
Geometry Theorem Sequence

Fall 2026

October 7, 2025

Contents

1 Incidence Geometry 3
1.1 Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Incidence and Betweenness Geometry 5
2.1 Betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Plane Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Betweenness of Four Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Incidence, Betweenness, and Congruence Geometry 11
3.1 Segment Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Angle Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Right Angles and Perpendicular Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Parallel Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Inequalities for Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Triangle Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Midpoints and Bisectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Continuity and Measurement 21
4.1 Continuous Functions on the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Dedekind Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 The Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Segment Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Angle Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Neutral Geometry 27
5.1 Adding Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 The Saccheri-Legendre Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 More on Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Neutral Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Statements Equivalent to the Euclidean Parallel Postulate . . . . . . . . . . . . . . . 31
5.6 The Euclidean Parallel Postulate vs. The Hyperbolic Parallel Postulate . . . . . . . 33

1



6 A Little Euclidean Geometry 34
6.1 Basic Parallelograms and Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 The Parallel Projection Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Similar Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Euclidean Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.7 Dissection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Even Less Hyperbolic Geometry 39
7.1 Triangles and Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Common Perpendiculars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



1 Incidence Geometry

1.1 Incidence

Primitives. The undefined terms for incidence geometry are point and line.

Axiom. Lines are sets of points.

Definition. If P is a point and ℓ is a line then each of these means that P ∈ ℓ:

� P is on ℓ.

� P lies on ℓ.

� ℓ is on P .

� ℓ lies on P .

� ℓ passes through P .

� P is incident with ℓ.

� ℓ is incident with P .

� ℓ contains P .

Definition. We call the set of all points under consideration the plane and denote it P.

Incidence Axiom 1 (IA1). If P and Q are distinct points, then there is at least one line ℓ so that
P ∈ ℓ and Q ∈ ℓ.

Incidence Axiom 2 (IA2). If P and Q are distinct points, then there is at most one line ℓ so
that P ∈ ℓ and Q ∈ ℓ.

Incidence Axiom 3 (IA3). If ℓ is a line, then there are distinct points P and Q so that P ∈ ℓ
and Q ∈ ℓ.

Incidence Axiom 4 (IA4). There exist three distinct points P , Q, and R so that there is no line
ℓ with P ∈ ℓ and Q ∈ ℓ and R ∈ ℓ.

Incidence Axioms 1 and 2 guarantee that any two distinct points are contained in exactly one
line. We give a name to this line.

Definition. If P and Q are distinct points then the unique line that contains both P and Q is

denoted
←→
PQ.

Suppose that P and Q are distinct points. It follows immediately from this definition that:

� If ℓ is a line that contains P and Q, then ℓ =
←→
PQ.

�

←→
QP =

←→
PQ.

� If ℓ is a line and P ∈ ℓ and Q ∈ ℓ, then ℓ =
←→
PQ.

Exercise 1.1. Find a model which satisfies Incidence Axioms 1, 2, and 3 but not 4.

Exercise 1.2. Find a model which satisfies Incidence Axioms 1, 2, and 4 but not 3.

3



Exercise 1.3. Find a model which satisfies Incidence Axioms 1, 3, and 4 but not 2.

Exercise 1.4. Find a model which satisfies Incidence Axioms 2, 3, and 4 but not 1.

These three exercises establish that the incidence axioms are independent of each other. No one
of them can be proven from the other three. If one of them were provable from the other three,
then any model which satisfies the three would also have to satisfy the one.

Exercise 1.5. Find a model of IA1, IA2, IA3, and IA4 which has three or fewer points.

It follows from this exercise that you cannot prove the existence of four points. If you could,
the model you found could not exist.

Proposition 1.6. The following are true.

1. There is a point.

2. There is a line.

Proposition 1.7. If ℓ is a line, then there exist points P and Q so that ℓ =
←→
PQ.

Proposition 1.8. If ℓ and m are distinct lines, then there is at most one point P which is on both
ℓ and m.

Proposition 1.9 (IA4’). There is a line ℓ and a point P so that P ̸∈ ℓ.

Exercise 1.10. Assume IA1, IA2, IA3, and IA4’ and use these assumptions to prove IA4.

This last exercise demonstrates that in the presence of the other Incidence Axioms, IA4 and
IA4’ are equivalent.

Definition. Points P1, P2, . . . , Pn are collinear if there is a line ℓ so that Pi ∈ ℓ for all i. Points
which are not collinear are noncollinear. Lines ℓ1, ℓ2, . . . , ℓn are concurrent if there is a point P so
that P ∈ ℓi for all i. Lines which are not concurrent are nonconcurrent.

Proposition 1.11. There are three noncollinear points.

Proposition 1.12. There are three nonconcurrent lines.

Proposition 1.13. If ℓ is any line, then there exists at least one point P so that P ̸∈ ℓ.

Proposition 1.14. If P is any point, then there exist at least two lines ℓ and m so that P ∈ ℓ and
P ∈ m.

Definition. If ℓ and m are lines, and if P is a point so that P ∈ ℓ and P ∈ m, then ℓ and m
intersect at P .

Proposition 1.15. If ℓ is any line, then there exist lines m and n so that l, m, and n are distinct
and both m and n intersect ℓ.

Proposition 1.16. Suppose that A, B, and C are distinct points and that P is a point so that

P ∈
←→
AB, P ∈

←→
AC, and P ∈

←→
BC. Then A, B, and C are collinear.

Proposition 1.17. If P is any point, then there exists at least one line ℓ such that P ̸∈ ℓ.

Proposition 1.18. If P is any point, then there exist points Q and R so that P , Q, and R are
noncollinear.

Proposition 1.19. If P and Q are two distinct points, then there exists a point R so that P , Q,
and R are noncollinear.

4



2 Incidence and Betweenness Geometry

2.1 Betweenness

Primitives. We add a new undefined term, betweenness.

Axiom. Betweenness is a ternary (three-place) relation on the set of all points. To denote that
points P , Q, and R are in the betweenness relation, we use the notation P ∗Q ∗R.

Definition. If P , Q, and R are points and the relation P ∗Q ∗R holds, we say that Q is between
P and R.

Betweenness Axiom 1 (BA1). If A, B, and C are points so that A ∗ B ∗ C, then A, B, and C
are distinct collinear points and C ∗B ∗A.

Betweenness Axiom 2 (BA2). If B and D are distinct points, then there are points A, C, and
E so that A ∗B ∗D, B ∗ C ∗D, and B ∗D ∗ E.

Betweenness Axiom 3 (BA3). If A, B, and C are distinct collinear points, then exactly one of
these holds: A ∗B ∗ C or A ∗ C ∗B or B ∗A ∗ C.

Definition. Suppose that A and B are distinct points. The line segment AB is defined as

AB = {P |A ∗ P ∗B} ∪ {A,B}.

Definition. If P = Q is any point, then
←→
PQ = {P} = {Q}. Note that this IS NOT a line.

Similarly, if P = Q is any point, then PQ = {P} = {Q}. Note that this IS NOT a line segment.

Definition. Suppose that A and B are distinct points. The ray
−−→
AB is defined as

−−→
AB = AB ∪ {P |A ∗B ∗ P}.

Proposition 2.1. If A, B, and P are points so that P ∗A ∗B or A ∗B ∗ P then P is not in AB.

Proposition 2.2. If A, B, and P are points so that P ∗A ∗B then P is not in
−−→
AB.

Proposition 2.3. If A and B are distinct points, then AB = BA.

Proposition 2.4. If A and B are distinct points, then
−−→
AB ̸=

−−→
BA.

Proposition 2.5. If A and B are distinct points, then AB ⊆
←→
AB.

Proposition 2.6. If A and B are distinct points, then AB ⊆
−−→
AB.

Proposition 2.7. If A and B are distinct points, then
−−→
AB ⊆

←→
AB.

Proposition 2.8. If A and B are distinct points then
−−→
AB ∩

−−→
BA = AB.

Proposition 2.9. If A and B are distinct points then
−−→
AB ∪

−−→
BA =

←→
AB.
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2.2 Plane Separation

Primitives. We add a new undefined term, half-plane.

Definition. A set of points S is convex if whenever A and C are in S and A ∗B ∗ C then B is in
S also.

Plane Separation Axiom 1. Suppose ℓ is a line. There are two sets H1 and H2 called the
half-planes bounded by ℓ so that

1. P = H1 ∪ ℓ ∪H2.

2. H1 ̸= ∅ and H2 ̸= ∅.

3. H1 ∩H2 = H1 ∩ ℓ = H2 ∩ ℓ = ∅.

4. H1 and H2 are convex.

5. If P ∈ H1 and Q ∈ H2 then PQ ∩ ℓ ̸= ∅.

Proposition 2.10. If ℓ is a line and A is a point not on ℓ, then there is exactly one half-plane
bounded by ℓ which contains A.

Definition. If ℓ is a line and A is a point not on ℓ, then the half-plane bounded by ℓ containing A
is denoted Hℓ(A). The two half-planes bounded by ℓ are called the sides of ℓ. If H is a half-plane
bounded by ℓ, we will sometimes express A ∈ H as “A is in H” and sometimes as “A is on H.”
We will call the two distinct sides of ℓ the opposite sides of ℓ. If A and B are two points not on ℓ
and Hℓ(A) = Hℓ(B), then we say that A and B are on the same side of ℓ. If Hℓ(A) ̸= Hℓ(B), then
we say that A and B are on opposite sides of ℓ.

Proposition 2.11. If A and B are distinct points not on a line ℓ, then A and B are on the same
side of ℓ if and only if AB ∩ ℓ = ∅. A and B are on opposite sides of ℓ if and only if AB ∩ ℓ ̸= ∅.

Theorem 2.12 (Pasch’s Theorem). Suppose that A, B, and C are distinct noncollinear points and
that ℓ is a line intersecting AB.

� ℓ intersects AC or BC.

� If ℓ does not contain A, B, or C, then ℓ intersects exactly one of AC and BC.

This theorem is proven through the following claimable lemmas.

Lemma 2.13 (Part of the proof of 2.12). Suppose that A, B, and C are distinct noncollinear points
and that ℓ is a line intersecting AB. Then ℓ intersects AC or BC.

Lemma 2.14 (Part of the proof of 2.12). Suppose that A, B, and C are distinct noncollinear points
and that ℓ is a line intersecting AB. If ℓ does not contain A, B, or C, then ℓ intersects exactly
one of AC and BC.

Proposition 2.15. Suppose A, B, and C are points not on a line ℓ. If A and B are on opposite
sides of ℓ but B and C are on the same side of ℓ, then A and C on opposite sides of ℓ.

Proposition 2.16 (Ray Theorem). Suppose that A is a point on a line ℓ and that B is a point not

on ℓ. Every point on
−−→
AB other than A is on the same side of ℓ as B.
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2.3 Betweenness of Four Points

Definition. Let A, B, C, and D be points. The relation A−B−C−D holds if A∗B∗C, A∗B∗D,
A ∗ C ∗D, and B ∗ C ∗D.

Proposition 2.17. Let A, B, C, and D be points. If A − B − C −D, then A, B, C, and D are
distinct collinear points.

Proposition 2.18. Let A, B, C, and D be points. If A−B − C −D, then D − C −B −A.

Proposition 2.19 (Four Point Squeezing 1). Let A, B, C, and D be points. If A ∗ B ∗ C and
A ∗ C ∗D then A−B − C −D.

Proposition 2.20 (Four Point Squeezing 2). Let A, B, C, and D be points. If A ∗ B ∗ D and
B ∗ C ∗D then A−B − C −D.

Proposition 2.21 (Four Point Overlap). Let A, B, C, and D be points. If A∗B ∗C and B ∗C ∗D
then A−B − C −D.

