on two distinct lines.

L3 Each line is on at least two points.

20.5 Exercises

1. Convert L1, L2, and L3 to predicate logic.

2. Draw all linear spaces with exactly two points.

3. Draw all linear spaces with exactly three points.

4. Draw all linear spaces with exactly four points.

5. Are there any linear spaces with fewer than two points?

6. Prove this: Theorem: Any two lines intersect in at most one point.

7. Prove this: Theorem: If l1 and l2 are lines and if every point on l1 is
also on l2, then l1 = l2.

20.6 Linear-Plus

We will call a geometry linear-plus if it satisfies the following axioms. Note
that these are the axioms of a linear space along with two additional axioms.

LP1 Any two distinct points are on at least one line.

LP2 No two distinct points are on two distinct lines.

LP3 Each line is on at least two points.

LP4 No line is on every point.

LP5 There is a line.

1Don’t let the word “space” here bother you. Mathematicians often use the word
space to describe some organized system. We could just as well have called these
“linear geometries.”

156

20.7 Exercises

1. Convert LP4 and LP5 to predicate logic.

2. Draw all linear-plus geometries with exactly four points.

3. Prove this: Theorem: There is a point.

4. Prove this: Theorem: There are at least two points.

5. Prove this: Theorem: There are at least three points.

6. Must a linear-plus geometry have at least four points? If so, prove it.
If not, give a smaller example.

7. Prove this: Theorem: Every point is on at least one line.

8. Prove this: Theorem: Every point is on at least two lines.

9. Prove this: Theorem: There are at least three lines.

10. Prove this: Theorem: Given any point, there exist two other points
so that the three are not collinear.

11. Prove this: Theorem: No point is on every line.

Chapter 21

Basic Proof Techniques

21.1 The Axiomatic Method

Mathematics begins with ideas called primitives. These are concepts which
are undefined, but which everyone is assumed to understand. For exam-
ple, the idea of a set is a primitive. From primitives, mathematicians make
formal definitions. These definitions are usually made to make common
concepts rigorous enough to be useful. Mathematicians must usually assume
some knowledge about the primitives and definitions with which they work.
Statements which are assumed to be true without proof are called axioms,
postulates, or premises. From the definitions and axioms, mathematicians
make conjectures which they attempt to prove to be true. These facts which
they prove take on titles such as theorems, propositions, lemmas, and corollar-
ies. In mathematical writing, theorem or proposition is usually the generic
title given to a proven fact. A lemma is generally a fact which is proven
as a stepping stone to prove a theorem. A corollary is a fact which usually
follows quickly from a previous lemma or theorem.

Most mathematicians rarely write formal proofs like those we wrote in
Chapter 8. Instead, they write arguments which are convincing to other
mathematicians. The steps in these arguments are usually combinations of
rules of inference and applications of facts known already to be true. From
here on, when we say “proof,” we will mean these convincing arguments.

There are three basic reasons that mathematicians write proofs.

1. To be certain: Sometimes, a concept which appears to be true on
the surface actually is not. We are not always aware of this until we
attempt to rigorously show it is true and discover the error.

2. To know why: At times, there are ideas whose truth we are aware
of, but which we do not truly understand. The process of discovering
a proof can lead us to a deeper understanding of why these are true.

157

158

3. To communicate: Mathematics relies on communication between
mathematicians to develop. Ideas propogate most quickly when they
are pondered by different minds with varying experiences and intu-
itions.

The proof techniques in Chapter 10 provide several common basic proof
strategies. We give examples of these strategies here in proofs using words
rather than in formal proofs using rules of inference. The strategies given
here are general and will be fundamental to the rest of the text.

21.2 Working Environment

For the proofs in this section, we will be working in the natural numbers.
This is the set N = {0, 1, 2, . . .}1. The natural numbers have two operations,
addition and multiplication which we assume satisfy the properties below. We
will have an opportunity later to discuss how N can be defined from a small
set of axioms from which these properties can be derived.

For all x, y, z, w ∈ N, the following are true
Properties of Addition:

x+ (y + z) = (x+ y) + z associative law
x+ y = y + x commutative law
y + x = z + x if and only if y = z cancellation law
x+ 0 = 0 + x = x additive identity
x · 0 = 0 · x = 0 absorption law

Properties of Multiplication:
x · (y · z) = (x · y) · z associative law
x · y = y · x commutative law
x · (y + z) = (x · y) + (x · z) distributive law
x · 1 = 1 · x = x multiplicative identity
if x 6= 0 then y · x = z · x iff y = z cancellation law

These are the “usual” properties of arithmetic which allow us to manip-
ulate equations and expressions involving natural numbers.

1Historically, the definition of the natural numbers did not include 0. Many,
perhaps most, modern mathematicians include 0 in N. Doing so pains me greatly.
Most societies took centuries to realize the need for 0 as a number, so this number
does not seem remotely natural. However, including 0 here will make the lives of
my students easier, and it provides for elegant parallels between arithmetic in N and
set theory. So, after decades of resistance, I am finally conceding and allowing 0 to
be a natural number.

159

To make notation simpler, we will usually use juxtaposition to symbolize
multiplication. Also, we will use an order of operations which requires us to
perform multiplication prior to addition. These are typical conditions with
which we should be familiar.

It is very important at this point in time to remember that we cannot
subtract or divide. Subtraction may result in negative numbers (which are
not in N), and division may result in fractions (which may not be in N). Our
replacement for subtraction and division are the cancellation rules.

Order: We will say that a natural number n is less than or equal to a
natural number m if n+ k = m for some natural number k. This is denoted
by n ≤ m. We will say that n is less than m if n ≤ m but n 6= m. This is
denoted by n < m.

If n ≤ m, we may also say that m is greater than or equal to n and
write m ≥ n. Similarly, we can use m > n to mean that m is greater than
n.

Divisibility: We will say that a natural number n divides a natural
number m if there is a natural number k so that nk = m. This relationship
will be denoted by n|m. If n|m, then we may also say that m is a multiple
of n or that n is a factor of m.

Note the similarity between the definitions of less than and divides. The
operations addition and multiplication have the associative law, commutative
law, and cancellation law in common. They are quite similar. Thus it stands
to reason that these two relations might share some common properties.

21.3 Direct Proof

Most theorems in mathematics are statements of the form P → Q. P is called
the hypothesis of the theorem, and Q is the conclusion. One method of
proving theorems such as these is to assume that P is true and use this
assumption to show that Q must be true.

Theorem 21.1: If l, m, and n are natural numbers so that l|m and
m|n, then l|n.

Discussion: It is a good idea to do scratch work before attempting a
proof. We are going to assume that l, m, and n are natural numbers, that
l|m, and that m|n. We need to show that l|n. The first step is to consider the
definition of divides and see what we know and what we need. The definition
of divides tells us that there are natural numbers a and b so that la = m and
mb = n. What we need is a natural number k so that lk = n. By substituting
la for m in mb = n, we see that lab = n, so k = ab is a logical choice.

Comments: When writing a proof, there are a lot of things to consider.
First, the proof should be written in complete sentences with proper English
grammar. Second, one of the main purposes of the proof is to communicate,

160

so be sure to explain to the reader what is happening. Use transitions to
indicate progress through the proof. Do not assume the reader knows what
you are thinking. Make sure that you define all of the appropriate variables
for the reader.

Proof: Suppose that l, m, and n are natural numbers so that l|m and m|n.
We will show that l|n. By the definition of divides, there are natural num-
bers a and b so that la = m and mb = n. Let k = ab. It follows that
lk = lab = mb = n. By the definition of divides, we see that l|n �

In most mathematical writing, the end of a proof is usually marked by a
symbol such as the empty box above. This allows the reader to easily see
where proofs end.

Not all implications are stated as clearly as that in the previous example.
For example:

Theorem 21.2: For any natural numbers l, m, and n, if m|n then
ml|nl.

This theorem could be restated as, “If l, m, and n are natural numbers so
that m|n then ml|nl.” Sometimes, the implication in a theorem is completely
hidden. For example:

Theorem 21.3: Every natural number is divisible by 1.

This theorem could be written, “If n is a natural number, then 1|n. (This
is trivially true since 1 · n = n by definition.)

21.4 Exercises

Prove each of the following using direct proof:

1. Theorem: If l, m, and n are natural numbers so that l ≤ m and
m ≤ n, then l ≤ n.

2. Theorem: For any natural numbers l, m, and n, if m|n then ml|nl.
3. Theorem: For any natural numbers l, m, and n, if m ≤ n, then

m+ l ≤ n+ l.

4. Theorem: For any natural numbers l, m, and n, if m ≤ n, then
ml ≤ nl.

5. Theorem: If a, b, c, and d are natural numbers, a ≤ b, and c ≤ d,
then a+ c ≤ b+ d.

6. Theorem: If a, b, c, and d are natural numbers, a ≤ b, and c ≤ d,
then ac ≤ bd.

161

21.5 Even and Odd Numbers

A natural number n is even if 2|n. A natural number n is odd2 if there is a
natural number k with n = 2k + 1.

We will employ the following theorem (which we will not prove here)
repeatedly in our examples.

Theorem 21.4: (Even-Odd Dichotomy) Every natural number is
either odd or even but not both.

Theorem 21.5: The sum of two even natural numbers is even.

Observation: Again, this is not written as an implication. We can change
the theorem to an implication by writing it as “If n and m are even natural
numbers, then n+m is also even.”

Discussion: We will assume that n and m are even integers. We must look
at what we know and what we need. We know that 2|n and 2|m. This means
that there are natural numbers a and b so that 2a = n and 2b = m. We need
to show that 2|(n + m), so we take a look at this sum. What we know tells
us that n+m = 2a+ 2b. The distributive law tells us that n+m = 2(a+ b).
Since (a+ b) is a natural number, this means 2|(n+m). We are ready for a
proof.

Proof: Let n and m be even natural numbers. We will show that n + m
is even. By the definition of even, 2|n and 2|m. By the definition of divides,
there are natural numbers a and b so that 2a = n and 2b = m. Note now that
2(a+ b) = n+m. Hence 2|(n+m). By the definition of even, n+m is even.
�

Note: In this proof, we could have let k = a+ b so that the final equality
looked more like the definition of divisibility (2k = n + m). This is not
necessary, but it may have helped make a complicated proof more readable.

21.6 Exercises

Prove the following.

1. Theorem: If n and m are odd natural numbers, then n+m is even.

2This is one place where including 0 in N is convenient. If we did not include 0,
we would have to define a natural number n to be odd if either n = 1 or there is a
natural number k with n = 2k + 1. Including 0 simplifies almost all theorems and
proofs which refer to odd natural numbers.

162

2. Theorem: If n is an even natural number, then n ·n is an even natural
number. (Hint: write n = 2k and square)

3. Theorem: Suppose that n and m are natural numbers. If n is even,
then nm is even.

21.7 If-and-only-if

Many theorems contain the words “if and only if.” It is common to abbreviate
“if and only if” as “iff.” Recall that the statement “P if and only if Q” (called
a bi-implication) is the same as “If P then Q, and if Q then P .” Thus in order
to prove a bi-implication, we can simply prove the two implications.

Theorem 21.6: A natural number n is even if and only if n + 1 is
odd.

Discussion: There are two things to prove here. First, if n is even, then
n+ 1 is odd. Second, we need to prove that if n+ 1 is odd, then n is even.

Proof: Suppose that n is a natural number. We will prove that n is even
if and only if n+ 1 is odd. First suppose that n is even. Then there exists a
natural number k so that n = 2k. Then n+ 1 = 2k + 1. By the definition of
odd, n+ 1 is odd. Hence, if n is even, then n+ 1 is odd.

Now suppose that n+1 is odd. By the definition of odd, there is a natural
number k so that n+ 1 = 2k+ 1. Cancelation now gives n = 2k, so 2|n. Thus
n is even. Hence, if n+ 1 is odd, then n is even.

We have proven that a natural number n is even if and only if n + 1 is
odd. �

21.8 Exercises

Prove the following theorems (note the “iff”).

1. Theorem: Let m, n, and l be natural numbers. Then m ≤ n if and
only if m+ l ≤ n+ l.

2. Theorem: Let m and n be natural numbers. Then m < n if and only
if there is a natural number k 6= 0 so that m+ k = n.

3. Theorem: A natural number n is odd if and only if n+ 1 is even.

21.9 Proofs With Cases

Recall that the statement (P ∨Q)→ R is equivalent to the statement (P →
R) ∧ (Q → R). Thus, to prove (P ∨ Q) → R, we could prove P → R and
Q→ R. When we do so, we are using cases. Consider the following theorem

163

Theorem 21.7: If n is a natural number then n2 + 3n is even.

Discussion: There are two cases to consider here – either n is even or n
is odd. In both cases, we will invoke the definition to express n either as 2k
or as 2k + 1 for some k. We will then substitute and follow our noses.

Proof: Suppose that n is a natural number. We will prove that n2 + 3n
is even. There are two cases – either n is even or n is odd. Suppose first that
n is even. Then there is a natural number k so that n = 2k. It follows that

n2 + 3n = (2k)2 + 3(2k)
= 2(2k2 + 3k).

If we let l = 2k2 + 3k, then n2 + 3n = 2l is even. Thus if n is even, then
n2 + 3n is also even.

Next suppose that n is odd. Then there is a natural number k so that
n = 2k + 1. It follows that

n2 + 3n = (2k + 1)2 + 3(2k + 1)
= 4k2 + 4k + 1 + 6k + 3
= 4k2 + 10k + 4
= 2(2k2 + 5k + 2)

If we let m = 2k2 + 5k+ 2, then n2 + 3n = 2m is even. Thus if n is odd then
n2 + 3n is even.

We have proven that if n is either even or odd, then n2 +3n is even. Since
every natural number is either even or odd, n2 + 3n is even for all natural
numbers n. �

21.10 Exercises

Define the following notions for a natural number n:

• n is red if there is a natural number k with n = 3k.

• n is white if there is a natural number k with n = 3k + 1.

• n is blue if there is a natural number k with n = 3k + 2.

Assume the following theorem.

Theorem 21.8: Any natural number is exactly one of red, white, or
blue.

Prove the following theorems.

1. Theorem: The square of any natural number is either red or white.

2. Theorem: If n is any natural number, then n2 + n is even.

164

21.11 Contrapositive

We know that a statement of the form P → Q is equivalent to its contrapos-
itive ¬Q → ¬P . Often it is easier to prove the contrapositive of a theorem
rather than directly proving the theorem.

Theorem 21.9: Let n be a natural number. If n2 is even, then n is
even.

Discussion: If we were to assume that n2 is even, this would give us very
little information about n. However, if we use the contrapositive, the theorem
is quite easy to prove.

Proof: Let n be a natural number. We will use the contrapositive to prove
that if n2 is even then n is even. The contrapositive is “If n is not even, then
n2 is not even.” Suppose then that n is not even. Since every natural number
is either even or odd, n must be odd. This means that that there is a natural
number k so that n = 2k+1. It follows that n2 = 4k2+4k+1 = 2(2k2+2k)+1
is odd. By the theorem in 21.4, since n2 is odd, it is not even. We have proven
that if n is not even, then n2 is not even. This is the contrapositive of the
theorem. �

21.12 Exercises

Prove the following theorems using the contrapositive.

1. Theorem: For any natural number n if n2 is odd, then n is odd.

2. Theorem: For any natural numbers a and b, if 2|ab, then either 2|a or
2|b.

3. Theorem: For any natural number n, if 3n+ 1 is odd, then n is odd.

21.13 Contradiction

Suppose we want to prove a statement P is true. Suppose also that if we
assume P to be false, then we can prove that a contradiction C would have to
be true (recall that a contradiction is always false). This means that we can
prove ¬P → C where C is false. It must follow that P is true. The statement
¬P → C is equivalent to its contrapositive ¬C → P . Since C is false, ¬C is
true, so the implication ¬C → P would force P to be true by Modus Ponens.

This is the basis of proof by contradiction. To prove P by way of contra-
diction, assume ¬P and try to prove a contradiction.

Theorem 21.10: If n is an natural number and n2 is even, then n is
even.

165

Discussion: We proved this above using the contrapositive. That is a
better option, but we prove the same theorem by contradiction as an example.
Many times, contradiction proofs can be rewritten as contrapositive proofs.

Proof: Suppose that n is a natural number and that n2 is even. We will
use contradiction to prove that n is even. Suppose by way of contradiction
that n is not even. Then n is odd and there is a natural number k so that
n = 2k + 1. It follows that

n2 = (2k + 1)2 = 2(2k2 + 2k) + 1

so n2 is odd. But then n2 is both odd and even. This contradicts Theorem
21.4, so the assumption that n is not even must be false. It has to be the case
that n is even. �

21.14 Exercise

Use contradiction to prove these theorems

1. Theorem: If n is a natural number so that n2 is red, then n is red.
(Use the definitions and theorem from 21.10

2. Theorem: If n is a natural number so that 5n + 1 is even, then n is
odd.

166

Chapter 22

The Natural Numbers

22.1 In Search of Truth

In the seventeenth century, Leibniz imagined a machine which could mechani-
cally distinguish between statements which are true and statements which are
false. The crux of this machine would be a formal language in which state-
ments could be manipulated algebraically and truth could be calculated. We
have now developed enough of sentential and predicate logic that it is almost
time to return to this quest. The path we would like to pursue is to list all
statements in a way that they can be naturally (or mechanically) associated
with natural numbers: α0, α1, α2, Then consider the set of those natural
numbers n for which αn is a true statement. This is a set of natural numbers.
In the previous chapter, we considered sets of natural numbers which are de-
finable using predicate logic and some operations and inequalities. Might it
be that the set of natural numbers which correspond to true statements is
definable? If so, then the first order description of this set would provide the
mechanical means of testing a statement for truth that Leibniz dreamed of.
Truth would be definable in a rigid mathematical sense. Of course, consider-
ing all statements in any spoken language seems to be a bit much to ask, so
we will actually consider statements in the language of the natural numbers
and about the natural numbers. We begin with a discussion of the natural
numbers and a pursuit of a set of axioms for the natural numbers.

22.2 Symbols for Operations and Constants

So far, first order logic for us has involved only predicates. Predicates can
be used to describe operations and constants. For example, in the natural
numbers, we could consider the relation

SUM = {(x, y, z) : x+ y = z}.

167

168

Then, SUM(x, y, z) would mean x + y = z, so the ternary relation SUM
defines the operation of addition. Also, we can write a sentence declaring that
a ternary relation P (x, y, z) defines a binary operation – this would declare
that for every x and y there is exactly one z so that P (x, y, z). Of course,
using relation notation for operations seems cumbersome to those of us who
were trained to use infix notation for operations – it is easier for us to think in
terms of x+ y = z rather than SUM(x, y, z). For this reason, we will assume
from now on that our first order languages may have symbols for operations
along with relations.

Another tool we are used to using from elementary math is the notion of
of a constant – a fixed number or element which we may refer to by name. In
the natural numbers, we can use the relation Z = {0} to identify the number
zero. For any x, Z(x) means that x = 0. Again, it is simpler just to assume
that we have names for constants when we need them rather than identifying
them with relations – it is easier to refer to 0 than to refer to some x for which
Z(x) holds. Therefore, we will also assume from now on that our first order
languages may have constant symbols.

22.3 Peano Arithmetic

There is a natural operation on the natural numbers called the successor
operation. It is defined by s(x) = x+1 (the successor of x is one more than x).
It was Hermann Günther Grassmann (1809-1877) who first called attention
to the fact that addition and multiplication and many of their properties on
the natural numbers could be derived from this successor operation. When
mathematicians were formalizing logic and mathematics in the late nineteenth
century, Peano took these observations about the successor operation and
created an axiom system for the natural numbers. The Peano Axioms for
the natural numbers include the logical axioms of equality along with those
axioms listed below.

The first two axioms give us “a place to begin” and a way of constructing
natural numbers. These two axioms are not really statements in predicate
logic. They merely give us a symbol 0 and a unary operation s in the language
of the natural numbers.

P1. There is a natural number called 01.

P2. For each natural number n, there is a unique natural number s(n) call
the successor of n.

The next axiom insures that the natural numbers “begin” at 0.

P3. The natural number 0 is not a successor. For any natural number n,
s(n) 6= 0.

1Peano’s system actually began with 1. Many modern derivations begin with 0.

169

So far, the axioms imply that the natural numbers contain as a subset

{0, s(0), s(s(0)), . . .}.

We wish for these numbers to be all distinct. This is guaranteed by the next
axiom.

P4. Different natural numbers have different successors. If n 6= m, then
s(n) 6= s(m).

This axiom insures that the natural numbers do not “wrap around” on them-
selves. At this point, the natural numbers contain at least an infinite chain
such as

0 → s(0) → s(s(0)) → s(s(s(0))) → · · ·

The axioms so far do not force the natural numbers not to contain in addition
to this chain other similar infinite chains or even some other “doubly infinite”
chains such as

· · · → a → s(a) → s(s(a)) → · · ·

The fifth Peano axiom prevents these additional chains from existing.

P5. For any set K of natural numbers if

– K contains 0 and

– For any natural number n, if n ∈ K then s(n) ∈ K

then K is the entire set of natural numbers.

This last axiom insures that any natural number can be constructed by ap-
plying the successor operation repeatedly to 0.