Proposition 2.22. Let A, B, C, and D be distinct collinear points with A ∗B ∗ C. Then exactly
one of these is true: D −A−B − C or A−D −B − C or A−B −D − C or A−B − C −D.

Proposition 2.23. Let A, B, C, and D be distinct collinear points. There is a permutation
X,Y, Z,W of A,B,C,D so that X − Y − Z −W .

Proposition 2.24. If A, B, and C are points so that A ∗B ∗ C then AB ⊆ AC.

Proposition 2.25. If A, B, and C are points so that A ∗B ∗ C then AB ∪BC = AC.

Proposition 2.26. If A, B, and C are points so that A ∗B ∗ C then AB ∩BC = {B}.

Definition. If A, B, and C are points so that B ∗A ∗ C then
−−→
AB and

−→
AC are opposite rays.

Proposition 2.27. If A, B, and C are points so that B ∗A ∗ C then
−−→
AB ∩

−→
AC = {A}.

Proposition 2.28. If A, B, and C are points so that B ∗A ∗ C then
−−→
AB ∪

−→
AC =

←→
AB.

Proposition 2.29. If A, B, and C are points so that A ∗B ∗ C then
−−→
AB =

−→
AC.

Proposition 2.30. If A, B, and C are distinct points so that C ∈
−−→
AB then

−−→
AB =

−→
AC.

Proposition 2.31. If X and Y are distinct points on the ray
−−→
AB then it is not the case that

X ∗A ∗ Y .

Proposition 2.32. If C is any point on the ray
−−→
AB and C ̸= A, then there is a point D on

−−→
AB

so that A ∗ C ∗D.

Proposition 2.33. If
−−→
AB and

−−→
CD are rays so that

−−→
AB =

−−→
CD then A = C.

Definition. If
−−→
AB is a ray, then A is the vertex of the ray.

Proposition 2.34. If X and Y are distinct points on the segment AB then it is not the case that
X ∗A ∗ Y .

Proposition 2.35. If X and Y are distinct points on the segment AB then it is not the case that
X ∗B ∗ Y .

Proposition 2.36. If AB and CD are line segments so that AB = CD then {A,B} = {C,D}.
Definition. If AB is a line segment, then A and B are the endpoints of the segment.

Proposition 2.37. Every line contains infinitely many points.

Proposition 2.38. Every line segment contains infinitely many points.
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2.4 Angles

Definition. Suppose that A, B, and C are noncollinear points. The angle ∠BAC is defined to be−−→
AB ∪

−→
AC.

Proposition 2.39. Suppose that A, B, and C are noncollinear points. Then ∠BAC = ∠CAB.

Proposition 2.40. Suppose that A, B, and C are noncollinear points. If B′ ∈
−−→
AB, C ′ ∈

−→
AC,

B′ ̸= A, and C ′ ̸= A, then A, B′, and C ′ are noncollinear and ∠BAC = ∠B′AC ′.

Proposition 2.41. Suppose that A, B, and C are noncollinear points. Then A is the only point
on ∠BAC which is not between any two other points of ∠BAC.

Proposition 2.42. If ∠BAC and ∠EDF are angles and ∠BAC = ∠EDF , then A = D.

Proposition 2.43. If ∠BAC and ∠DAE are angles and ∠BAC = ∠DAE then either
−−→
AB =

−−→
AD

and
−→
AC =

−→
AE or

−−→
AB =

−→
AE and

−→
AC =

−−→
AD.

Definition. Suppose that A, B, and C are noncollinear points. Then A is the vertex of ∠BAC,

and
−−→
AB and

−→
AC are the sides of ∠BAC.

Proposition 2.44. Suppose that ∠BAC and ∠B′AC are angles and ∠BAC = ∠B′AC. Then
H←→

AC
(B) = H←→

AC
(B′).

Definition. Suppose that A, B, and C are noncollinear points. The interior of ∠BAC isH←→
AC

(B)∩
H←→

AB
(C). The exterior of ∠BAC is the set of all points which are not on ∠BAC and are not in

the interior of ∠BAC.

Proposition 2.45. Suppose that A, B, and C are noncollinear points. A point D is in the interior

of ∠BAC if and only if D is on the same side of
←→
AC as B and D is on the same side of

←→
AB as C.

Proposition 2.46 (Crossbar Betweenness). Suppose that A, B, and C are noncollinear points,

and suppose D is a point on
←→
BC. Then D is in the interior of ∠BAC if and only if B ∗D ∗ C.

Proposition 2.47. Suppose that A, B, and C are noncollinear points, and suppose D is a point

in the interior of ∠BAC. Then every point on
−−→
AD other than A is in the interior of ∠BAC.

Definition. Suppose that A, B, C, and D are points. The ray
−−→
AD is between the rays

−−→
AB and−→

AC if A, B, and C are noncollinear and D is in the interior of ∠BAC.

Proposition 2.48. Suppose that A, B, and C are noncollinear points and that D is a point different

from A. If
−−→
AD intersects the interior of BC then D is in the interior of ∠BAC.

Lemma 2.49 (Z-Lemma). Suppose that A and B are distinct points on a line ℓ and that C and

D are points on opposite sides of ℓ. Then
−→
AC and

−−→
BD are disjoint.

Theorem 2.50 (Crossbar Theorem). Suppose A, B, and C are noncollinear points and that D is

in the interior of ∠BAC. Then
−−→
AD intersects BC.

Proposition 2.51. Suppose A, B, C, D, and E are distinct points so that
−−→
AD is between

−−→
AB and−→

AC and that
−→
AE is between

−−→
AB and

−−→
AD. Then

−→
AE is between

−−→
AB and

−→
AC.

Proposition 2.52. Suppose A, B, C, D, and E are distinct points so that
−−→
AD is between

−−→
AB and−→

AC and that
−→
AE is between

−−→
AB and

−−→
AD. Then

−−→
AD is between

−→
AE and

−→
AC.
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Proposition 2.53 (Interior Inclusion). Suppose that A, B, and C are noncollinear points. If D is
in the interior of ∠BAC and E is in the interior of ∠BAD, then E is in the interior of ∠BAC.

Proposition 2.54. If three distinct rays have the same vertex, then at most one of the rays is
between the other two.

Proposition 2.55. Suppose that A, B, C, and D are four points such that C and D are on the

same side of
←→
AB and D is not on

−→
AC. Then either C is in the interior of ∠BAD or D is in the

interior of ∠BAC.

Exercise 2.56. Draw three rays with a common endpoint so that no one of them is between the
other two.

Definition. Suppose A, B, and C are points so that B ∗A ∗C. Let D be a point not on
←→
BC. The

angles ∠BAD and ∠DAC are a linear pair.

Proposition 2.57. Every angle is part of a linear pair.

Proposition 2.58. If C ∗ A ∗ B and D is in the interior of ∠BAE then E is in the interior of
∠DAC.

Proposition 2.59 (Supplementary Interiors 1). The interiors of angles in a linear pair are disjoint.

Proposition 2.60 (Supplementary Interiors 2). If ∠BAD and ∠DAC form a linear pair, and if

E is on the same side of
←→
BC as D, then exactly one of these must hold:

1. E is on
−−→
AD.

2. E is in the interior of ∠BAD.

3. E is in the interior of ∠DAC.

Proposition 2.61. Suppose that A, B, C, D, and E are points so that B ∗A∗C. If
−−→
AD is between−−→

AB and
−→
AE then

−→
AE is between

−−→
AD and

−→
AC.

Definition. Suppose that A, B, and C are noncollinear points. The triangle △ABC is defined to
be

△ABC = AB ∪BC ∪AC.

Proposition 2.62. If A, B, and C are noncollinear points then

△ABC = △ACB = △BAC = △BCA = △CAB = △CBA.

Proposition 2.63. Suppose that A, B, and C are noncollinear points. The points A, B, and C
are the only points in △ABC which are not between other points on △ABC.

Proposition 2.64. If△ABC and△DEF are triangles so that△ABC = △DEF then {A,B,C} =
{D,E, F}. It follows that

{AB,BC,AC} = {DE,EF ,DF}
and that

{∠ABC,∠BCA,∠CAB} = {∠DEF,∠EFD,∠FDE}.
Definition. Suppose that A, B, and C are noncollinear points. Then A, B, and C are the vertices
of △ABC. AB, BC, and AC are the sides of △ABC, and the angles ∠ABC, ∠BCA, and ∠CAB
are the angles of △ABC. The interior of △ABC is the intersection of the interiors of the angles
of △ABC. The exterior of △ABC is the set of all points not on △ABC and not in the interior of
△ABC.

Proposition 2.65. Suppose that A, B, and C are noncollinear points. The interior of △ABC is
the set H←→

AB
(C) ∩H←→

BC
(A) ∩H←→

AC
(B).
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2.5 Convexity

Definition. A set of points S is convex if whenever A and C are in S and A ∗B ∗ C then B is in
S also.

Proposition 2.66. The empty set is convex.

Proposition 2.67. If A is a point then {A} is convex.

Proposition 2.68. Lines are convex.

Proposition 2.69. Rays are convex.

Proposition 2.70. Half planes are convex.

Proposition 2.71. If S and T are convex sets, then S ∩ T is a convex set.

Proposition 2.72. Line segments are convex.

Proposition 2.73. Interiors of angles and triangles are convex.

Exercise 2.74. Show by means of a picture that angles are not convex. (This might bother you.)
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3 Incidence, Betweenness, and Congruence Geometry

3.1 Segment Congruence

Primitives. We add here a new primitive, segment congruence.

Axiom. Segment congruence is a binary relation on the set of all segments. If AB and CD are
segments, then AB ∼= CD indicates that the segment congruence relation holds between AB and
CD.

Segment Congruence Axiom 1 (SCA1). Segment congruence is an equivalence relation on the
set of all segments.

Segment Congruence Axiom 2 (SCA2 Point Construction). Suppose that AB is a segment and
−−→
CD is a ray. There is a unique point E on

−−→
CD which is distinct from C so that AB ∼= CE.

Segment Congruence Axiom 3 (SCA3). Suppose that AC and A′C ′ are congruent segments.
If B is a point so that A ∗ B ∗ C then there is a point B′ so that A′ ∗ B′ ∗ C ′, AB ∼= A′B′ and
BC ∼= B′C ′.

Proposition 3.1. The point B′ in SCA3 is unique.

Proposition 3.2 (Segment Addition). Suppose that A ∗B ∗C and A′ ∗B′ ∗C ′. If AB ∼= A′B′ and
BC ∼= B′C ′ then AC ∼= A′C ′.

Proposition 3.3 (Segment Subtraction). Suppose that A ∗B ∗ C and A′ ∗B′ ∗ C ′. If AC ∼= A′C ′

and AB ∼= A′B′ then BC ∼= B′C ′.

Definition. Suppose that AB and CD are segments. We write AB < CD or CD > AB if there
is a point E so that C ∗ E ∗D and AB ∼= CE.

Proposition 3.4. Suppose that AB < CD and CD < EF . Then AB < EF .

Proposition 3.5 (Segment Substitution). If AB < CD, CD ∼= C ′D′, and AB ∼= A′B′ then
A′B′ < C ′D′.

Proposition 3.6. If A ∗B ∗ C then AB < AC.

Proposition 3.7. Suppose that
−−→
AB =

−→
AC. If AB < AC then A ∗B ∗ C.

Lemma 3.8. If AB is a line segment, then it is not the case that AB < AB.

Proposition 3.9 (Segment Trichotomy). If AB and CD are segments, then exactly one of these
holds: AB < CD or AB ∼= CD or AB > CD.

3.2 Angle Congruence

Primitives. We add here a new primitive, angle congruence.