There is one issue with the final Peano axiom. This axiom quantifies over
sets of natural numbers. It is a statement in second order logic.

22.4 Why Successors?

Why would we want axioms for the natural numbers expressed in terms of the
successor operation instead of the more familiar arithmetic operations such as
addition or multiplication? The successor operation can be imitated in many
environments. These environments then can be considered logical expansions
of the natural numbers. Some theorems proven for the natural numbers will
then extend naturally to these other environments.

As an example of an environment where we can find a successor operation
we turn to set theory. In set theory, we will interpret 0 to be ∅ and we will
define the successor operation to be

s(A) = A ∪ {A}.

170

Thus, for example, S({a, b, c}) = {a, b, c, {a, b, c}}. (Notice that we have the
odd situation where both A ∈ S(A) and A ⊆ S(A).). This operation s and
constant 0 satisfy the first four Peano Axioms. Within set theory, then, we
can build a copy of the natural numbers:

0 is ∅

1 is 0 ∪ 0 = ∅ ∪ {∅} = {∅}
2 is 1 ∪ {1} = {∅} ∪ {{∅}} = {∅, {∅}}

3 is 2 ∪ {2} = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}}
These are more succinctly written in this way

0 = ∅

1 = {0}
2 = {0, 1}

3 = {0, 1, 2}
...

n = {0, 1, . . . , (n− 1)}
Notice that with these identifications, n ≤ m means the same thing as n ⊆ m.

Having an identifiable copy of the natural numbers in set theory along
with symbols for the language of the natural numbers (so far, 0 and s) will
allow us later to extend some results about the natural numbers to all of set
theory.

22.5 Arithmetic Operations

Grassmann noticed that the usual arithmetic operations on the natural num-
bers could be defined in terms of the successor operation. The beginning
observation is that if we know how to add (or multiply) 0, and if we know
how addition interacts with the successor operation, then we know how to
add 1, and then 2, and so on – we then know how to add any natural number.

First, if m is any natural number, m+ 0 = 0. Suppose that we know how
to calculate m+n for some natural number n. How do we calculate m+s(n)?
Here we resort to what we were told in grade school. We are associating s(n)
with n+1. We know that m+(n+1) should be (m+n)+1 which is s(m+n).
Thus we can define m+ s(n) = s(m+ n). Thus

m+ 0 = m

m+ 1 = m+ s(0) = s(m+ 0) = s(m)

m+ 2 = m+ s(1) = s(m+ 1) = s(s(m))

and so on. We can add to our axioms two axioms which uniquely determine
addition in the natural numbers:

171

A1. ∀x(x+ 0 = x)

A2. ∀x∀y(x+ s(y) = s(x+ y))

We can construct similar axioms for multiplication and exponentiation.
In both cases, the first axiom says how to operate with 0. The second axiom
says how to operate with the successor of a natural number.

M1. ∀x(x · 0 = 0)

M2. ∀x∀y(x · s(y)) = (x · y) + x

E1. ∀x(x0 = s(0))

E2. ∀x∀y(xs(y) = xy · x)

Finally, we can also define the relations≤ and< on the natural numbers in
terms of the successor operation. Since + has been defined with the successor
operation, it is more convenient to use +. For any natural numbers x and y,
x < z if and only if z is some positive number larger than x. If x = z, then
x+ 0 = z. Thus we have

L1. ∀x∀z[(x ≤ z)↔ (∃y(x+ y = z))]

Then we also have

L2. ∀x∀y[(x < y)↔ (x ≤ y ∧ x 6= y)]

L3. ∀x∀y[(x < y) ∨ (x = y) ∨ (y < x)]

L4. ∀x∀y[(x < s(y))↔ (x ≤ y))]

We now have our language and axioms for number theory. The language
consists of a constant symbol 0; operation symbols s, +, ·, and exponentia-
tion; and two relation symbols < and ≤. Our axioms are P1-5, A1-2, M1-2,
E1-2, and L1-4. It can be proven that any model of these axioms in this lan-
guage is exactly the natural numbers. From these axioms we can derive the
usual properties of arithmetic – associativity, commutativity, distributivity,
etc. However, these proofs would make heavy use of P5 which is not a first
order statement.

Here is an example of how to use the definitions to do arithmetic:

Example 22.1: Calculate 1 · 2 = 2 using the recursive definitions of
multiplication and addition.

s(0) · s(s(0)) = [s(0) · s(0)] + s(0)
= [[s(0) · 0] + s(0)] + s(0)
= s(0) + s(0)
= s(s(0) + 0)
= s(s(0))

172

22.6 Exercises

Use the definitions of addition, multiplication, and exponentiation to calculate

1. s(0) + s(s(0))

2. s(0) · s(0)

3. s(0) · (s(0) + s(0))

4. s(s(0))s(0)

22.7 First Order Axioms for N
This question remains to be addressed: Can we construct first order axioms
for the natural numbers which are complete in the sense that all of the first
order sentences which are true in the natural numbers can be proven from
these axioms?

Any first order model of P1-P4, A1-2, M1-2, E1-2, and L1-4 will contain
a copy of the natural numbers – the smallest subset containing 0 and closed
under s. This copy will satisfy all of the “nice” properties of the natural
numbers. The rest of the model will satisfy some of these properties.

For the rest of these notes, let Π be the set of sentences P1-P4, A1-2,
M1-2, E1-2, and L1-4.

22.8 Exercises

1. Use the language of the natural numbers to write a predicate that
declares “x is multiple of y.”

2. Use the language of the natural numbers to write a predicate P (x) so
that P (x) is true if and only if x is even.

3. Use the language of the natural numbers and a predicate P (x) to write
a pair of wffs to recursively define P (x) to mean that x is even.

4. Use the language of the natural numbers to write a predicate P (x)
which is true if x is prime.

5. Use the successor operation in set theory to calculate s({a, b}).

22.9 Axiom P5

The oddest of the Peano Axioms is probably the fifth. This axiom is a tool
for showing that certain facts are true for all natural numbers. It is the basis
of mathematical induction. We give an example here of a pure application of
this axiom, and then describe the general notion of induction later.

173

Theorem 22.2: For any natural numbers x, y, and z, the equality
(x+ y) + z = x+ (y + z) holds.

Proof: Let x, y ∈ N and let S be the set of all z ∈ N for which x+(y+z) =
(x + y) + z. We will use Axiom 5 to show that S = N. First, we must show
that 0 ∈ S. Notice that by the definition of + we have2

x+ (y + 0) = x+ y
= (x+ y) + 0

so 0 ∈ S. Next, assume that z ∈ S. This means that x+(y+z) = (x+y)+z.
We will show that s(z) ∈ S. That is, we must show that x + (y + s(z)) =
(x+ y) + s(z). Again, we need only apply the definition of + several times.

x+ (y + s(z)) = x+ s(y + z)
= s(x+ (y + z))
= s((x+ y) + z)
= (x+ y) + s(z)

Thus if z ∈ S, then also s(z) ∈ S. By Axiom 5, we can conclude that S = N.
It follows that for all x, y, and z in N, (x+ y) + z = x+ (y + z). �

Here is another pure application of Axiom 5.

Theorem 22.3: Every natural number either equals 0 or is the suc-
cessor of a natural number.

Proof: Let S be the set of all natural numbers which are either successors
or which are equal to 0. Note that 0 is in S by definition. Thus S satisfies
the first requirement of Axiom 5. Next, we must show that if k ∈ S, then
s(k) ∈ S. Suppose that k ∈ S. The number s(k) is the successor of k. By
the definition of S, s(k) ∈ S (since s(k) is a successor). Hence, if k ∈ S,
then s(k) ∈ S. We have satisfied the second condition of Axiom 5. By the
fifth Peano Axiom, S = N. It follows that every natural number is either a
successor or is equal to 0. �

22.10 Principle of Mathematical Induction

Axiom 5 is the basis for mathematical induction:

2This is an instance where including 0 in N makes life easier. The arithmetic
in the first step of proofs using Axiom 5 to establish properties of addition and
multiplication are often simpler with 0 than with 1.

174

Suppose P (n) is a predicate about some natural number n. Let m be
a natural number. If these two statements are true
• P (m) is true and

• For any k ≥ m in N, if P (k) is true, then P (k + 1) is true
then P (n) is true for all n greater than or equal to m.

Theorem 22.4: For any natural number n, this equality holds

4 · (03 + 13 + · · ·+ n3) = n2(n+ 1)2

Proof: Let P (n) be the predicate “4 · (03 + 13 + · · ·+ n3) = n2(n+ 1)2.”
We will use induction to prove that P (n) is true for all natural numbers n.
First, note that 4 · (03) = 0 and 02 · (0 + 1)2 = 0, so that P (0) is true. Next,
suppose that k is a natural number and that P (k) is true. That is, we are
assuming that

4 · (03 + 13 + · · ·+ k3) = k2(k + 1)2

Observe that

4 · (03 + 13 + · · ·+ k3 + (k + 1)3) = 4 · (03 + 13 + · · ·+ k3) + 4(k + 1)3

= k2(k + 1)2 + 4(k + 1)3

= (k + 1)2(k2 + 4(k + 1))
= (k + 1)2(k2 + 4k + 4)
= (k + 1)2(k + 2)2

= (k + 1)2([k + 1] + 1)2

Hence, P (k+ 1) is true. We have established that P (0) is true and that P (k)
implies P (k + 1). By mathematical induction, we can conclude that P (n) is
true for all natural numbers n. �

Here is another example of proof by induction.

Theorem 22.5: For any natural number n, 42n+1 + 1 is divisible by
5.

Proof: For any natural number n, let P (n) be the open statement
“42n+1 + 1 is divisible by 5.” We will use mathematical induction to show
that P (n) is true for all natural numbers n. First, note that 42·0+1 + 1 = 5
is divisible by 5, so P (0) is true. Next, suppose P (k) is true for some natural
number k. That is, we are assuming 42k+1 + 1 is divisible by 5. This means

175

there is a natural number l so that 42k+1 + 1 = 5l. Observe

42(k+1)+1 + 1 = 42k+3 + 1
= 42k+142 + 1
= 42k+1 · 16 + 1
= 42k+1(3 · 5 + 1) + 1
= 42k+1 · 3 · 5 + 42k+1 + 1
= 42k+1 · 3 · 5 + 5l
= 5(42k+1 · 3 + l)

From the definition of divisibility, we see that 5 divides 42(k+1)+1 + 1, so
P (k + 1) is true. Thus, if P (k) is true, so is P (k + 1). We have established
that P (0) is true and that P (k) implies P (k+1). By mathematical induction,
we can conclude that P (n) is true for all natural numbers n. �

22.11 Exercises

Use induction to prove the following.

1. For all natural numbers n, 2(0 + 1 + · · ·+ n) = n(n+ 1).

2. For all natural numbers n, 6(02 + 12 + · · ·+ n2) = n(n+ 1)(2n+ 1).

3. 32n+1 + 1 is divisible by 4 for all natural numbers n.

4. For all natural numbers n ≥ 1,

1 +
1

2
+

1

4
+ · · ·+ 1

2n
= 2− 1

2n
.

5. Guess a formula for 1 + 3 + · · · + (2n + 1) and use induction to prove
that your guess is correct.

176

Chapter 23

Incompleteness

In this chapter, we address the question of whether or not there is a nice set
of axioms which can prove all of the sentences which are true in N.

23.1 Theories

A theory in a first order language L is a set of sentences Σ in L which is closed
under deduction in the sense that if Σ ` α, then α ∈ Σ.

We will have two main sources for theories. If Σ is a set of first order
sentences, then the set of consequences of Σ is the set

Cn(Σ) = {α : Σ ` α}.

This is the set of all sentences provable from Σ. This set is (almost) by
definition closed under deduction. If A is any first order structure, then the
theory of A is the set

Th(A) = {α : A |= α}.

This is the set of all sentences which A satisfies.
Suppose that Σ is a subset of a theory T . Σ axiomatizes T if Cn(Σ) = T .

Our goal is to address this question:

Can Th(N) be axiomatized by a “nice” set of sentences.

Here, “nice” could mean finite, definable, recursively enumerable, or re-
cursive (computable, decidable). To keep things simple, our discussion in this
chapter will focus almost completely on definable.

A theory Σ is complete if for any sentence α in the language of Σ, either
α or ¬α is in Σ. A set Σ of wffs is complete if Th(Σ) is complete.

177

178

Caution: Do not confuse this notion of complete with that discussed in
the first two parts of these notes. The completeness theorems in the earlier
chapters were about our deductive system. These systems were complete in
the sense that any logical implication can be proven. Completeness here is a
measure of the extent or size of a theory.

Not all theories are complete. Let Σ be the sentences which define an
ordered set and let T = Cn(Σ). Let α be the sentence that declares that a
model has exactly two elements. Since there is a two element model of T
and a three element model of T , it cannot be that T contains α or ¬α. Just
because A is a model of a set Σ of sentences, we cannot conclude that the
only sentences true in A follow logically from Σ.

Recall that Π is the set of axioms P1-4, A1-2, M1-2, E1-2, and L1-2. We
can now ask these questions.

• Is Cn(Π) complete?

• Is it true that Cn(Π) = Th(N)?

• Can Th(N) be axiomatized by a “nice” set of sentences?

• Is Th(N) definable?

We will see in this chapter that each of these has a negative answer.

23.2 Examples

Our spoken language has the expressive power to contain sentences which
make statements about the truth and provability of other sentences, collec-
tions of sentences, or even about themselves. The Liar’s Paradox of Eubulides
is an illustration of some of the confusion that this expressiveness can lead to.
It is also an example of how logicians have been aware of the complications
of self-reference since the birth of logic. Self-reference was an essential part
of the diagonal arguments of the previous chapter.

The languages of formal logic are supposed to be idealized approximations
of our spoken language in which thought, deduction, and communication can
be made precise. It is reasonable then to consider whether or not we can
create models in which statements can be made about sentences, truth, and
provability.

Here is an example of a simple way to construct a language with the
expressive power to make statements about sentences and provability. You
should note that the language is simple (only a single predicate). It is the
particular model that allows expressibility.

179

Example 23.1: Let L be the first order language with one unary
predicate symbol P . Let F be the set of all wffs over L. We can turn
F into an L-structure by defining a unary relation P on F .

Let P = Cn(∆) be the set of all logical consequences of ∆ (the
axioms of predicate logic). Then in F , P (x) means precisely “x is
provable from ∆.”

On the other hand, if P = F − Cn(∆), then in F , P (x) means “x is
not probable from ∆.”

Here is a slightly more complicated example in which we have a formula
that essentially says “I am not provable from ∆.”

Example 23.2: Let A be the set of all wffs over a first order
language with one unary predicate symbol P and a constant symbol
0. Let 0A = P (0). Let S = Cn(∆) be the set of wffs which are
provable from ∆, and let PA = A− S.

In the model A, P (x) says “x is not provable from ∆.” Then PA(0A)
would be “0A is not provable from ∆.” But since 0A = P (0), PA(0A)
is “P (0) is not provable from ∆.” – within A, this is “I am not
provable from ∆.”

In this last example, is PA(0A) true. Ponder this for a moment before
going on. . ..

Theorem 23.3: Suppose that L is a first order language and that A
is an L-structure. Suppose that Σ is a collection of sentences which
are true in A. If there is an L-sentence α which in A expresses that
it is not the case that Σ ` α, then α is true in A and is not provable
from Σ.

The sentence α expresses “α is not provable from Σ.” This has to be true
in A. If not, then it would not be the case that α is not provable from Σ.
This means that α is provable from Σ. Since A |= Σ, then also A |= α. But
then A |= ¬α ∧ α which is impossible. By contradiction, A |= α.

23.3 Gödel’s Theorems

In 1931 Kurt Gödel proved that the scenario described in Theorem 23.3 can
(almost) be constructed in the natural numbers. He describe a manner of
associating every wff in the language of the natural numbers with a natural
number in a mechanically recognizable way. This encoding should be not

180

too surprising to the modern reader. Such encodings are implemented daily
within computers. Gödel’s numbering system was such that concepts such
as provability could be recognized within the system. For any “nice” (think
definable) subset Σ of wffs, Gödel could construct a sentence σ in the language
of the natural numbers so that σ is true if and only if σ is not provable from
Σ. As in Theorem 23.3, σ must be true and must not be provable from Σ.

A special case of one of Gödel’s Theorems is listed here. The notation
G(σ) is a natural number associated with the wff σ, and G(Σ) is the set of
numbers associated with the wffs in the set Σ. (Gödel’s proof is outlined in a
little more detail in Section 23.5)

Theorem 23.4: Suppose that Σ is a set of sentences true in N so
that G(Σ) is definable. There is a sentence σ which is true in N but
which cannot be proven from Σ.

Suppose in the theorem that Σ = Th(N) is the set of all wffs which are
true in the natural numbers. Then any σ true in N must be in Σ already, so σ
would be provable from Σ. If G(Σ) were definable, then this would contradict
the theorem. Therefore:

Theorem 23.5: Tarski Undefinability Theorem Truth is not
definable in N. That is, there is no formula τ in the language of N so
that for any sentence σ

N |= [σ ↔ τ(G(σ)].

Theorem 23.4 declares that any definable set Σ of sentences true in N
must be incomplete (There is a true sentence which is not provable from Σ).
Just like Theorem 23.3 the proof of Theorem 23.4 relies on the fact that the
sentences modeled by N must be consistent. The proof can be adjusted to
show:

Theorem 23.6: Any definable set of sentences in the language of N
is either incomplete or inconsistent.

In particular, there is no definable set of sentences Σ which are true in N
(and hence consistent) from which every true sentence in N can be proven (Σ
cannot be complete).

Theorem 23.7: Th(N) cannot be axiomatized by any definable set
of sentences.

It follows that

181

Theorem 23.8: Cn(Π) is not complete and Cn(Π) 6= Th(N).

As remarked earlier, we can realize the language of number theory within
set theory via the successor operation. By basing the axioms used in the
proofs of Gödel’s Theorems on the successor operation, we can extend these
theorems to reasonable mathematical systems which are at the same level of
complexity as the natural numbers. The Incompleteness Theorems for number
theory can be extended to set theory to establish:

Theorem 23.9: Incompleteness Theorem for Set Theory: Set
theory is either incomplete or inconsistent.

23.4 Exercises

1. What do Gödel’s theorems say about statements such as, “Everything
which is true can be proven?”

2. Why is it that Gödel’s theorems do not contradict the Completeness
Theorem for predicate logic?

3. A layman’s translation of Göodel’s theorems is, “Any sufficiently com-
plex system is either incomplete or inconsistent.” This statement has
been used to criticize Christians by saying that the Bible is sufficiently
complex, so it is either incomplete or inconsistent. Discuss this attack.

23.5 Gödel’s Proof

In this section, we describe an encoding due to Gödel of formulas in the
language of N as natural numbers.

First, we can encode any finite ordered list of natural numbers
as a natural number. Let p1, p2, p3, . . . be the list of prime natural numbers
– so p1 = 2, p2 = 3, p3 = 5, p4 = 7, and so on. If (n1, n2, . . . , nk) is any finite
ordered list of natural numbers, let

#(n1, n2, . . . , nk) = pn1+1
1 pn2+1

2 · · · pnk+1
k .

For example
#(5, 1, 2) = 263253 = 64 · 9 · 125 = 72000.

Note: The “+1” in the exponent is present to accomodate any 0s that may
be in the list. Since n0 = 1, if we only had pnk

k , any 0s would not add a factor
to the number encoding of the sequence.

Next, we can convert any expression in the language of N to a
finite ordered list of natural numbers. To do so, we first need to assign
a number to each symbol in our language. An example assignment could be:

182

Symbol Number
0 0
s 1
+ 2
· 3

exponent 4
< 5
≤ 6

Symbol Number
= 7
∀ 8
∃ 9
¬ 10
∧ 11
∨ 12
→ 13

Symbol Number
↔ 14
) 15
(16
v1 17
v2 18
v3 19

.

.

.

Now any expression in the language of N can be written as a list of natural
numbers by replacing each symbol in the expression by its corresponding
number above. The list associated with an expression α will be denoted as
List(α). For example

List((∃v1(v1 = s(v1)))) = (16, 9, 17, 16, 17, 7, 1, 16, 17, 15, 15, 15)

Any expression in the language of N can be encoded as a natural
number. If α is any expression in the language of N, then the Gödel number
of α is #(List(α)). We will denote this as G(α). For example

G((∃v1(v1 = s(v1)))) = #(List((∃v1(v1 = s(v1)))))
= #(16, 9, 17, 16, 17, 7, 1, 16, 17, 15, 15, 15)
= 217310518717111813817219172318291631163716

This is a BIG number.

If Σ is any set of expressions, we will denote the set of Gödel numbers of
elements of Σ as G(Σ). And if (α1, α2, . . . , αk) is an ordered list of expressions,
then we define

G(α1, α2, . . . , αk) = #(G(α1), G(α2), . . . , G(αk)).

Of course, each G(αi) is BIG, so this number isHUGE!.
Note that each natural number can be expressed in the language of number

theory. The language contains a symbol for 0. Then 1 is s(0). 2 is s(s(0))
and so on. Thus, in being able to refer to all expressions, Gödel numbers can
in particular reflect expressions about each natural.