Axiom. Angle congruence is a binary relation on the set of all angles. If ∠ABC and ∠DEF are
angles, then ∠ABC ∼= ∠DEF indicates that the angle congruence relation holds between ∠ABC
and ∠DEF .

Definition. By an oriented triangle we will mean a triangle with a specified ordering of its vertices.
If A, B, and C are noncollinear points, then the triangle with these vertices in the order A, B, then
C is denoted △ABC.
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Note. We are using the same notation for an oriented triangle as for a non-oriented triangle.
Generally, if congruence is under consideration, we will mean an oriented triangle.

Definition. Two oriented triangles △ABC and △A′B′C ′ are said to be congruent if

� AB ∼= A′B′, BC ∼= B′C ′, AC ∼= A′C ′,

� ∠ABC ∼= ∠A′B′C ′, ∠BCA ∼= ∠B′C ′A′, and ∠CAB ∼= ∠C ′A′B′.

Angle Congruence Axiom 1 (ACA1). Angle congruence is an equivalence relation on the set of
all angles.

Angle Congruence Axiom 2 (ACA2 Angle Construction or Ray Construction). If ∠BAC is

any angle and
−−→
DE is any ray, then on either side of

←→
DE there is a unique ray

−−→
DF so that ∠BAC ∼=

∠EDF .

Angle Congruence Axiom 3 (ACA3 Side-Angle-Side Congruence or SAS). If △ABC and
△A′B′C ′ are triangles so that AB ∼= A′B′, ∠CAB ∼= ∠C ′A′B′, and AC ∼= A′C ′, then △ABC ∼=
△A′B′C ′.

Proposition 3.10 (Triangle Construction). Suppose that A, B, and C are noncollinear points

and that A′B′ is a segment with AB ∼= A′B′. Then on either side of
←−→
A′B′ is a point C ′ with

△ABC ∼= △A′B′C ′.

Proposition 3.11. The point C ′ in Triangle Construction is unique.

Definition. An isosceles triangle is a triangle in which at least two sides are congruent. An
equilateral triangle is a triangle in which all three sides are congruent.

Theorem 3.12 (Isosceles Triangle Theorem). If △ABC is an isosceles triangle in which AB ∼= AC
then ∠ABC ∼= ∠ACB.

Corollary 3.13. If △ABC is an equilateral triangle, then all three angles in △ABC are congruent.

Note. Note that this is a conditional. We are not declaring that an equilateral triangle actually
exists.

Proposition 3.14. If A, B, and C are noncollinear points, then △ABC ∼= △ABC.

Proposition 3.15. If△ABC and△A′B′C ′ are triangles with△ABC ∼= △A′B′C ′ then△A′B′C ′ ∼=
△ABC.

Proposition 3.16. If △ABC, △A′B′C ′, and △A′′B′′C ′′ are triangles with △ABC ∼= △A′B′C ′

and △A′B′C ′ ∼= △A′′B′′C ′′, then △ABC ∼= △A′′B′′C ′′.

Proposition 3.17. Suppose that angles ∠BAD and ∠DAC are a linear pair and that angles
∠B′A′D′ and ∠D′A′C ′ are a linear pair. If ∠BAD ∼= ∠B′A′D′ then ∠DAC ∼= ∠D′A′C ′.

Definition. Suppose ℓ and m are two lines intersecting at a point A. Suppose that B and D are
on m and C and D are on ℓ so that B ∗A ∗D and C ∗A ∗E. Then ∠BAC and ∠DAE are vertical
angles.

Theorem 3.18 (Vertical Angles Theorem). Vertical angles are congruent.
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Proposition 3.19 (Converse of Vertical Angles Theorem). Suppose that A∗B ∗C and that D and

E are on opposite sides of
←→
AB. If ∠DBC ∼= ∠EBA then D, B, and E are collinear.

Proposition 3.20. Suppose that
←→
AD is a line, and let B and C be on opposite sides of

←→
AD.

Suppose that α and β are are a linear pair so that α ∼= ∠BAD and β ∼= ∠DAC. Then B, A, and
C are collinear and ∠BAD and ∠DAC form a linear pair.

Definition. An angle α is a right angle if α forms a linear pair with an angle congruent to α.

Corollary 3.21. Suppose that A, B, C, and D are points so that ∠DAB and ∠DAC are right
angles. Then A, B, and C are collinear.

Proposition 3.22 (Angle Addition). Suppose that D is an interior point of the angle ∠BAC and
that D′ is an interior point of the angle ∠B′A′C ′. If ∠BAD ∼= ∠B′A′D′ and ∠DAC ∼= ∠D′A′C ′

then ∠BAC ∼= ∠B′A′C ′.

Proposition 3.23. Suppose ∠BAC ∼= ∠B′A′C ′ and that
−−→
AD is a ray between

−−→
AB and

−→
AC. There

is a ray
−−−→
A′D′ between

−−→
A′B′ and

−−→
A′C ′ so that ∠BAD ∼= ∠B′A′D′ and ∠DAC ∼= ∠D′A′C ′.

Proposition 3.24 (Angle Subtraction). Suppose that D is an interior point of the angle ∠BAC
and that D′ is an interior point of the angle ∠B′A′C ′. If ∠BAC ∼= ∠B′A′C ′ and ∠BAD ∼= ∠B′A′D′

then ∠DAC ∼= ∠D′A′C ′.

Definition. If ∠BAC and ∠EDF are angles then we write ∠BAC < ∠EDF or ∠EDF > ∠BAC

if there is a ray
−−→
DG between

−−→
DE and

−−→
DF so that ∠BAC ∼= ∠EDG.

Proposition 3.25. Suppose that ∠BAC < ∠EDF and ∠EDF < ∠HGI. Then ∠BAC < ∠HGI.

Proposition 3.26 (Angle Substitution). Let α, α′, β, and β′ be angles. If α < β and α ∼= α′ and
β ∼= β′ then α′ < β′.

Proposition 3.27. If
−−→
AD is between

−−→
AB and

−→
AC then ∠BAD < ∠BAC.

Proposition 3.28. Suppose that α and β are a linear pair and that α′ and β′ are a linear pair. If
α > α′ then β < β′.

Proposition 3.29. If α is any angle, then it is not the case that α < α.

Proposition 3.30 (Angle Trichotomy). If α and β are angles, then exactly one of these must hold:
α < β or α ∼= β or α > β.

3.3 Right Angles and Perpendicular Lines

Definition. An angle α is a right angle if α forms a linear pair with an angle congruent to α. If
α is a right angle and β is an angle so that β < α, then β is an acute angle. If α < β then β is an
obtuse angle.

Proposition 3.31. If α is a right angle and γ ∼= α, then γ is a right angle.

Proposition 3.32. If α is a right angle and γ forms a linear pair with α, then γ is a right angle.

Proposition 3.33. Any two right angles are congruent.

Definition. Two lines ℓ and m are perpendicular if ℓ and m intersect at a point A and there exist
B ̸= A on ℓ and C ̸= A on m so that ∠BAC is a right angle. In this case, we write ℓ ⊥ m.

13



Proposition 3.34. Suppose that ℓ and m are lines that intersect at a point A and that there exist
B ̸= A on ℓ and C ̸= A on m so that ∠BAC is a right angle. Then for all B′ ̸= A on ℓ and C ′ ̸= A
on m ∠B′AC ′ is a right angle.

Proposition 3.35. If ℓ is a line and P is a point not on ℓ then there is a line m passing through
P which is perpendicular to ℓ.

Corollary 3.36. Right angles exist.

Corollary 3.37. Perpendicular lines exist.

Proposition 3.38. If ℓ is a line and P is a point on ℓ then there is a unique line m passing through
P which is perpendicular to ℓ.

3.4 Parallel Lines

Definition. Two lines ℓ and m are parallel if they do not intersect. In this case, we write ℓ ∥ m.

Theorem 3.39 (Alternate Interior Angles Theorem). Suppose that C and D are on opposite sides

of
←→
AB. If ∠CAB ∼= ∠DBA then

←→
AC ∥

←→
BD.

Definition. Suppose that ℓ and ℓ′ are two distint lines. A transversal of ℓ and ℓ′ is a third line
which intersects ℓ and ℓ′. Suppose that t is a transversal of ℓ and ℓ′. Let B be the intersection of t
with ℓ, and let B′ be the intersection of t with ℓ′. Let A and C be points on ℓ on opposite sides of
t, and let A′ and C ′ be points on ℓ′ on opposite sides of t so that A and A′ are on the same side of
t. The four angles ∠ABB′, ∠CBB′, ∠A′B′B, and ∠C ′B′B are interior angles. The angles ∠ABB′

and ∠C ′B′B are alternate interior angles as are ∠CBB′ and ∠A′B′B.

Note. An alternative statement of the Alternate Interior Angles Theorem is: If ℓ and ℓ′ are two
lines cut by a transversal t in such a way that a pair of alternate interior angles are congruent, then
ℓ ∥ ℓ′.

Definition (Continuing Definition 3.4). Let D and D′ be points on t so that D ∗B ∗B′ ∗D′. These
pairs of angles are corresponding angles:

∠ABD and ∠A′B′B; ∠ABB′ and ∠A′B′D′

∠CBD and ∠C ′B′B; ∠CBB′ and ∠C ′B′D′.

Proposition 3.40 (Corresponding Angles Theorem). If ℓ and ℓ′ are two lines cut by a transversal
t in such a way that a pair of corresponding angles are congruent, then ℓ ∥ ℓ′.

Proposition 3.41. Suppose that ℓ and ℓ′ are distinct lines. If there is one line m so that ℓ ⊥ m
and ℓ′ ⊥ m then ℓ ∥ ℓ′.

Proposition 3.42. If ℓ is a line and P is a point not on ℓ then there is a unique line m passing
through P which is perpendicular to ℓ.

Definition. If P is a point not on a line ℓ, and if m is the unique line passing through P perpen-
dicular to ℓ, then the point of intersection of ℓ and m is the foot of the perpendicular.

Proposition 3.43 (Existence of Parallels). Suppose that P is a point not on a line ℓ. There is at
least one line ℓ′ through P parallel to ℓ.

Note. The method of proof you (probably) used in 3.43 is called the Double Perpendicular Con-
struction.
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3.5 Inequalities for Triangles

Definition. Suppose that A, B, and C are noncollinear points. The angles ∠ABC, ∠BCD, ∠CAB
are called interior angles of △ABC. Any angle forming a linear pair with an interior angle of a
triangle is an exterior angle. If an exterior angle forms a linear pair with one of the interior angles,
the other two interior angles are remote interior angles (remote to the given exterior angle). In
other words if B ∗ C ∗ D, then the angle ∠ACD is an exterior angle with remote interior angles
∠CAB and ∠CBA.

Lemma 3.44. Suppose that A, B, and C are noncollinear points. If B ∗ C ∗D then the exterior

angle ∠ACD is greater than the remote interior angle ∠CAB (whose vertex is not on
←→
CD).

Theorem 3.45 (Exterior Angle Theorem). Suppose that A, B, and C are noncollinear points. If
B ∗ C ∗ D then the exterior angle ∠ACD is greater than both remote interior angles ∠CAB and
∠CBA.

Definition. Suppose that △ABC is a triangle. The side BC is opposite to the angle ∠CAB. The
side AB is opposite to the angle ∠BCA, and the side CA is opposite to the angle ∠ABC.

Definition. A right triangle is a triangle in which at least one angle is a right angle.

Proposition 3.46. If △ABC is a triangle and ∠ABC is a right angle, then ∠CAB and ∠BCA
are acute angles.

Corollary 3.47. A right triangle has exactly one right angle.

Definition. In any right triangle, the side opposite the right angle is the hypotenuse. The other
two sides are legs.

Proposition 3.48. If α and β are a linear pair, then α is acute if and only if β is obtuse.