We now have a way of encoding every expression and every finite ordered
list of expressions from the language of N as a natural number. The power of
the encoding is that it is simple to pass from wffs to Gödel numbers and back
in a mechanical (computable, derivable) way. The importance of the encoding
is that now each wff can be referenced as a number – certain natural numbers
serve as “names” for wffs. Moreover, each of the following possible properties
of a natural number n is definable in N:

183

• The number n is the Gödel number of wff.

• The number n is the Gödel number of a wff with no free vari-
ables (or one, or two, etc.).

• The number n is the Gödel number of a wff α with one free
variable with the number q substituted for the free variable.

• The number n is the Gödel number of an ordered list of wffs.

• The number n is the Gödel number of an ordered list of wffs
which is a valid deduction.

• The number n is the Gödel number of a valid deduction of α –
where α is a wff.

• The number n is the Gödel number of a valid deduction of α
from Σ – where α is a wff and Σ is a set wffs so that G(Σ) is
definable.

23.6 Exercises

1. Convert this list of numbers to a natural number using the method
prescribed in this section: (1, 2, 3, 4)

2. Convert this list of numbers to a natural number using the method
prescribed in this section: (0, 1, 0, 1, 0, 1)

3. Convert this number to a list of numbers using the method of this
section: 180

4. Convert this number to a list of numbers using the method of this
section: 381150

5. Consider this recursive definition of a toy language using the symbols
x, y, z, N , and R:

• x, y, and z are wffs.

• If α and β are wffs, then αβR and αN are wffs.

• These are the only ways in which an expression with these symbols
can be a wff.

We outline a way to convert any wff in this language to a natural
number mimicing the method of this chapter.

• First, associate each symbol from our language with a number in
the following manner:

N R x y z
1 2 3 4 5

184

• If α is a wff, let List(α) be the list of natural numbers obtained by
replacing each symbol in α with natural numbers as in the table
above. For example

List(xNyR) = (3, 1, 4, 2).

• If α is a wff, let G(α) = #List(α).

(a) List several wffs in this language.

(b) Convert the following wffs to natural numbers:

i. xN

ii. xyR

iii. xyzRR

(c) Which of the following numbers are G(α) for some wff α?

i. 288

ii. 864

iii. 583200

iv. 2916000

23.7 A Proof of an Incompleteness Theorem

We are now ready to attack Theorem 23.4.

Theorem 23.10: Suppose that Σ is a set of sentences true in N so
that G(Σ) is definable. There is a sentence σ which is true in N but
which cannot be proven from Σ.

Proof: Define a relation R on N so that R(a, b, c) if and only if

a is the number of a wff α and c is the number of a deduction
from Σ of α(b).

That is, if

• α is a wff with a free variable and

• b ∈ N and

• Γ is an ordered list of wffs

then R(G(α), b, G(Γ)) means that

Γ is a proof of α(b) from Σ.

By our assumptions, R is definable since Σ is definable, so there is a wff ρ so
that

R(a, b, c)↔ ρ(a, b, c).

185

Let q be the Gödel number of ∀v3¬ρ(v1, v1, v3). Let σ be ∀v3¬ρ(q, q, v3).
Then σ declares that no v3 is the Gödel number of a deduction from Σ of
α(q) where α is the wff whose Gödel number is q. But the wff whose Gödel
number is q is ∀v3¬ρ(v1, v1, v3), so σ declares there is no proof from Σ of
∀v3¬ρ(q, q, v3). This last wff is σ, so σ says that there is no proof of σ from
Σ.

σ ↔ (σ is not provable from Σ.)

The sentence σ must be true in N as in Theorem 23.3. �

186

Chapter 24

Cardinality

We now address the notion of the cardinality or size of a set. This concept
involves some surprising consequences which have been motivational in the
development of set theory and logic. The techniques involved in addressing
cardinality involve techniques which are useful in answering questions about
computability and the existence of Liebniz’s Truth Machine.

24.1 Cardinality

Suppose that A and B are sets. A one-to-one correspondence between A and
B is a pairing of elements from A with elements from B so that every element
of A is paired with exactly one element of B and every element of B is paired
with exactly one element of A.1

Example 24.1: Here is a one-to-one correspondence between {a, b, c}
and {0, 1, 2}.

a b c
l l l
0 1 2

For any set A, we have a “number” which is associated with the “size”
of A. We call this the cardinality of A and denote it as |A|. Since A may
be infinite, |A| cannot be a “number” in the usual sense, so we introduce
the notion of cardinal numbers. We make the following assumptions about
cardinal numbers and cardinalities.

1This is truly an atrocious definition. What in the world is a “pairing?”

187

188

Cardinal Numbers
1. To every set A is associated a unique cardinal number |A| called

the cardinality of A.

2. For every cardinal number κ, there is a set A with |A| = κ.

3. For any n ∈ N, |{0, 1, 2, . . . , (n− 1)}| = n.

4. For any set A, |A| = 0 if and only if A = ∅.

5. For any sets A and B, |A| = |B| if and only if there is a one-to-
one correspondence between A and B.

6. For any sets A and B, |A| ≤ |B| if and only if there is a one-to-
one correspondence between A and a subset of B.

7. For any sets A and B, |A| < |B| if and only if
|A| ≤ |B| and |A| 6= |B|.

A set A is finite if |A| is a natural number; otherwise, A is infinite. A set
A is countably infinite if |A| = |N|. A is countable if A is finite or countably
infinite. In this case, there is a one-to-one correspondence between A and a
subset of N. If A is not countable, then A is uncountably infinite or simply
uncountable.

Example 24.2: The set of even natural numbers is countably infinite
as is witnessed by this one-to-one correspondence:

0 2 4 6 8 . . .
l l l l l
0 1 2 3 4 . . .

Example 24.3: The set of all integers is countably infinite as is
witnessed by this one-to-one correspondence:

0 1 2 3 4 . . .
l l l l l
0 −1 1 −2 2 . . .

The one-to-one correspondence establishing that a set is countable gives
an ordered list of the elements of the set. Thus, we may use the word listable
to say that a set is countable. Providing a list of the elements of a set will
establish that the set is countable.

We have to try a bit harder to find uncountable sets (but they are every-
where).

A sequence2 of 0s and 1s is an infinite ordered list of 0s and 1s such as
0011001100110011 If we name a sequence f , then the nth number in the

2This is yet again an example of an inexcusably atrocious definition.

189

sequence will usually be called f(n) or fn. We begin numbering at 0, so that
the first number in the sequence is f(0), the second f(1), and so on.

The proof of the following theorem makes use of a diagonalization tech-
nique due to Cantor which is a self-reference technique.

Theorem 24.4: There are uncountably many sequences of 0s and 1s.

Proof: We prove that we cannot list all sequences of 0s and 1s. Suppose
that we have a list f0, f1, f2, . . . of sequences of 0s and 1s (a sequence of
sequences!). We will construct a sequence which is not in the list. For each
n = 0, 1, 2 . . ., let g(n) = 1− fn(n) (so g(n) is the opposite of the nth number
in the nth sequence). Then g is a sequence of 0s and 1s, but for each n
g(n) 6= fn(n). This means that g 6= fn for each n. Thus g is not in our list
of sequences. Thus, any attempt to list all sequences of 0s and 1s must omit
some sequence. These sequences are not listable or countable. �

We can associate any sequence of 0s and 1s with a subset of N in this
manner: If f is a sequence, then define a set A of natural numbers so that
n ∈ A if and only if f(n) = 1. Thus, there are as many subsets of N as there
are sequences of 0s and 1s.

Theorem 24.5: N has uncountably many subsets.

We can also associate every sequence of 0s and 1s with a real decimal
number. We demonstrate this with an example. We associate the sequence
010101010101 . . . with the real number 0.010101010101 Thus, there are
as many real numbers as there are sequences of 0s and 1s. Actually, each of
these numbers is between 0 and 1!

Theorem 24.6: There are uncountably many real numbers between
0 and 1.

24.2 Cantor’s Theorem and Consequences

Theorem 24.5 declares that there are more subsets of N than there are ele-
ments of N. This is a characteristic which is shared by all sets. The powerset
of a set A is the set of all subsets of A. Denote the powerset of A as PA.

Theorem 24.7: Cantor’s Theorem: For any set A,
|A| < |PA|.

Proof: Suppose that A is a set and that P is its powerset. If A is the
empty set, then A has 0 elements and P has 1 element, so |A| < |PA|.

190

Suppose that A is not empty and suppose by way of contradiction that
there is a one-to-one correspondence between A and P . Every element of A
is paired with an element f(a) in P . Note that f(a) is a subset of A, so we
can ask whether or not a ∈ f(a). Define B to be this subset of A:

B = {a ∈ A : a 6∈ f(a)}.

Since f is a one-to-one correspondence, there is some x ∈ A with f(x) = B.
Now we ask if x ∈ B. If x ∈ B, then by the definition of B, x 6∈ f(x) = B.
This is a problem, so suppose that x 6∈ B. Then (again, by the definition of
B) x ∈ f(x) = B. Thus

x ∈ B if and only if x 6∈ B.

This contradiction shows that |A| 6= |P |.
Since P contains all of the singelton subsets of A, P must be at least as

large as A, so |A| < |P |. �
Cantor’s Theorem gives us:

An Infinitude of Infinities: By Cantor’s Theorem, we must have

|N| < |PN| < |PPN| < |PPPN| < · · ·

so there are infinitely many different infinite cardinal numbers.
We usually define

ℵ0 = |N|,ℵ1 = |PN|,ℵ2 = |PPN|,ℵ3 = |PPPN|, · · ·

so that
ℵ0 < ℵ1 < ℵ2 < ℵ3 < · · ·

A natural question to ask is if there are any cardinalities between these.
The assumption is not.

Continuum Hypothesis: There is no set A with

ℵ0 < |A| < ℵ1.

Remarkably, this hypothesis can be assumed or rejected without affecting
the consistency of set theory.

The reasoning involved in the proof of Cantor’s Theorem arises also when
we consider the collection of all sets. The set theory laid out by Frege allowed
for this collection to be a set. Bertrand Russell pointed out that this creates
an inconsistency or paradox. Suppose that U is the set of all sets. If U is

191

itself a set, then we have the odd situation where U ∈ U . This observation
motivates us to define

B = {x ∈ U : x 6∈ x}.

We now ask the question whether or not B has the same odd property as U .
If B ∈ B, then from the definition of B, B 6∈ B. If B 6∈ B, then from the
definition of B, it has to be that B ∈ B. Thus

B ∈ B if and only if B 6∈ B.

Most mathematicians avoid this contradiction today by declaring that U is
not itself a set and by requiring definitions of sets by first order predicates to
restrict possible elements to lie within a known set. For example, {x : P (x)} is
meaningless unless we know where x may “live.” {x ∈ A : P (x)} is meaningful
as long as A is a set.