Proposition 3.49. A triangle can have at most one obtuse angle.

Proposition 3.50. Suppose that △ABC is a triangle and let F be the foot of the perpendicular

from C to
←→
AB. If the angles ∠CAB and ∠CBA are acute, then A ∗ F ∗B.

Theorem 3.51 (Scalene Inequality). If A, B, and C are noncollinear points then BC > AC if
and only if ∠BAC > ∠ABC.

This theorem is proven by the following claimable lemmas.

Lemma 3.52 (Part of the proof of 3.51). Suppose that A, B, and C are noncollinear points. If
BC > AC then ∠BAC > ∠ABC.

Lemma 3.53 (Part of the proof of 3.51). Suppose that A, B, and C are noncollinear points. If
∠BAC > ∠ABC then BC > AC.

Proposition 3.54. Suppose that P is a point not on a line ℓ. Let F be the foot of the perpendicular
from P to ℓ. If Q is any point on ℓ other than F , then PF < PQ.

Lemma 3.55. Suppose that A, B, and C are noncollinear points and B ∗D ∗ C. If AC > AB or
AC = AB then AC > AD.

Theorem 3.56 (Hinge Theorem). Suppose that △ABC and △A′B′C ′ are triangles so that AB ∼=
A′B′ and AC ∼= A′C ′. Then ∠BAC > ∠B′A′C ′ if and only if BC > B′C ′.
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This theorem is proven by the following claimable lemmas.

Lemma 3.57 (Part of the proof of 3.56). Suppose that △ABC and △A′B′C ′ are triangles so that
AB ∼= A′B′ and AC ∼= A′C ′. If ∠BAC > ∠B′A′C ′ then BC > B′C ′.

Lemma 3.58 (Part of the proof of 3.56). Suppose that △ABC and △A′B′C ′ are triangles so that
AB ∼= A′B′ and AC ∼= A′C ′. If BC > B′C ′ then ∠BAC > ∠B′A′C ′.

Theorem 3.59 (Triangle Inequality Form 1). Let △ABC be a triangle and let D be a point such
that A ∗B ∗D and BD ∼= BC. Then AC < AD.

3.6 Triangle Congruence

Theorem 3.60 (Angle-Angle-Side Congruence or AAS). Suppose that △ABC and △A′B′C ′ are
triangles so that ∠CAB ∼= ∠C ′A′B′ and ∠ABC ∼= ∠A′B′C ′ and BC ∼= B′C ′. Then △ABC ∼=
△A′B′C ′.

Theorem 3.61 (Angle-Side-Angle Congruence or ASA). Suppose that △ABC and △A′B′C ′ are
triangles so that ∠ABC ∼= ∠A′B′C ′ and BC ∼= B′C ′ and ∠BCA ∼= ∠B′C ′A′ Then △ABC ∼=
△A′B′C ′.

Proposition 3.62 (Converse of Isosceles Triangle Theorem). If △ABC is a triangle in which
∠ABC ∼= ∠ACB then AB ∼= AC.

Corollary 3.63. If all three angles in a triangle are congruent, then the triangle is equilateral.

Theorem 3.64 (Side-Side-Side Congruence or SSS). Suppose that △ABC and △A′B′C ′ are tri-
angles so that AB ∼= A′B′ and AC ∼= A′C ′ and BC ∼= B′C ′. Then △ABC ∼= △A′B′C ′.

Exercise 3.65. Draw a picture indicating that Angle-Side-Side congruence is not a thing.

Theorem 3.66 (Hypotenuse-Leg Congruence or HL). Let △ABC and △A′B′C ′ be right triangles
with ∠CAB and ∠C ′A′B′ right angles. If BC ∼= B′C ′ and AB ∼= A′B′ then △ABC ∼= △A′B′C ′.

3.7 Midpoints and Bisectors

Definition. A midpoint of a segment AB is a point M so that A ∗M ∗B and AM ∼= MB.

Lemma 3.67. If a segment has a midpoint, then it has exactly one.

Lemma 3.68. Suppose that A and B are distinct points and that C and D are points on opposite

sides of
←→
AB so that ∠BAD and ∠ABC are right angles. If M is the point of intersection of CD

and
←→
AB then M ̸= A and M ̸= B.

Lemma 3.69. Suppose that A and B are distinct points and that C and D are points on opposite

sides of
←→
AB so that ∠BAD and ∠ABC are right angles. If M is the point of intersection of CD

and
←→
AB then A ∗M ∗B.

Note. The proof here that the midpoint of AB exists uses points off the line
←→
AB. That may seem

odd. If we had already assumed Dedekind’s Axiom or if we had assumed a Ruler Postulate we

could prove existence of the midpoint from within
←→
AB.

Theorem 3.70 (Midpoint Existence). Every segment has a unique midpoint.
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Definition. A perpendicular bisector of a segment AB is a line ℓ perpendicular to
←→
AB which

intersects AB at it midpoint.

Theorem 3.71 (Existence of Perpendicular Bisectors). Every segment has a unique perpendicular
bisector.

Theorem 3.72 (Pointwise Characterization of Perpendicular Bisectors). Suppose that A and B
are distinct points and that P is any point. P lies on the perpendicular bisector of AB if and only
if PA ∼= PB.

This theorem is proven by the following claimable lemmas.

Lemma 3.73 (Part of the proof of 3.72). Suppose that A and B are distinct points. If P lies on
the perpendicular bisector of AB then PA ∼= PB.

Lemma 3.74 (Part of the proof of 3.72). Suppose that A and B are distinct points. If P is a point
so that PA ∼= PB then P lies on the perpendicular bisector of AB.

Definition. Suppose that ∠BAC is an angle. A ray
−−→
AD is a bisector of ∠BAC if

−−→
AD is between−−→

AB and
−→
AC and if ∠DAB ∼= ∠DAC.

Lemma 3.75. If an angle has a bisector, then it has exactly one.

Theorem 3.76. Every angle has a unique bisector.

Theorem 3.77 (Pointwise Characterization of Angle Bisector). Suppose that P is a point in the
interior of ∠BAC. Let F be the foot of the perpendicular from P to AB, and let G be the foot of

the perpendicular from P to AC. Then
−→
AP is the bisector of ∠BAC if and only if PF ∼= PG.

This theorem is proven by the following claimable lemmas.

Lemma 3.78 (Part of the proof of 3.77). Suppose that P is a point in the interior of ∠BAC. Let
F be the foot of the perpendicular from P to AB, and let G be the foot of the perpendicular from

P to AC. If
−→
AP is the bisector of ∠BAC then PF ∼= PG.

Lemma 3.79 (Part of the proof of 3.77). Suppose that P is a point in the interior of ∠BAC. Let
F be the foot of the perpendicular from P to AB, and let G be the foot of the perpendicular from

P to AC. If PF ∼= PG then
−→
AP is the bisector of ∠BAC.

Proposition 3.80. If
−−→
AD is a bisector of an angle ∠BAC then the angle ∠BAD is acute.

3.8 Quadrilaterals

Definition. Suppose that A, B, C, and D are four distinct points. If AB and CD do not intersect
and AD and CB do not intersection then

□ABCD = AB ∪BC ∪ CD ∪DA

is a quadrilateral. A, B, C, and D are the vertices of □ABCD. The line segments AB, BC, CD,
and DA are the sides of □ABCD. AB and CD are opposite sides, as are AD and CB.
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Definition. Two quadrilaterals □ABCD and □XY ZW are congruent if

AB ∼= XY and BC ∼= Y Z and CD ∼= ZW and DA ∼= WX and

∠ABC ∼= ∠XY Z and ∠BCD ∼= ∠Y ZW and ∠CDA ∼= ∠ZWX and ∠DAB ∼= ∠WXY .

This is expressed as □ABCD ∼= □XY ZW .

Definition. A convex quadrilateral is a quadrilateral in which each vertex is in the interior of the
angle formed by the other three vertices.

Note. This is standard but rather inconvenient terminology. A quadrilateral is not convex in
the sense that we have been using that word. The interior of a convex quaderilateral is convex.
However, defining the interior is awkward for general quadrilaterals.

Exercise 3.81. Draw a quadrilateral which is not a convex quadrilateral and explain.

Proposition 3.82. If □ABCD is a convex quadrilateral, then C and D are on the same side of
AB. The same holds for all other pairs of points.

Definition. The interior of a convex quadrilateral is the intersection of the interiors of the angles
determined by its sides

Proposition 3.83. The interior of a convex quadrilateral is convex.

Definition. A quadrilateral □ABCD is a parallelogram if
←→
AB ∥

←→
CD and

←→
AD ∥

←→
CB.

Proposition 3.84. Parallelograms are convex quadrilaterals.

Proposition 3.85. Suppose that △ABC is a triangle. If A ∗D ∗B and A ∗E ∗ C then □DBCE
is a convex quadrilateral.

Definition. The diagonals of □ABCD are the line segments AC and BD

Proposition 3.86. A quadrilateral is a convex quadrilateral if and only if its diagonals have an
interior point in common.

Corollary 3.87. If □ABCD and □ACBD are both quadrilaterals then □ABCD is not a convex
quadrilateral.

Corollary 3.88. If □ABCD is a quadrilateral but not a convex quadrilateral, then □ABCD and
□ACBD are both quadrilaterals.

3.9 Circles

Definition. Suppose that A and B are distinct points. The circle γ with center A and radius AB
is the set of all points X so that AX ∼= AB. We denote the circle as γ = C(A,B). The point A
is the center of γ. If AX ∼= AB, then AX is a radius of γ. We may also call C(A,B) the circle
centered at A passing through B or containing B.

Definition. If γ is the circle with center A and radius AB, then the interior of γ is the set of
all points X so that X = A or AX < AB. The exterior of γ is the set of all points X so that
AX > AB.
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Note. When P ∈ γ = C(A,B) we will usually say that P is on γ rather than P is in γ to avoid
confusion with points inside the interior of γ, which we may say are inside γ.

Proposition 3.89 (Circle Trichotomy). Suppose that γ is any circle and X is any point. The
exactly one of these holds: X is in the interior of γ or X is on γ or X is in the exterior of γ.

Definition. If γ is a circle, then the union of γ with its interior is called a closed disk. The interior
of γ is called an open disk.

Lemma 3.90. Let X, Y , and C be noncollinear points so that CX < CY or CX ∼= CY . If
X ∗B ∗ Y then CB < CY

Proposition 3.91. The interior of a circle is convex.

Proposition 3.92. Closed disks are convex.

Proposition 3.93. Suppose that γ is a circle, that A is in the interior of γ, and that B is in the
exterior of γ. The intersection of AB with the interior of γ is convex.

Proposition 3.94. Suppose that γ is a circle, that A is in the interior of γ, and that B is in the
exterior of γ. The intersection of AB with the exterior of γ is convex.

Lemma 3.95. Suppose that C is a point in the interior of a circle γ. There is a circle centered at
C contained entirely in the interior of γ.

Lemma 3.96. Suppose that C is a point in the exterior of a circle γ. There is a circle centered at
C contained entirely in the exterior of γ.

Proposition 3.97. Suppose that ℓ is a line and γ is a circle. The number of points in γ ∩ ℓ is 0,
1, or 2.

Definition. A tangent to a circle γ is a line that intersects γ exactly once. A secant to a circle γ
is a line that intersects γ exactly twice. If C and D are points on a circle γ, then CD is a chord of
γ. A chord that contains the center of γ is a diameter of γ. If CD is a diameter of γ, then C and
D are antipodal points on γ.

Theorem 3.98 (Tangent Line Theorem). Let t be a line and let γ = C(C,B) be a circle. Let

P ∈ γ ∩ ℓ. Then t is a tangent to γ at P if and only if
←→
CP ⊥ t.