We can also argue by way of cardinalities that the collection U of all sets
should not be a set. If U is a set, then it should have a cardinality. Since
U contains the singleton subsets of every possible set, this cardinality should
be the largest among the cardinalities of all sets. However, from Cantor’s
Theorem, we know that |U | < |PU |. If U were a set, we would again have a
contradiction. U is too big to be a set.

24.3 Exercises

1. Let A = {10, 11, 12, 13, 14, . . .}. Find a one-to-one correspondence to
show that |A| = |N|.

2. Find a one-to-one correspondence between Z and N to show that |Z| =
|N |.

3. You are the clerk at a hotel with a countably infinite number of rooms.
One night, every room is full. A new guest arrives. How can you make
room for him?

4. List all of the subsets of {a}.

5. List all of the subsets of {a, b}.

6. List all of the subsets of {a, b, c}.

7. Draw Hasse diagrams of the sets of subsets in the previous two exercises.

192

Chapter 25

Machines

In Chapter 2 we noted that at the end of the 1600s Leibniz envisioned a
machine which could recognize true statements. Before we can discuss the
existence (or nonexistence) of such a machine, we need to talk about what a
machine is. In this chapter we introduce three different types of theoretical
machines or computers that have been used in the study of computability,
logic, and language.

25.1 Turing Machines

Turing machines were introduced by Alan Turing in the 1930s. The “ma-
chinery” that makes up a Turing machine begins with a tape that has cells in
which symbols may be written:

· · · b b b 0 1 1 0 b b b b b · · ·

This tape serves as the memory of the machine. The tape extends indefinitely
in both directions so that the machine has unlimited memory. The machine
also includes a read/write head that points to a particular location on the
tape:

· · · b b b 0 1 1 0 b b b b b · · ·
⇑

The machine is said to be reading whatever symbol the head is pointing at.
Programs for a Turing machine may read the symbol to which the head is
pointing and (based on the symbol being read) write a symbol on the tape
(at the location of the head) and move the head either to the right or to the
left. A Turing machine also has an internal state which is used to determine
which commands should be executed. There can only be finitely many states.
We will use names of states such as s0, s1, s2 We will record the state of
the machine along with the location of the head like so:

193

194

· · · b b b 0 1 1 0 b b b b b · · ·
⇑
s0

We will view a command for a turing Machine is a row in a table such as
this:

State Symbol New Symbol New State Direction
s2 0 1 s4 Right

This command means:

If the machine is in state s2 and the head is reading “0” then

• Write a “1”

• Change to state s4

• Move one step to the Right.

If the machine reaches a state/symbol combination for which there is no
command, then the machine “halts” (simply stops running). We will assume
that our machines always begin in state s0 with the head pointing at the
left-most nonblank cell of the tape. We will use a “b” to indicate a blank cell.

Example 25.1: Execute these Turing instructions:
State Symbol New Symbol New State Direction
s0 0 1 s0 Right
s0 1 0 s0 Right

on a Turing machine with this initial configuration:

· · · b b b 0 1 1 0 b b b b b · · ·
⇑
s0

We begin with this configuration:

· · · b b b 0 1 1 0 b b b b b · · ·
⇑
s0

Since we are in state s0 reading a 0, we execute the first command. We write
a 1, stay in state s0, and move one step right:

· · · b b b 1 1 1 0 b b b b b · · ·
⇑
s0

Now we are in state s0 reading a 1, so we execute the second command. We
write a 0, state in state s0, and move right:

195

· · · b b b 1 0 1 0 b b b b b · · ·
⇑
s0

We are in state s0 reading a 1. Again, according to the second command, we
write a 0, state in state s0, and move right:

· · · b b b 1 0 0 0 b b b b b · · ·
⇑
s0

We are in state s0 reading a 0. According to the first command, we write a
1, stay in state s0, and move right:

· · · b b b 1 0 0 1 b b b b b · · ·
⇑
s0

Finally, we are in state s0 reading a blank cell. Since there is no command for
this, the machine halts. What have we accomplished? This Turing machine
has passed along the tape from left to write changing every 0 to a 1 and
changing every 1 to a 0.

Example 25.2: Execute these Turing instructions:
State Symbol New Symbol New State Direction
s0 0 1 s0 Right
s0 1 1 s0 Right
s0 b 1 s1 Left
s1 0 1 s1 Left
s1 1 1 s1 Left
s1 b 1 s0 Right

on a Turing machine with this initial configuration:

· · · b b b 0 b b b b b b b b · · ·
⇑
s0

We begin with:

· · · b b b 0 b b b b b b b b · · ·
⇑
s0

According to the first instruction, we write a 1, stay in state s0, and move
right:

· · · b b b 1 b b b b b b b b · · ·
⇑
s0

196

Now, according to the third command, we write a 1, change to state s1 and
move left:

· · · b b b 1 1 b b b b b b b · · ·
⇑
s1

Write a 1, stay in state s1, and move left:

· · · b b b 1 1 b b b b b b b · · ·
⇑
s1

Write a 1, change to state s0, and move right:

· · · b b 1 1 1 b b b b b b b · · ·
⇑
s0

If we continue this process, as long as we are in state s0, we will write 1s and
move right until we reach a blank cell. There, we will write a 1, change to
state s1 and start moving left. In state s1, we move left, writing 1s, until we
reach a blank cell. This process adds a 1 to the right of the tape and then to
the left and repeats indefinitely. The machine never halts. A natural question
to ask is

How can one determine whether or not a Turing machine will halt?

This turns out to be a difficult question which we will address in Chapter
26.

Turing machines may seem like toys with no real application. However,
with correct encoding of symbols, Turing machines are capable of any com-
putation that a modern computer can perform.

25.2 Exercises

1. Run these Turing commands:

State Symbol New Symbol New State Direction
s0 0 0 s0 Right
s0 1 1 s0 Right
s0 b 1 s1 Left
s1 1 1 s1 Left
s1 0 0 s1 Left
s1 b b s2 Right

on a Turing machine with this initial configuration:

197

· · · b b b 0 1 1 0 b b b b b · · ·
⇑
s0

2. Run these Turing commands:

State Symbol New Symbol New State Direction
s0 0 0 s1 Right
s0 1 1 s1 Right
s0 b b s1 Right
s1 0 0 s0 Right
s1 1 1 s0 Right
s1 b b s0 Right

on a Turing machine with this initial configuration:

· · · b b b 0 1 1 0 b b b b b · · ·
⇑
s0

3. Design a Turing machine with these specifications:

• The machine uses symbols 0, 1, and b for blank.

• The machine starts with the head at the left-most non-blank cell.

• The machine should move the head all the way to the far right
of the non-empty cells and write a 1 in the first blank cell to the
right.

4. Design a Turing machine with these specifications:

• The machine uses symbols 0, 1, and b for blank.

• The machine starts with the head at the left-most non-blank cell.

• Assume that the tape begins with non-blank cells looking some-
thing like: 11 · · · 11011 · · · 111, a bunch of 1s, followed by a 0,
followed by a bunch of 1s.

• The machine should remove one 1 from the left and replace the
middle 0 with a 1.

If we represent the number n on the tape as n 1s in order, then our
first tape has two numbers m and n separated by a 0. This machine
ends with a sequence of m+ n 1s, so this is an adding machine.

5. Design a Turing machine with these specifications:

• The machine uses symbols 0, 1, and b for blank.

• The machine starts with the head at the left-most non-blank cell.

• The machine should back up the head up one place to the left and
then write a copy of the first non-blank cell on the tape (the cell
it was initially reading).

198

25.3 Minsky Machines

A Minsky machine or register machine is another type of machine whose
instructions are based on finitely many states. Instead of a tape, the memory
of a Minsky machine is a set of bowls (also called urns or registers) in which
are placed pebbles. This is how we will picture a machine with three bowls.
There are two pebbles in the first bowl, three in the second, and one in the
third:

•
• •
• • •
0 1 2

We will write the interal state of a Minsky machine to the right of the bowls:

•
• •
• • •
0 1 2

s0

Commands for a Minsky machine will either place a pebble in a particular
bowl or remove a pebble from a bowl and then change states. Since bowls
may be empty, the action of removing a pebble may fail. The state to which
the machine changes after trying to remove a pebble will depend on whether
or not the removal was successful. For us, commands for Minsky machines
will look like rows in tables such as this:

State Action Bowl Pass Fail
s0 + 1 s1
s1 - 2 s2 s3

The first command says that if the machine is in state s0, then add (hence
the +) a pebble to bowl 1 and go to state s1. “Pass” means that the action
was successful, and “Fail” means the action was not successful. Since adding
a pebble will always be possible (We have arbitrarily many pebbles, and our
bowls can hold as many pebbles as we like.) we do not need a Fail state.
The second command says to remove (hence the -) a pebble from bowl 2.
If removal is successful, go to state s2. If removal is not successful, go to
state s3. If a Minsky machine ever encounters a state with no command, the
machine halts. Such a state is a halting state.

199

Example 25.3: Execute these Minsky machine commands:
State Action Bowl Pass Fail
s0 - 1 s1 s2
s1 + 2 s0

on a machine with this configuration:

•
•
•
1 2

s0

We begin like so:

•
•
•
1 2

s0

Since we are in state s0, we remove one pebble from bowl 1 and go to state
s1:

•
•
1 2

s1

In state s1, we add a pebble to bowl 2 and go to state s0:

•
• •
1 2

s0

Remove another pebble from bowl 1 and go to s1:

• •
1 2

s1

Add another pebble to bowl 2 and go to s0:

•
• •
1 2

s0

Remove another pebble from bowl 1 and go to s1:

•
•

1 2
s1

Add a pebble to bowl 2 and go to s0:

200

•
•
•

1 2

s0

Now we try to remove a pebble from bowl 1, but bowl 1 is empty. Since the
action fails, we go to s2. Since there is no command for s2, the machine now
halts. Here is a summary: In s0, we are removing pebbles from bowl 1. In
s1, we are placing the pebbles back in bowl 2. Finally, s2 is the halting state.
What have we accomplished here? We have moved the contents of bowl 1 to
bowl 2.

Minsky machines can perform a computation equivalent to any computa-
tion that a Turing machine can perform. In particular, Minsky machines can
perform basic arithmetic.

Example 25.4: Design a Minsky machine which adds. The machine
should have three bowls. Assume that the third bowl begins empty.
After the machine runs, the third bowl should contain the sum of the
numbers of pebbles from the first two bowls.

This task sounds more difficult than it is. First, we mimic the previous
example to move the contents of bowl 1 to bowl 3:

State Action Bowl Pass Fail
s0 - 1 s1 s2
s1 + 3 s0

Then, once we reach s2, we mimic the previous example again to move the
contents of bowl 2 to bowl 3:

State Action Bowl Pass Fail
s0 - 1 s1 s2
s1 + 3 s0
s2 - 2 s3 s4
s3 + 3 s2

Example 25.5: It is easy to construct a Minsky machine which does
not halt:

State Action Bowl Pass Fail
s0 + 1 s0

So we again have the obvious question:

How can one determine whether or not a Minsky machine will halt?

201

25.4 Exercises

1. Execute these Minsky machine commands:

State Action Bowl Pass Fail
s0 - 1 s1 s3
s1 + 2 s2
s2 + 3 s0

on a machine with this configuration:

•
•
•
1 2 3

s0

2. Execute these Minsky machine commands:

State Action Bowl Pass Fail
s0 - 1 s1 s4
s1 - 1 s3 s4
s3 + 2 s0

on a machine with this configuration:

•
•
•
•
•
•
1 2

s0

3. Design a Minsky machine with 3 bowls. The machine should copy bowl
1 to bowl 2 and to bowl 3. So, if the machine begins with 4 pebbles in
bowl 1, it should end with 0 in bowl 1, 4 in bowl 2, and 4 in bowl 3.

4. Design a Minsky machine with 1 bowl. If the machine begins with an
odd number of pebbles in bowl 1, then the machine should end with 1
pebble in bowl 1. If the machine begins with an even number of pebbles
in bowl 1, then it should end with no pebbles in bowl 1.

5. Desing a Minsky machine with two bowls which will subtract bowl 1
minus bowl 2. You should have two bowls. For each pebble in bowl 2,
remove a pebble from bowl 1 until one or the other bowl is empty.

202

25.5 Language Recognition

Leibniz wanted to construct a machine which could identify true and false
statements. As a step in this direction, we will define here what it means for
a Turing machine to recognize a language. Suppose that α is an expression
written using the symbols used by a Turing machine T . We assume that T
has a state sf identified as its final state (or happy state). We say that T
recognizes α if T halts in state sf when run on a tape with α written on it1.

Example 25.6: Suppose that a Turing machine T is governed by
these commands:

State Symbol New Symbol New State Direction
s0 0 0 s2 Right
s0 1 1 s1 Right
s1 1 1 s0 Right

and suppose that s0 is T ’s happy state. What expressions (sequences
of 0s and 1s) are recognized by T?

First note that if the machine is in state s0 and reads a 0, then the machine
goes to s2 and halts because there are no commands for state s2. Also, note
that there are no commands for state s1 while reading a 0. Therefore, if the
machine reads a 0 in either state, the machine will halt either in s1 or s2,
and the expression on the tape will not be recognized (because the happy
state is s0). Thus any expression recognized by T can contain only 1s. Now
consider what happens when the machine reads 1s. When the first 1 is read,
the machine goes to s1 (unhappy). When the second 1 is read, the machine
returns to s0 and is happy. The next 1 sends T to s1 (unhappy), and the
next to s0 (happy). The machine alternates s0, s1, s0, s1, and so forth. It is
in state s0 every other 1 beginning with the second 1. Thus, T will recognize
an expression if and only if that expression is exactly a sequence of an even
number of 1s.

A natural question to ask is which sets or languages can be recognized
by Turing machines. It can be shown that a language can be recognized by a
Turing machine if and only if it is generated by a phrase structure grammar.

Example 25.7: Make up a phrase structure grammar which will gen-
erate the language recognized by the Turing machine in the previous
example.

We will use A as the start symbol for our grammar, and we will have one
other (terminal) symbol 1. We have two production rules:

A→ 11A and A→ 11.

1An alternative is to say that α is recognized if T halts in any state and to assume
that T will not halt if α is not recognized. Our notion is equivalent and parallels
what we will do later with Finite State Automata.

203

The first rule allows us to grow our number of 1s (two at a time to keep that
number even). The second rule allows us to remove the start symbol from the
derivation.

We can also use Minsky machines to recognize sets; however, what we can
recognize are numbers. As with Turing machines, we need to make sure our
Minsky machine has a happy state sf specified. Then the machine recognizes
a number n if the machine halts in state sf when the machine is run beginning
with n pebbles in the first bowl and all other bowls empty.

Example 25.8: Suppose a Minsky machine M has one bowl and
these commands

State Action Bowl Pass Fail
s0 - 1 s1 s3
s1 - 1 s2 s4
s2 - 1 s0 s4

and suppose that the happy state of M is s3. What numbers does M
recognize?

If M successfully takes one pebble from the bowl, then it go to s1. If it
successfully takes a second pebble from the bowl, it goes to s2. On the third
pebble, it goes to s0. Then the process repeats. The states follow a pattern
s0, s1, s2, s0, s1, s2, s0, s1, s2, and so on. M lands in s0 on the 0th, 3rd,
6th, 9th, and so on pebbles, so M is in state s0 immediately after the number
of pebbles that have been drawn is a multiple of 3. If the bowl is empty at
this point in time, the next attempt to remove a pebble will land the machine
in its happy state s3. If the machine is empty after the number of marbles
drawn is not a multiple of 3, then the next removal will land the machine in
an unhappy state s4. It seems that a number is recognized by this machine if
and only if the number is a multiple of 3.

25.6 Exercises

1. Design a Turing machine which will recognize expressions which contain
only 1s.

2. Design a Turing machine which will recognize sequences of 0s and 1s
that look like 1010101. The 1s and 0s alternate, and the sequences
begin and end with a 1.

3. Write a phrase structure grammar which generates the language from
the previous exercise.

4. Design a Turing machine which will recognize expressions of 0s and 1s
that contain exactly 2 1s.

5. Design a Turing machine which will recognize expressions of 0s and 1s
that contain more than 2 1s.

204

6. Desing a Turing machine which recognizes expressions of the form 01,
0011, 000111,. . .. These expressions contain some number of 0s followed
by the same number of 1s.

25.7 Finite State Automata

Our third type of machine is a finite state automaton (plural, automata).
Finite state automata (as their name indicates) are also based on finitely
many states. These machines accept finite sequences of symbols as input.
They read the symbols one at a time, and commands specify what state to
move to if the machine is in a specific state reading a particular symbol2. One
or more states of the machine are declared to be halting states (or, as I like to
say, happy states). If the machine is in one of these states when it runs out
of input symbols, the input is said to be recognized. Otherwise, the input is
not recognized.

We could use rows in tables to list the commands for finite state automtata
as we did with Turing machines and Minsky machines; however, there is
a convenient way to represent all the information regarding a finite state
automaton in a graphical way. Each state of the machine is represented as
an oval containing the name of the state. The ovals for the halting states are
usually embellished with bold print or double lines. Each instruction for the
machine is an arrow. An arrow from state A to state B labeled by a symbol s
means that if the machine is in state A reading an s, then go to state B. The
initial state of the machine is usually indicated with a start arrow. Here is an
example of a diagram of a finite state automaton:

start 0 1 2// 1 //

0

&&

1

ff

0

		
1

		
0hh

Example 25.9: Run the finite state automaton above on the input
0110100.

As indicated by the start arrow, we begin in state 0.

• The first symbol we read is a 0: 0110100. Since we are in state 0 reading
a 0, we follow the arrow above state 0...which leads back to state 0.

• The next symbol is a 1: 0110100. Since we are in state 0 reading a 1,
we follow the arrow from state 0 to the right to state 1.

• Next comes another 1: 0110100. Since we are in state 1 reading a 1,
we follow the arrow above state 1 back to state 1.

2We are studying finite state automata without output. Finite state automata
with output print an output symbol at each step of the computation

205

• Next is a 0: 0110100. We are in state 1 reading a 0, so we follow the
arrow to the right which leads to state 2.

• We are momentarily happy, but we are in state 2 reading a 1: 0110100
so we follow the arrow to the left of state 2 back to state 1.

• In state 1, readind a 0: 0110100, we follow the arrow back to state 2.

• One symbol left, a 0: 0110100. Since we are in state 2 reading a 0, we
stay in state 2.

• We are out of input symbols, so the computation is done. Since we are
in the halting state, state 2, the machine recognizes the input.

Example 25.10: Run the finite state automaton above on the input
101.

Again, we begin in state 0.

• In state 0, reading 101, go to state 1.

• In state 1, reading 101, go to state 2.

• In state 2, reading 101, go to state 1.

• We are out of input symbols, so the computation is done. Since we
are in state 1 and not the halting state, state 2, the machine does note
recognize the input.

Example 25.11: What sequences of 0s and 1s will this finite state
automaton recognize?

start 0 1 2//

1

&&

0

ff
1 // 0,1hh

0

		

Before we begin, notice the loop on state 2 is labeled by both a 0 and a
1. If the machine ever reaches state 2, it never leaves state 2. In particular,
it cannot get back to the halting state. If the machine starts in state 0 and
reads any number of 0s, it remains in state 0. The first 1 it encounters moves
the machine to state 1. Another 1 will move the machine to state 2. While in
state 1, a 0 will send the machine back to state 0, where it will remain until
another 1 is read. If the input does not contain two consecutive 1s, then the
machine will not reach state 2. If the input ends in a 0, the machine will end
in state 0. To end in state 1 (the happy state) the input cannot have two
consecutive 1s and must end in a 1.

206

Example 25.12: Design a machine which will recognize any input of
0s and 1s which begins with two 1s, then has any number of 0s, and
then ends with two 1s.

The inputs we want to recognize look like 11000..00011. First, we set up
states that will take any input that looks like this to a happy state.

start 0 1 2 3 4//

1

&&
1

&&
1

&&
1

&&
1

&&

0

		

Next, we use a trick to prevent the machine from reaching the happy state if
any “bad” input is given to the machine. We do this by introducing a new
state “L” that will act as a trap. To make it a trap, we we add a loop mapping
L to itself on any input symbol:

start 0 1 2 3 4

L

//

1

&&
1

&&
1

&&
1

&&
1

&&

0

		

0,1

UU

Finally, note that the arrows in the top half of our diagram are exactly the
symbols we want to read to get to the happy state. We add arrows for any
other symbol to send the machine straight to L if a bad symbol is read:

start 0 1 2 3 4

L

//

1

&&

0

''

0

��

0

��
0,1

ww

1

&&
1

&&
1

&&
1

&&

0

		

0,1

UU

A natural question to ask is what sets of symbols or what languages
can be recognized by a finite state automaton. These are those languages
generated by phrase structure grammars where every production rule is of
the form A→ a or A→ aB where A and B are nonterminal symbols and a is
a terminal symbol. Such languages are called regular languages. An example
of a set which cannot be recognized by a finite state automaton is the set

207

01, 0011, 000111, 00001111, 0000011111, 000000111111. . .

The sequences in this set consist of any number of 0s followed by the same
number of 1s.