This theorem is proven by the following claimable lemmas.

Lemma 3.99 (Part of the proof of 3.98). Let t be a line and let γ = C(C,B) be a circle. Let

P ∈ γ ∩ ℓ. If t is a tangent to γ at P then
←→
CP ⊥ t.

Lemma 3.100 (Part of the proof of 3.98). Let t be a line and let γ = C(C,B) be a circle. Let

P ∈ γ ∩ ℓ. If
←→
CP ⊥ t then t is a tangent to γ at P .

Proposition 3.101. If P is a point on a circle γ then there is a line t that is tangent to γ at P .

Proposition 3.102. If t is a line tangent to a circle γ at a point P , then every point on t except
P is in the exterior of γ.

Proposition 3.103 (Secant Line Theorem). If AB is a chord of the circle γ = C(C,R), then C
lies on the perpendicular bisector of AB.
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Proposition 3.104. If AB is a chord of a circle γ and A ∗B ∗D, then D is in the exterior of γ.

Definition. Two circles α and β are tangent to each other at a point P if α ∩ β = {P}.

Proposition 3.105 (Tangent Circles Theorem). If α = C(A,R) and β = C(B,S) are tangent at a
point P , then A ̸= B, A, B, and P are collinear, and the circles have a common tangent at P .

Definition. If γ is a circle that contains three noncollinear points A, B, and C, then γ is a
circumcircle of △ABC and is said to circumscribe the triangle △ABC. The center of γ is the
circumcenter of △ABC.

Theorem 3.106 (Circumscribed Triangle Theorem). A triangle can be circumscribed if and only
if the perpendicular bisectors of the sides of the triangle are concurrent. In this case, the center of
the circumscribing circle is the point of intersection of the perpendicular bisectors of the sides.

This theorem is proven through the following claimable lemmas.

Lemma 3.107 (Part of the proof of Theorem 3.106). If the perpendicular bisectors of the sides of
a triangle are concurrent, then the triangle can be circumscribed.

Lemma 3.108 (Part of the proof of Theorem 3.106). If a triangle can be circumscribed, then the
perpendicular bisectors of the sides of the triange intersect at the center of the circumscribing circle.

Corollary 3.109. Circumscribing circles are unique.

Definition. A circle γ is inscribed in a triangle if the lines containing each side of the triangle are
all tangent to the circle. In this case, the center of γ is an incenter of the triangle.

Proposition 3.110 (Inscribed Circle Theorem). Every triangle has an inscribed circle whose center
is the intersection of the angle bisectors of the triangle.

Corollary 3.111. Inscribed circles are unique.
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4 Continuity and Measurement

In this section we add a new axiom, Dedekind’s Axiom, which essentially declares that lines have
no holes in them. The point of this section is to establish the following theorems. The first
two theorems on intersections were assumed by Euclid without explanation. Their proofs require
an intimate knowledge of topological notions related to continuity. The second two theorems on
measurement are often treated as axioms. However, doing so hides the fact that we can accomplish
much in geometry without the notion of measurement. Treating the ability to measure as an axiom
also hides subtle geometric properties within (unstated) assumptions about the real numbers. Some
approaches to geometry will prove the measurement theorems first and then use them to prove the
intersection theorems. This approach hides the fact that the intersection theorems are a product
of the topology of the plane and are not dependent on the measurement theorems.

Theorem. 4.24 (Circle-Segment Intersection or Elementary Circular Continuity.) Suppose that γ
is a circle, that A is in the interior of γ, and that B is in the exterior of γ. Then AB intersects
the circle γ.

Theorem. 4.28 (Circle-Circle Intersection or Circular Continuity.) Suppose that γ and δ are two
circles. If γ contains a point in the interior of δ and if γ contains a point in the exterior of δ, then
γ and δ intersect in two points which are on opposite sides of the line connecting the centers of the
circles.

Theorem. 4.37 (Ruler Theorem.) For any points A and B there is a unique real number called
the length of AB denoted as |AB|. Suppose that A, B, C, and D are points.

1. |AB| > 0.

2. |AB| = 0 if and only if A = B.

3. AB ∼= CD if and only if |AB| = |CD|.

4. AB < CD if and only if |AB| < |CD|.

5. If A ∗B ∗ C then |AC| = |AB|+ |BC|.

6. For every positive real number x, there is a segment AB so that |AB| = x.

Theorem. 4.45 (Protractor Theorem.) For any angle α there is a unique real number called the
measure of α denoted as |α|. Suppose that ∠CAB and ∠ZXY are angles.

1. 0 < |∠CAB| < 180.

2. If ∠CAB is a right angle, then |∠CAB| = 90◦.

3. ∠CAB ∼= ∠ZXY if and only if |∠CAB| = |∠ZXY |.

4. ∠CAB < ∠ZXY if and only if |∠CAB| < |∠ZXY |.

5. If D is interior to ∠CAB then |∠CAB| = |∠CAD|+ |∠DAB|.

6. For every real number x with 0 < x < 180, there is an angle α so that |α| = x◦.
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4.1 Continuous Functions on the Plane

Definition. Suppose that S and T are subsets of P, that f : S → T is a function, and that A is
in S. The function f is continuous at A if for every circle ϵ centered at f(A), there is a circle δ
cenered at A so that if P is in the intersection S and the interior of ϵ then f(P ) is in the interior
of δ. If f is continuous at every P ∈ S then f is continuous on S.

Proposition 4.1. Suppose that AB is a chord of the circle γ = C(C,R) not passing through C.
Define a function f : AB → γ in the following way. Suppose that X ∈ AB. Since C ̸∈ AB,

C ̸= X, and we can consider the ray
−−→
CX. There is a unique point Y on

−−→
CX so that CY ∼= CR.

Let f(X) = Y . The function f is continuous on AB.

Definition. We will call the function f in 4.1 the projection of AB to γ.

Proposition 4.2. Suppose that A and R are distinct points. We define a function f mapping the

entire plane P to
−→
AR. First, let f(A) = A. Now, if X ̸= A there is a unique point Y on

−→
AR so

that AX ∼= AY . Let f(X) = Y . This function f is continuous on P.

Definition. We will call the function f in 4.2 the distance function ruled by
−→
AR.

Proposition 4.3. Suppose that f : R → S is continuous on R and that g : S → T is continuous
on S. The function g ◦ f : R→ T is continuous on R.

4.2 Dedekind Cuts

Definition. A Dedekind cut of a line ℓ is a partition {Σ1,Σ2} of ℓ into two nonempty convex
subsets. the sets Σ1 and Σ2 called the slices of the Dedekind cut.

Proposition 4.4. If ℓ is any line, then there is at least one Dedekind cut of ℓ.

Definition. A cut point of a Dedekind cut of a line ℓ is a point C on ℓ so that for all X,Y ∈ ℓ, if
C ∗X ∗ Y then X and Y are in the same slice.

Proposition 4.5. Suppose that C is a cut point of a Dedekind cut of a line ℓ. If X and Y are
points on ℓ so that X ∗ C ∗ Y then X and Y are in difference slices.

Proposition 4.6. Suppose that {Σ1,Σ2} is a Dedekind cut of a line ℓ and that C is a cut point.
If X ∈ Σ1 and Y ∈ Σ2, then X ∗ C ∗ Y .

Proposition 4.7. Suppose that {Σ1,Σ2} is a Dedekind cut of a line ℓ and that C is a cut point.
If X ∈ Σ1 and X ̸= C, then there is some Y ∈ Σ1 so that X ∗ Y ∗ C.

Proposition 4.8. If a Dedekind cut of a line has a cut point, then it has exactly one cut point.

Completeness Axiom 1. (Dedekind’s Axiom) Every Dedekind cut of a line has a cut point.

Exercise 4.9. Use Dedekind cuts to prove that midpoints of line segments exist.

Note. We can also define Dedekind cuts and cut points for segments and rays. In each case, a
Dedekind cut is a a partition {Σ1,Σ2} of the segment or ray into two nonempty convex subsets. If
we do so, all of the theorems above hold for segments and rays also. The reason for this is the next
proposition for line segments and its corresponding proposition for rays.

Proposition 4.10. Every Dedekind cut of a line segment has a cut point.
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4.3 The Intermediate Value Theorem

Theorem 4.11 (Intermediate Value Theore). Suppose that AC is a segment and
←→
XZ is a line,

and let f : AC →
←→
XZ be a function that is continuous on AC. If f(A) = X and f(B) = Z and

X ∗ Y ∗ Z, then there is a B so that A ∗B ∗ C and f(B) = Y .

This theorem is proven through the following claimable lemmas.

Setup for the proof of Theorem 4.11: Let Σ1 the set of all P ∈ AC for which there is a
Q ∈ AC so that either A ∗ P ∗Q or P ∗Q ∗ C and f(Q) ∗ Y ∗ Z, and let Σ2 be AC − Σ1.

Note. Informally, think of A as being to the left of C and X as being to the left of Z. Σ1 is the
set of all points which are to the left of a point Q so that f(Q) is to the left of Y .

Lemma 4.12. A ∈ Σ1.

Lemma 4.13. C ∈ Σ2.

Lemma 4.14. Σ1 is convex.

Lemma 4.15. Σ2 is convex.

Lemma 4.16. {Σ1,Σ2} is a Dedekind cut.

More setup for the proof of 4.11: Let B be the cut point of {Σ1,Σ2}.

Lemma 4.17. B ̸= A

Lemma 4.18. B ̸= C.

Lemma 4.19. If C ̸= U and U ∈ Σ2 and Y ∗f(U)∗Z then there is some V ∈ Σ2 so that V ∗U ∗C.

More setup for the proof of 4.11: Either f(B) = Y or f(B) ∗ Y ∗ Z or Y ∗ f(B) ∗ Z.

Lemma 4.20. It is not the case that f(B) ∗ Y ∗ Z.

Lemma 4.21. B ∈ Σ2.

Lemma 4.22. It is not the case that Y ∗ f(B) ∗ Z.

Lemma 4.23. f(B) = Y .

4.4 Intersections

Theorem 4.24. (Circle-Segment Intersection or Elementary Circular Continuity) Suppose that γ
is a circle, that A is in the interior of γ, and that B is in the exterior of γ. Then AB intersects
the circle γ.

Lemma 4.25. Suppose that γ is a circle centered at C with radius CR and that D is any point

other than C. Let A be the unique point on
−−→
CD with CA ∼= CR. If X is any point on γ other than

A, then DA < DX.

Lemma 4.26. Suppose that γ is a circle centered at C with radius CR and that D is any point

other than C. Let A be the unique point on the ray opposite
−−→
CD with CA ∼= CR. If X is any point

on γ other than A, then DA > DX.
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Lemma 4.27. Suppose that γ is the circle centered at C with radius CR and that δ is any circle
centered at a point D ̸= C. If γ contains a point in the interior of δ and a point in the exterior of

δ, then there is a point A on
←→
CD and points B and B′ on either side of

←→
CD so that

� A, B, and B′ are on γ.

� Either A is in the interior of δ and both B and B′ are in the exterior of δ or A is in the
exterior of δ and both B and B′ are in the interior.

� Angles ∠ACB and ∠ACB′ are right angles.

Theorem 4.28 (Circle-Circle Intersection or Circular Continuity). Suppose that γ and δ are two
circles. If γ contains a point in the interior of δ and if γ contains a point in the exterior of δ, then
γ and δ intersect in two points which are on opposite sides of the line connecting the centers of the
circles.

4.5 Segment Measurement

Definition. Let O and I be any two distinct points.

Definition. The dyadic rationals are all real numbers of the form a
2b

where a is any integer and b
is a nonnegative intger. Denote the set of dyadic rationals by D.