25.8 Exercises

1. Design a finite state automaton which will recognize expressions which
contain only 1s.

2. Design a finite state automaton which will recognize sequences of 0s and
1s that look like 1010101. The 1s and 0s alternate, and the sequences
begin and end with a 1.

3. Design a finite state automaton which will recognize expressions of 0s
and 1s that contain exactly 2 1s.

4. Design a finite state automaton which will recognize expressions of 0s
and 1s that contain more than 2 1s.

208

Chapter 26

Computability

A 0-1 sequence f is computable if there is an algorithm or program which
with input n will output f(n). Note that any program is just a finite list of
symbols. There are countably many such lists (in any reasonable, fixed lan-
guage), so we will assume that we have a list of all programs P0, P1, Since
there are countably many programs, there are countably many computable
sequences. We can list all computable sequences as C0, C1, C2, Since there
are uncountably many sequences, some sequences are not computable. This is
good. Otherwise, the definition of computable sequence would be pointless.

Theorem 26.1: There is a 0-1 sequence f for which there is no
program which inputs n and outputs f(n).

We address the question as to whether or not there is a program which
will decide if a given program will stop or run forever. This is known as the
Halting Problem.

Halting Problem: Is there an algorithm which accepts as input a
description of a program P and an input to that program and decides
if P halts on that input?

The answer to this question was given independently by Church and Tur-
ing. We give a very brief outline of the idea of Turing’s proof.

Theorem 26.2: Church-Turing There is no program which will
determine if any given program will halt on any given input.

Proof: Suppose that U is a program which accepts two natural numbers
as input and outputs either “halts” or “does not halt” on every input. We will

209

210

construct a program and input so that U does not draw the correct conclusion
about halting for that program. Thus U cannot determine whether or not
programs halt. Since U is arbitrary, no program can make this determination.

Now we construct a new program H which takes a single input n and
follows these rules:

1. If U(n, n) =“does not halt” then H halts and outputs “halt.”

2. If U(n, n) =“halts” then H loops forever (does not halt).

Thus H(n) is in some sense the opposite of U(n, n).

Now, since H is a program, there is a number k so that H = Pk. We
now consider U(k, k). If the result of U(k, k) is “does not halt” then H, by
definition, must halt on input k. This means that Pk must halt on input k. If
the result of U(k, k) is “halts” then H does not halt on input k. This means
that Pk does not halt on input k. Thus

U(k, k) = “halts” if and only if Pk does not halt on input k.

The program U cannot draw the correct conclusion about what Pk does on
input k. �

In the previous argument, associate “halts” with 1 and “does not halt”
with 0. The program U outputs either 1 or 0. For any n, H(n) is almost
defined to be 1 − U(n, n). Instead of outputting 1 − U(n, n), H instead
performs 1− U(n, n).

Our next theorem basically says that the list of computable sequences is
not computable. It declares that there is no “universal machine” that can
perform the task of every program.

Theorem 26.3: There is no program U which accepts two inputs m
and n and whose output U(m,n) is Cm(n).

Proof: Suppose that there is a program U which when given a pair of
natural numbers m,n as inputs will output Cm(n). We could express this
as U(m,n) = Cm(n). Let g(n) = 1 − Cn(n). Now, g cannot be in the list
C0, C1, . . . since for any n, g(n) 6= Cn(n) so g 6= Cn. However, we can compute
g in the following way:

• Input n.

• Calculate U(n, n).

• Output 1− U(n, n).

Thus we have a contradiction. The sequence g is computable, but it is not in
our list of all computable sequences. �

211

26.1 Truth Machines

Over the past century, there have been many (equivalent) suggestions about
what an algorithm or computer program should be. In any case, there are
finitely many commands or assumptions in some language that are applied to
the input x. The machine may use arbitrarily much memory and time, but
any output must come after only finitely much memory and time have been
used.

It is not much of a step to consider a program to be written in a language
that corresponds to some first order language. The commands of the program
correspond to sentences in the language. Calculations correspond to deduc-
tions. This implies that the decidability of a set corresponds to the ability
to prove that elements either are or are not in the set based on finitely many
axioms or assumptions.

It seems reasonable, then, that computability or decidability should be
equivalent to deducibility from finitely many axioms. This assumption is
known as Church’s Thesis.

A consequence of Theorem 23.7 is that there is no finite set of sentences
which axiomatize Th(N). Since Church’s Thesis identifies computability with
deduction from a finite set of axioms, this result can be expanded to:

Theorem 26.4: Church-Turing: There is no algorithm which will
determine if an arbitrary sentence in the language of N is true in N.

The situation is even more bleak than it sounds for Leibniz’s Truth Ma-
chine. One could argue that asking to determine the truth value of any
statement about the natural numbers is unreasonable. We can isolate our
attention to what sounds like a much simpler question: Is there an algorithm
which, given a polynomial with natural number coefficients, will determine if
there are natural numbers that make that polynomial 0? This is the type of
exercise that students are asked to perform in an introductory algebra class.

In 1970 Yuri Matiyasevich, extending work of Julia Robinson, Martin
Davis, and Hilary Putnam, proved that the answer to this question is neg-
ative. For every Minsky machine M, there is a polynomial P (x1, . . . , x9)
with nine variables so that there are natural numbers n1, n2, . . . , n9 with
P (n1, n2, . . . , n9) = 0 if and only if the machine M halts. Therefore, if a ma-
chine could decide if any polynomial can be made zero with natural number
inputs, then that machine could be used to determine if any Minsky machine
halts and would give a positive solution to the Halting Problem. Since no
machine can solve the Halting Problem, no machine can solve the polynomial
problem either.

212

26.2 Diagonalization

Many of the theorems in these notes involve a common theme which is usually
described as a “diagonalization argument.” In each example below, note how a
negation is applied to a formula (logical or arithmetical) in which two variables
are identified.

• In Theorem 23.4, let α(x, y) be ∃v3ρ(x, y, v3). Then the formula σ is
precisely ¬α(q, q).

• In Theorem 24.4, let h(x, y) = fx(y). Then g(n) is defined to be 1 −
h(n, n).

• In Cantor’s Theorem 24.7, let α(x, y) be “x ∈ f(y).” Then the set B
is the set of all x ∈ A for which ¬α(x, x) holds.

• In the discussion of Russell’s Paradox, let α(x, y) be “x ∈ y.” The set
B in question here is the set of all x ∈ U for which ¬α(x, x) holds.

• In Theorem 26.2, the machine H performs the opposite of U(n, n). If
we interpret U logically, then H(n) is equivalent to ¬U(n, n). If we
interpret U arithmetically, then H(n) is (almost) 1− U(n, n).

• In Theorem 26.3, we encounter the expression 1− U(n, n).

	Preface
	Introduction
	Examples for Thought

	An Incomplete History
	Sentential Languages
	Statements
	Exercises
	Assumptions
	Symbols
	Compound Statements
	Conjunction
	Disjunction
	Negation
	Implication (Conditional)
	Bi-Implication

	Translations
	Order of Operations
	More Translations
	Exercises
	Translating from words to symbols
	Exercises
	Sentential Languages
	Order of operations and abuse of notation

	Truth Values
	Truth Assignments
	Exercises
	Truth Tables for WFFs
	Exercises

	Implication
	 Tautology
	 Contradiction
	Logical Implication
	Exercises

	Logical Equivalence
	 Basic Equivalences
	 Commutative Laws
	 Associative Laws
	 Idempotent Laws
	 Absorption Laws
	 Distributive Laws
	 DeMorgan's Laws
	 Disjunctive Implication
	 Contrapositive

	 Special Equivalences
	Algebra with equivalences
	Exercises
	 Simplification
	Exercises
	Disjunctive Normal Form
	Exercises
	Building Statements
	Exercises
	Implications
	Exercises
	Fewer Logical Connectives
	Exercises

	Switching Networks
	 Switches and Switching Networks
	 Switches and Logical Operators
	 Networks for Compound Statements
	 Absorption Laws
	 Designing a Network
	Exercises

	Deduction
	Modus Ponens and Proofs
	Derived Rules of Inference
	 Applying Rules of Inference
	 Exercises
	 Examples of Proofs
	Exercises

	Soundness, Completeness, and Compactness
	Soundness and Completeness
	The Deduction Theorem
	Consistency and Satisfiability
	Exercises
	Compactness
	Completeness
	Summary

	Temporary Assumptions
	Direct Proof
	Proving a Disjunction
	Cases
	Contrapositive
	Contradiction
	Exercises

	Arguments
	Exercises
	Fallacies
	Affirming the Consequent
	Denying the Antecedent
	Affirming a Disjunct

	Exercises

	Three Valued Logic
	Exercises

	Recursion and Induction
	Recursive Definitions
	Exercises
	Truth Assignments
	Exercises
	Deduction
	Exercises
	Proof by Induction
	Exercises
	Recursively Enumerable Sets
	Exercises
	Truth Machines

	Phrase Structure Grammars
	Building a Sentence in English
	Phrase Structure Grammars
	Some Examples
	Exercises

	Predicate Logic
	Predicates
	Quantifiers
	Exercises
	Predicate Languages
	Free Variables
	Substitution in formulas
	Logical Axioms
	Exercises

	Implication and Deduction
	Deduction and Proof
	Sentential Implication
	Derived rules of inference
	Examples
	Exercises

	Sets
	Sets
	Subsets
	Exercises
	 Set Operations
	Exercises
	 Identities
	 Venn Diagrams
	Exercises

	Relations
	Exercises

	Models
	Structures
	Satisfaction
	Models
	Exercises
	Definable Subsets and Relations
	Exercises
	Logical Implication
	Consistency, Completeness, Compactness

	Some Geometry
	Exercise
	Properties of Geometries
	Exercises
	Linear Spaces
	Exercises
	Linear-Plus
	Exercises

	Basic Proof Techniques
	 The Axiomatic Method
	Working Environment
	Direct Proof
	Exercises
	 Even and Odd Numbers
	 Exercises
	If-and-only-if
	 Exercises
	 Proofs With Cases
	Exercises
	Contrapositive
	 Exercises
	Contradiction
	Exercise

	The Natural Numbers
	In Search of Truth
	Symbols for Operations and Constants
	Peano Arithmetic
	Why Successors?
	Arithmetic Operations
	 Exercises
	First Order Axioms for N
	Exercises
	 Axiom P5
	 Principle of Mathematical Induction
	 Exercises

	Incompleteness
	Theories
	Examples
	Gödel's Theorems
	Exercises
	Gödel's Proof
	Exercises
	A Proof of an Incompleteness Theorem

	Cardinality
	Cardinality
	Cantor's Theorem and Consequences
	Exercises

	Machines
	Turing Machines
	Exercises
	Minsky Machines
	Exercises
	Language Recognition
	Exercises
	Finite State Automata
	Exercises

	Computability
	Truth Machines
	Diagonalization