Definition. For any nonnegative integer n and any point P on
←→
OI, we define a point n · P . First

n ·O = O for all nonnegative integers n. Let P ̸= O be a point on
←→
OI. We use recursion to define

n·.

� 0 · P = O

� 1 · P = P .

� If n ≥ 1 and n ·P is defined, then (n+1) ·P is the unique point on the ray opposite
−−−−−→
(n · P )O

so that (n · P )((n+ 1) · P ) ∼= OP .

Note. Think of n · P as the point you arrive at by starting off at O and marking off n segments

congruent to P in the direction of
−−→
OP .

Proposition 4.29 (Archimedean Principle). Suppose that P is any point in
−→
OI and that Q is any

point in
−→
OI different from O. There is a positive integer n so that −I ∗ P ∗ n ·Q.

Note. We use −I here only because we are allowing P to be O. In that case, we cannot write
O ∗O ∗ n ·Q.

Definition. For any nonnegative integer n and any point P on
←→
OI we define a point 1

2n ·P on
←→
OI.

First 1
2n ·O = O for all nonnegative integers n. Let P ̸= O be a point on

←→
OI. We use recursion to

define 1
2n · P .

�
1
20
· P = P

� If n ≥ 0 and 1
2n · P is defined, then 1

2(n+1) · P is the midpoint of O
(

1
2nP

)
.

Note. To find 1
2n · P we first find the midpoint 1

2 · P of OP . Then we find the midpoint 1
22
· P of

O(12 · P ). We continue until we have found n midpoints.
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Proposition 4.30 (Archimedean Principle for Halving). Suppose that P and Q are points
−→
OI

other than O. There is a nonnegative integer n so that 0 ∗
[(

1
2n

)
·Q

]
∗ P .

Definition. If a and b are nonnegative integers, then we use a
2b
· P to represent a ·

(
1
2b
· P

)
.

Proposition 4.31. Suppose that P ̸= Q are points on
−→
OI. There are positive integers a an b so

that P ∗
[
a
2b
· I

]
∗Q.

Proposition 4.32. Suppose that a, b, c, and d are nonnegative integers. Then a
2b

< c
2d

if and only
if −I ∗ a

2b
· I ∗ c

2d
· I.

Definition. For each point P on
−→
OI and each nonnegative integer k, let mk(P ) be the greatest

nonnegative integer so that either P =
(
mk(P )

2k
· I

)
or −I ∗

(
mk(P )

2k
· I

)
∗ P .

Lemma 4.33. For any P , the sequence
〈
mk(P )

2k

〉
is bounded and increasing (nondecreasing) and

therefore converges.

Definition. Define a function # :
−→
OI → R by #(P ) = limk→∞

mk(P )
2k

.

Theorem 4.34. The following hold for all P,Q ∈
−→
OI.

� #(P ) is a nonnegative real number.

� #
(
a
2b
· I

)
= a

2b
.

� #(O) = 0

� #(I) = 1

� #(P ) < #(Q) if and only if −I ∗ P ∗Q.

Proposition 4.35. For every positive real number x there is a point P ∈
−→
OI so that #(P ) = x.

Definition. If A ̸= B are points, let PAB be the unique point on OI so that OPAB
∼= AB. If

A = B, let PAB = O. The distance between A and B is d(A,B) = #PAB. For any line segment
AB, the length of AB is |AB| = d(A,B).

Proposition 4.36. The following hold for any points P and Q

d(P,Q) ≥ 0.

d(P,Q) = 0 if and only if P = Q.

d(P,Q) = d(Q,P ).

Theorem 4.37 (Ruler Theorem). Suppose that A, B, C, and D are points.

1. |AB| > 0.

2. |AB| = 0 if and only if A = B.

3. AB ∼= CD if and only if |AB| = |CD|.

4. AB < CD if and only if |AB| < |CD|.

5. If A ∗B ∗ C then |AC| = |AB|+ |BC|.
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6. For every positive real number x, there is a segment AB so that |AB| = x.

This theorem is proven by the following claimable lemmas.

Lemma 4.38. |OI| = 1.

Lemma 4.39. If AB and CD are segments, then |AB| = |CD| if and only if AB ∼= CD.

Lemma 4.40. If AB and CD are segments, then |AB| < |CD| if and only if AB < CD.

Lemma 4.41. If AB is a segment, then |AB| = |BA|.

Lemma 4.42. If A, B, and C are three distinct points, then A ∗ B ∗ C if and only if |AC| =
|AB|+ |BC|.

Lemma 4.43. For every positive real number x, there is a segment AB so that |AB| = x.

4.6 Angle Measurement

For segment measurement, we basically chose arbitrary points O and I as a fundamental unit along
with an (almost) arbitrary number 1, assigned the length of OI to be 1 and derived all other lengths
from this assignment using dyadic rationals. We can do the same thing with angles. We can select
an arbitrary right angle, assign it the arbitrary measure of 90◦ (read as 90 degrees), and then use
dyadic rationals to assign a measure between 0 and 180 to every other angle. The one thing we are
missing is the notion of Dedekind cut for angles.

Definition. Suppose that AB is any line and D is any point not on AB. Let F be the set of all
angles ∠CAB where C is a point on the same side of AB as D. (In case you are wondering, F is
for fan.) A Dedekind cut of F is a partition {Σ1,Σ2} of F into two nonempty disjoint sets called
slices so that if α and γ are angles in one slice and β is an angle between α and γ, then β is in the
same slice as α and γ. A cut point of a Dedekind cut is an angle α in F so that if β an γ are angles
so that β is between α and γ, then β and γ are in the same slice.

Theorem 4.44 (Completeness for Angles). Every Dedekind cut of F has a cut point.

Armed with this completeness theorem, we can define a measure of angles (denoted |∠ABC|)
so that the following theorem is true.

Theorem 4.45 (Protractor Theorem). Suppose that ∠CAB and ∠ZXY are angles.

1. 0 < |∠CAB| < 180.

2. If ∠CAB is a right angle, then |∠CAB| = 90◦.

3. ∠CAB ∼= ∠ZXY if and only if |∠CAB| = |∠ZXY |.

4. ∠CAB < ∠ZXY if and only if |∠CAB| < |∠ZXY |.

5. If D is interior to ∠CAB then |∠CAB| = |∠CAD|+ |∠DAB|.

6. For every real number x with 0 < x < 180, there is an angle α so that |α| = x◦.
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5 Neutral Geometry

5.1 Adding Measurements

Proposition 5.1 (Triangle Inequality). If A, B, and C are three noncollinear points, then |AC| <
|AB|+ |BC|.

Proposition 5.2. If A and B are distinct points and x is a positive real number, then there exists

a unique point C ∈
−−→
AB so that |AC| = x.

Proposition 5.3. If A and B are distinct points and x is a real number between 0 and 180, then

on either side of
←→
AB there exists a unique point C with |∠CAB| = x◦.

Proposition 5.4. Suppose that A, B, C, and D are four distinct points and that C and D are on

the same side of
←→
AB. Then |∠DAB| < |∠CAB| if and only if D is in the interior of ∠CAB.

Theorem 5.5 (Linear Pair Theorem). If ∠DAC and ∠DAB are a linear pair then |∠DAC| +
|∠DAB| = 180◦.

5.2 The Saccheri-Legendre Theorem

Definition. The angle sum of a triangle △ABC is the sum of the measures of the three interior
angles of △ABC:

σ(△ABC) = |∠ABC|+ |∠BCA|+ |∠CAB|.

Proposition 5.6. Suppose that △ABC is any triangle. Then |∠CAB|+ |∠ABC| < 180◦.

Proposition 5.7. If △ABC is any triangle and E is a point in the interior of BC then

σ(△AEB) + σ(△AEC) = σ(△ABC) + 180◦.

Proposition 5.8. If △ABC is a triangle, then there is a point D not on
←→
AB so that σ(△ABD) =

σ(△ABC) and so that the measure of one of the interior angles of △ABD is less than or equal to
1
2 |∠CAB|.

Theorem 5.9 (Saccheri-Legendre Theorem). If △ABC is any triangle then σ(△ABC) ≤ 180◦.

Corollary 5.10. The sum of the measures of two interior angles of a triangle is less than or equal
to the measure of their remote exterior angle.

Corollary 5.11 (Converse to Euclid’s Fifth Postulate). Let ℓ and ℓ′ be two lines cut by a transversal
t. If ℓ and ℓ′ meet on one side of t, then the sum of the measures of the two interior angles on that
side of t is strictly less than 180◦.

5.3 More on Quadrilaterals

Definition. If □ABCD is a convex quadrilateral, then the angle sum of □ABCD is the sum of
the measures of the four interior angles of the quadrilateral:

σ(□ABCD) = |∠ABC|+ |∠BCD|+ |∠CDA|+ |∠DAB|.

Proposition 5.12. If □ABCD is a convex quadrilateral then σ(□ABCD) ≤ 360◦.
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Definition. The defect of a triangle △ABC is

δ(△ABC) = 180− σ(△ABC).

The defect of a convex quadrialteral □ABCD is

δ(□ABCD) = 360− σ(□ABCD).

Proposition 5.13 (Additivity of Defect for Triangles). If △ABC is a triangle and B ∗E ∗C then
δ(△ABC) = δ(△AEB) + δ(△AEC).

Proposition 5.14 (Additivity of Defect for Quadrilaterals). If □ABCD is a convex quadrilateral,
then δ(□ABCD) = δ(△ACB) + δ(△ACD).

Definition. A quadrilateral with four right angles is a rectangle.

Proposition 5.15. Every rectangle is a parallelogram.

Theorem 5.16. The following are equivalent.

1. There is a triangle with defect 0◦.

2. There is a right triangle with defect 0◦.

3. There is a rectangle.

4. There exist rectangles with arbitrarily long sides.

5. The defect of every right triangle is 0◦.

6. The defect of every triangle is 0◦.

This theorem is proven through the following sequence of claimable lemmas.

Lemma 5.17 (Part of proof of 5.16). If there is a triangle with defect 0◦ then there is a right
triangle with defect 0◦.

Lemma 5.18 (Part of proof of 5.16). If there is a right triangle with defect 0◦ then there is a
rectangle.

Lemma 5.19 (Part of proof of 5.16). If there is a rectangle then there exist rectangles with arbi-
trarily long sides.

Lemma 5.20 (Part of proof of 5.16). If there exist rectangles with arbitrarily long sides then the
defect of every right triangle is 0◦.

Lemma 5.21 (Part of proof of 5.16). If the defect of every right triangle is 0◦ then the defect of
every triangle is 0◦.

Lemma 5.22 (Part of proof of 5.16). If the defect of every triangle is 0◦ thn There is a triangle
with defect 0◦.

Definition. A Saccheri quadrilateral is a quadrilateral □ABCD so that ∠ABC and ∠DAB are
right angles and AD ∼= CB. The segment AB is the base and the segment CD is the summit. The
angles at A and B are the base angles while the angles at C and D are the summit angles.
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Proposition 5.23. There exists a Saccheri quadrilateral.

Proposition 5.24 (Properties of Saccheri Quadrilaterals). If □ABCD is a Saccheri quadrilateral
with base AB then

1. The diagonals AC and BD are congruent.

2. The summit angles ∠ADC and ∠BCD are congruent.

3. The segment joining the midpoint of the base AB and the midpoint of the summit CD is
perpendicular to both the base and the summit.

4. □ABCD is a parallelogram.

5. □ABCD is a convex quadrilateral.

6. The summit angles ∠ADC and ∠BCD are either right or acute.

This theorem is proven through the following sequence of claimable lemmas.

Lemma 5.25 (Part of proof of 5.24). The diagonals AC and BD are congruent.

Lemma 5.26 (Part of proof of 5.24). The summit angles ∠ADC and ∠BCD are congruent.

Lemma 5.27 (Part of proof of 5.24). The segment joining the midpoint of the base AB and the
midpoint of the summit CD is perpendicular to both the base and the summit.

Lemma 5.28 (Part of proof of 5.24). □ABCD is a parallelogram.

Lemma 5.29 (Part of proof of 5.24). □ABCD is a convex quadrilateral.

Lemma 5.30 (Part of proof of 5.24). The summit angles ∠ADC and ∠BCD are either right or
acute.

Definition. A Lambert quadrilateral is a quadrilateral with at least three right angles.

Proposition 5.31. There exists a Lambert quadrilateral.

Theorem 5.32 (Properties of Lambert Quadrilaterals). If □ABCD is a Lambert quadrilateral
with right angles at vertices A, B, and C then

1. □ABCD is a parallelogram.

2. □ABCD is a convex quadrilateral.

3. ∠ADC is either right or acute.

4. BC < AD or BC ∼= AD.

This theorem is proven through the following sequence of claimable lemmas.

Lemma 5.33 (Part of proof of 5.32). □ABCD is a parallelogram.

Lemma 5.34 (Part of proof of 5.32). □ABCD is a convex quadrilateral.

Lemma 5.35 (Part of proof of 5.32). ∠ADC is either right or acute.

Lemma 5.36 (Part of proof of 5.32). BC < AD or BC ∼= AD.
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5.4 Neutral Area

Recall that the interior of △ABC is the intersection of the interiors of the angles of △ABC.

Definition. Suppose that △ABC is a triangle. Denote the interior of △ABC as Int△ABC. The
triangular region associated with △ABC is the union of the triangle an its interior. We denote this
by ▲ABC, so ▲ABC = △ABC ∪ Int△ABC.

Definition. A set {T1, T2, . . . , Tn} of triangular regions are nonoverlapping if for all i ̸= j either
Ti ∩ Tj = ∅ or Ti ∩ Tj is a subset of and edge of Ti and an edge of Tj .

Proposition 5.37. If △ABC is a triangle and E ∈ AB then ▲ABC = ▲AEC ∪▲BEC

Proposition 5.38. If □ABCD is a convex quadrilateral, then ▲ACB ∪ ▲ACD = ▲BDA ∪
▲BDC

Proposition 5.39. The quadrilateral region defined by a convex quadrilateral □ABCD is

■ABCD = ▲ACB ∪▲ACD = ▲BDA ∪▲BDC.

Definition. Suppose thatR is a subset of the plane. A triangulation ofR is a finite set {T1, T2, . . . , Tn}
of nonoverlapping triangular regions so that R = T1 ∪ T2 ∪ · · · ∪ Tn.

Exercise 5.40. Draw two different triangulations of a triangular region.

Exercise 5.41. Draw two different triangulations of a quadrilateral region.

Exercise 5.42. Give an example of a subset of the plane which has no triangulation.

Definition. A polygonal region is a subset of the plane that has a triangulation.

Exercise 5.43. Draw a somewhat complex polygonal region and two triangulations of it.

Proposition 5.44. The intersection of two polygonal regions is a polygonal region.

Proposition 5.45. The union of two polygonal regions is a polygonal region.

Axiom (Neutral Area Postulate). Every polygonal region R is associated with a nonnegative real
number α(R) called the area of R so that:

� Suppose △ABC and △DEF are two triangles. If △ABC ∼= △DEF then α(▲ABC) =
α(▲DEF ).

� If R1 and R2 are nonoverlapping polygonal regions, then α(R1 ∪R2) = α(R1) + α(R2).

Proposition 5.46. Suppose that k is any nonnegative real number. For any polygonal region R,
let β(R) = k · α(R). Then β satisfies the two conditions in the Neutral Area Postulate for α.

Note. This proposition says that if there is an area function α, then any nonnegative multiple of
α is also a legitimate area function.
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5.5 Statements Equivalent to the Euclidean Parallel Postulate

Here are three options for a parallel postulate:

� Euclidean Parallel Posulate: For every line ℓ and for every point P not on ℓ, there is
exactly one line m so that P lies on m and m ∥ ℓ.

� Elliptic Parallel Posulate: For every line ℓ and for every point P not on ℓ, there is no line
m so that P lies on m and m ∥ ℓ.

� Hyperbolic Parallel Posulate: For every line ℓ and for every point P not on ℓ, there are
at least two lines m and n so that P lies on m and n and m ∥ ℓ and n ∥ ℓ.

Note. Elliptic means too few, and hyperbolic means too many.

Proposition 5.47. The Elliptic Parallel Postulate does not hold in Neutral Geometry.

Note. Below is a list of statements which are equivalent to the Euclidean Parallel Postulate,
assuming the axioms of Neutral Geometry. What this means is that if we assume all of the axioms
of Neutral Geometry and we assume the Euclidean Parallel Postulate, then we can prove each of
these, and if we assume all of the axioms of Neutral Geometry and we assume any one of these, then
we can prove the Euclidean Parallel Postulate. It also means that if we have any model of Neutral
Geometry, then that model satisfies the Euclidean Parallel Postulate if and only if it satisfies these
statements.

Definition. The triangles △ABC and △DEF are similar if ∠ABC ∼= ∠DEF and ∠BCA ∼=
∠EFD and ∠CAB ∼= ∠FDE. We express this as △ABC ∼ △DEF .

� Euclid’s Fifth Postulate: If ℓ and ℓ′ are two line cut by a transveral t in such a way that
the sum of the measures of the two interior angles one one side of t is less than 180◦, then ℓ
and ℓ′ intersect on that side of t.

� Hilbert’s Parallel Posulate: For every line ℓ and for every point P not on ℓ, there is at
most one line m so that P lies on m and m ∥ ℓ.

� Converse to the Alternating Interior Angles Theorem: If two parallel lines are cut
by a transversal, then both pairs of alternate interior angles are congruent.

� Angle Sum Posulate: The sum of the angles in any triangle is 180◦.

� Clairaut’s Axiom: There is a rectangle.

� Transitivity of Parallelism: If ℓ ∥ m and m ∥ n then either ℓ = n or ℓ ∥ n.

� Proclus’s Axiom: Supose ℓ and ℓ′ are parallel lines and that t is a line other than ℓ. If t
intersects ℓ, then t intersects ℓ′.

� Perpendicular Transversal Condition: Suppose that ℓ and ℓ′ are parallel lines cut by a
transversal t. If t ⊥ ℓ, then t ⊥ ℓ′.

� ⊥ ◦ ∥ ◦ ⊥ Condition: If ℓ, m, n, and k are lines so that m ⊥ k, k ∥ ℓ, and ℓ ⊥ n, then either
m = n or m ∥ n.

� Wallis’s Postulate: If △ABC is a triangle and DE is a segment, then there exists a point
F so that △ABC ∼ △DEF .
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� The Pythagorean Theorem: Suppose that △ABC is a right triangle with right angle at
C. Then |AB|2 = |AC|2 + |BC|2.

� Circumscribed Triangle Condition: Every triangle can be circumscribed.

Theorem 5.48. The Euclidean Parallel Postulate is equivalent to Euclid’s Fifth Postulate.

This is proven by the following claimable lemmas.

Lemma 5.49 (Part of the proof of 5.48). The Euclidean Parallel Postulate implies Euclid’s Fifth
Postulate.

Lemma 5.50 (Part of the proof of 5.48). Euclid’s Fifth Postulate implies the Euclidean Parallel
Postulate.

Theorem 5.51. The following statements are equivalent to the Euclidean Parallel Postulate.

� The Converse to the Interior Angles Theorem

� The Angle Sum Postulate

� Clairaut’s Axiom

This is proven by the following claimable lemmas.

Lemma 5.52 (Part of the proof of 5.51). The Euclidean Parallel Postulate implies the Converse
to the Interior Angles Theorem.

Lemma 5.53 (Part of the proof of 5.51). The Converse to the Interiors Angles Theorem implies
the Angle Sum Postulate.

Lemma 5.54 (Part of the proof of 5.51). Suppose that PQ is a segment and that Q′ is a point so

that ∠PQQ′ is a right angle. For every ϵ > 0 there is a point T on
−−→
QQ′ so that |∠PTQ| < ϵ.

Lemma 5.55 (Part of the proof of 5.51). The Angle Sum Postulate implies the Euclidean Parallel
Postulate.

Lemma 5.56 (Part of the proof of 5.51). The Angle Sum Postulate is Equivalent to Clairaut’s
Axiom.

Theorem 5.57. The Euclidean Parallel Postulate is equivalent to Hilbert’s Parallel Postulate.

Theorem 5.58. The Euclidean Parallel Postulate is equivalent to the Transitivity of Parallelism.

This is proven by the following claimable lemmas.

Lemma 5.59 (Part of the proof of 5.58). The Euclidean Parallel Postulate implies the Transitivity
of Parallelism.

Lemma 5.60 (Part of the proof of 5.58). Transitivity of Parallelism implies the Euclidean Parallel
Postulate.

Theorem 5.61. The Euclidean Parallel Postulate is equivalent to Proclus’s Axiom.

This is proven by the following claimable lemmas.
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Lemma 5.62 (Part of the proof of 5.61). The Euclidean Parallel Postulate implies Proclus’s Axiom.

Lemma 5.63 (Part of the proof of 5.61). Proclus’s Axiom implies the Euclidean Parallel Postulate.

Theorem 5.64. The Euclidean Parallel Postulate is equivalent to the Perpendicular Transversal
Condition.

This is proven by the following claimable lemmas.

Lemma 5.65 (Part of the proof of 5.64). The Converse to the Alternate Interior Angle Theorem
implies the Perpendicular Transversal Condition.

Lemma 5.66 (Part of the proof of 5.64). The Perpendicular Transversal Condition implies the
Euclidean Parallel Postulate.

Theorem 5.67. The Euclidean Parallel Postulate is equivalent to the ⊥ ◦ ∥ ◦ ⊥ Condition.

This is proven by the following claimable lemmas.

Lemma 5.68 (Part of the proof of 5.67). Proclus’s Axiom and the Perpendicular Transversal
Condition together imply the ⊥ ◦ ∥ ◦ ⊥ Condition.

Lemma 5.69 (Part of the proof of 5.67). The ⊥ ◦ ∥ ◦ ⊥ Condition implies the Euclidean Parallel
Postulate.

Theorem 5.70. The Euclidean Parallel Postulate is equivalent to Wallis’s Postulate.

This is proven by the following claimable lemmas.

Lemma 5.71 (Part of the proof of 5.70). Euclid’s Fifth Postulate and the Angle Sum Postulate
together imply Wallis’s Postulate.

Lemma 5.72 (Part of the proof of 5.70). Wallis’s Postulate implies the Euclidean Parallel Postu-
late.

5.6 The Euclidean Parallel Postulate vs. The Hyperbolic Parallel Postulate

Proposition 5.73. In any model of Neutral Geometry, if the Hyperbolic Parallel Postulate holds,
then the Euclidean Parallel Postulate fails.

Proposition 5.74. In any model of Neutral Geometry, if the Euclidean Parallel Postulate fails,
then the Hyperbolic Parallel Postulate holds.

Note. At first glance 5.74 seems not to say much - if there are more than one parallel, then there
are at least two. However, what the results says is that if the Euclidean Parallel Postulate fails
anywhere in the geometry, then it fails everywhere. There are not some exterior points with just
one parallel and others with two or more.

Corollary 5.75. In any model of Neutral Geometry, either the Euclidean Parallel Postulate holds
or the Hyperbolic Parallel Postulate holds.
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6 A Little Euclidean Geometry

In this section, we assume the Euclidean Parallel Postulate:

Axiom (Euclidean Parallel Posulate). For every line ℓ and for every point P not on ℓ, there is
exactly one line m so that P lies on m and m ∥ ℓ.

Note. Since we are assuming the Euclidean Parallel Postulate, we can make use of all of the
statements proven to be equivalent the the Euclidean Parallel Postulate in the last section.

6.1 Basic Parallelograms and Triangles

Proposition 6.1. If □ABCD is a parallelogram, then △ABC ∼= △CDA and △ABD ∼= △CDB.

Proposition 6.2. If □ABCD is a parallelogram, then AB ∼= CD and BC ∼= AD.

Proposition 6.3. If □ABCD is a parallelogram, then ∠ABC ∼= ∠CDA and ∠DAB ∼= ∠BCD.

Proposition 6.4. If □ABCD is a parallelogram, then AC and BD intersect at a point M which
is the midpoint of both AC and BD.

Proposition 6.5. The sum of the angles in any convex quadrilateral is 360◦.

Proposition 6.6. Every Saccherri quadrilateral is a rectangle.

Proposition 6.7. Every Lambert quadrilateral is a rectangle.

Proposition 6.8. In any equilateral triangle, all of the angles are 60◦.

Proposition 6.9. There is an equilateral triangle.

Proposition 6.10. There is a triangle whose angles measure 30◦, 60◦, and 90◦.

Proposition 6.11. A right triangle is isosceles if and only if the angles of the triangle measure
45◦, 45◦, and 90◦.

Proposition 6.12. Suppose that ℓ and m are parallel lines, that P,Q ∈ ℓ, and that R and S are,
respectively, the feet of the perpendiculars from O and Q to m. Then PR ∼= QS.

Proposition 6.13. Suppose that ℓ and m are different lines, that P,Q ∈ ℓ are on the same side
of m, and that R and S are, respectively, the feet of the perpendiculars from O and Q to m. If
PR ∼= QS then ℓ ∥ m.

Proposition 6.14. If there are three positive numbers that add to 180, then there is a triangle in
which the measures of the angles are those three positive numbers.

6.2 The Parallel Projection Theorem

Proposition 6.15 (Equal Projections). Let ℓ, m, and n be distinct parallel lines. Let t be a
transversal that cuts these lines at points A, B, and C, respectively, and let t′ be a transversal that
cuts these lines at points A′, B′, and C ′, respectively. Assume that A ∗ B ∗ C. If AB ∼= BC then
A′B′ ∼= B′C ′.
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Proposition 6.16 (Parallel Projection for Integer Ratios). Let ℓ, m, and n be distinct parallel
lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t′ be
a transversal that cuts these lines at points A′, B′, and C ′, respectively. Assume that A ∗B ∗C. If
|AC|
|AB| = n for some positive integer n then |A

′C′|
|A′B′| = n.

Note. Note that 6.15 is the special case of 6.16 when n = 2.

Proposition 6.17 (Parallel Projection for Rational Ratios). Let ℓ, m, and n be distinct parallel
lines. Let t be a transversal that cuts these lines at points A, B, and C, respectively, and let t′ be
a transversal that cuts these lines at points A′, B′, and C ′, respectively. Assume that A ∗B ∗C. If
|AC|
|AB| =

n
m for some positive integers n and m then |A

′C′|
|A′B′| =

n
m .

Theorem 6.18 (Parallel Projection Theorem). Let ℓ, m, and n be distinct parallel lines. Let t be a
transversal that cuts these lines at points A, B, and C, respectively, and let t′ be a transversal that

cuts these lines at points A′, B′, and C ′, respectively. Assume that A ∗B ∗C. Then |AC|
|AB| =

|A′C′|
|A′B′| .

Corollary 6.19. Let ℓ, m, and n be distinct parallel lines. Let t be a transversal that cuts these
lines at points A, B, and C, respectively, and let t′ be a transversal that cuts these lines at points

A′, B′, and C ′, respectively. Assume that A ∗B ∗ C. Then |AC|
|A′C′| =

|AB|
|A′B′| .

6.3 Similar Triangles

Theorem 6.20 (Similar Triangles Theorem). Suppose that △ABC ∼ △DEF . Then |AB|
|DE| =

|AC|
|DF | =

|BC|
|EF | .

Corollary 6.21. Suppose that △ABC ∼ △DEF . There is a real number r so that |DE| = r ·|AB|,
|EF | = r · |BC|, and |FD| = r · |CA|.

Proposition 6.22 (SAS Similarity). If △ABC and △DEF are triangles so that ∠CAB ∼= ∠FDE

and |AC|
|AB| =

|DF |
|DE| then △ABC ∼ △DEF

Proposition 6.23 (Converse to Similar Triangles Theorem). Suppose that △ABC and △DEF

are triangles. If |AB|
|DE| =

|AC|
|DF | =

|BC|
|EF | then △ABC ∼ △DEF .

6.4 Euclidean Area

Note. It is cumbersome always to refer to the area of a triangular region. Therefore, when we are
working with a triangular region or a quadrilateral region, we will refer to the area of the triangle
or the area of the quadrilateral when we really mean the area of the associated region.

Proposition 6.24. Suppose that △ABC is a triangle. Let D be the foot of the perpendicular from

C to
←→
AB, and let E be the foot of the perpendicular from B to

←→
AC. Then |AB| · |CD| = |AC| · |EB|.

Definition. Let △ABC be an oriented triangle, and let D be the foot of the perpendicular from
C to A. The base of △ABC is AB and the height is |CD|.

Note. Proposition 6.24 tells us that the product (length of base) · height is the same for every
orientation of △ABC.

Definition. A square is a rectangle all of whose sides have the same length.
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Definition. Suppose that □ABCD is a square with side length 1. For the rest of this section, let
K be α(□ABCD), the area of a square with side length 1.

Lemma 6.25. Suppose that d is a positive integer. The area of a square with side length 1
d is

K · 1
d2
.

Lemma 6.26. Suppose that a, c, and d are positive integers. A rectangle with a side of length a
d

and a side of length c
d has area K · ad · cd.

Lemma 6.27. Suppose that □ABCD is a rectangle so that |AB| and CD are rational. The area
of □ABCD is K · |AB| · |CD|.

Theorem 6.28. The area of a rectangle □ABCD is K · |AB| · |CD|.

Note. This theorem guarantees that the area of a rectangle□ABCD is a constant times |AB|·|CD|.
The constant in question is the area of a square with edge length 1. We know from 5.46 that any
multiple of an area function is a legitimate area function, so we can basically choose the area of a
square of edge length 1 to be anything we want. We choose 1.

Axiom (Euclidean Area Postulate). The area of a square with edge length 1 is 1.

Theorem 6.29 (Euclidean Area). The area of a rectangle □ABCD is α(□BCD) = |AB| · |CD|.

Proposition 6.30. The area of a right triangle is one half the product of the lengths of its legs.

Proposition 6.31. The area of a triangle is one half the product of the length of its base and its
height.

Proposition 6.32. Suppose that △ABC and △DEF are similar triangles and let r = |DE|
|AB| . Then

α(△DEF ) = r2α(△ABC).

6.5 The Pythagorean Theorem

Theorem 6.33 (The Pythagorean Theorem). Suppose that △ABC is a right triangle with right
angle at C. Then |AB|2 = |AC|2 + |BC|2.

Note. It appears that the original proofs of the Pythagorean Theorem used similarity. However,
the Pythagoreans discovered that not all real numbers are rational, so there was some skepticism
attached to similarity proofs. By the time of Euclid, proofs of the Pythagorean Theorem relied on
area arguments.

Proposition 6.34. In Neutral Geometry (not assuming the Euclidean Parallel Postulate) the
Pythagorean Theorem implies the Euclidean Parallel Postulate.

Proposition 6.35 (Converse to the Pythagorean Theorem). Suppose that △ABC is a triangle in
which |AB|2 = |AC|2 + |BC|2. The ∠BCA is a right angle.

6.6 Circles

Proposition 6.36. In Euclidean Geometry, every triangle can be circumscribed.

Proposition 6.37. If the Euclidean Parallel Postulate fails, then there is a triangle that cannot be
circumscribed.

36



Theorem 6.38. The Euclidean Parallel Postulate is equivalent to the statement that every triangle
can be circumscribed.

Proposition 6.39 (Thales’s Theorem).

Suppose that M is the midpoint of AB in a triangle △ABC. If AM ∼= MC then the angle ∠ACB
is a right angle.

Proposition 6.40. Suppose that M is the midpoint of AB in a triangle △ABC. If ∠ACB is a
right triangle, then AM ∼= MC.

Proposition 6.41. If the angles in a triangle are 30◦, 60◦, and 90◦. Then the length of the side
opposite the 30◦ angle is half the length of the side opposite the 90◦ angle.

Proposition 6.42. If a right triangle is such that the length of one leg is half the length of the
hypotenuse, then the angles in the triangle are 30◦, 60◦, and 90◦.

Definition. Suppose γ is a circle with center C. An inscribed angle of γ is an angle ∠PQR where
P , Q, and R are on γ. The arc intercepted by an inscribed angle ∠PQR is the set of all points on
γ which are in the interior of ∠PQR. A central angle of γ is an angle of the form ∠PCR where P
and R are on γ.

Definition. Suppose ∠PQR is an inscribed angle of a circle γ with center C. If P and Q are on

opposite sides of
←→
RC or if R and Q are on opposite sides of

←→
PC then ∠PCR is the corresponding

angle of ∠PQR.

Exercise 6.43. Draw an inscribed angle which does not have a corresponding angle.

Theorem 6.44 (Central Angle Theorem). The measure of an angle corresponding to an inscribed
angle is twice the measure of the inscribed angle.

6.7 Dissection Theory

Definition. Two polygonal regions R and R′ are equivalent by dissection if there are triangulations
R = T1 ∪ T2 ∪ · · · ∪ Tn and R′ = T ′1 ∪ T ′2 ∪ · · · ∪ T ′n containing the same number of triangles so that
for each i, Ti

∼= T ′i .

Lemma 6.45. If R is any polygonal region, then R ≡ R.

Lemma 6.46. If R1 and R2 are polygonal regions and R1 ≡ R2, then R2 ≡ R1.

Lemma 6.47. If R1, R2, and R3 are polygonal regions so that R1 ≡ R2 and R2 ≡ R3 then R1 ≡ R3.

Lemma 6.48. Every triangle is equivalent by dissection to a rectangle.

Lemma 6.49. If □ABCD is a rectangle and 1 ≤ |BC| < 2 then □ABCD is equivalent by dissection
to a rectangle with an edge of length 1.

Lemma 6.50. Any rectangle is equivalent by dissection to a rectangle with a side of length greater
than 2.

Lemma 6.51. Any rectangle with a side of length greater than two is equivalent by dissection to
the union of a rectangle with a side of length 1 and a rectangle with a side of length less than 2 but
greater than or equal to 1.
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Lemma 6.52. Any rectangle R is equivalent by dissection to a rectangle with edge lengths 1 and
α(R).

Lemma 6.53. Every polygonal region R is equivalent by dissection to a rectangle with edge lengths
1 and α(R).

Theorem 6.54 (Fundamental Theorem of Dissection Theory). Two polygonal regions are equiva-
lent by dissection if and only if they have the same area.
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7 Even Less Hyperbolic Geometry

In this section, we assume the Hyperbolic Parallel Postulate:

Axiom (Hyperbolic Parallel Posulate). For every line ℓ and for every point P not on ℓ, there are
at least two lines m and n so that P lies on m and n and m ∥ ℓ and n ∥ ℓ.

7.1 Triangles and Quadrilaterals

Proposition 7.1. If △ABC is a triangle, then σ(△ABC) < 180◦ and 0◦ < δ(△ABC) < 180◦.

Proposition 7.2. For every convex quadrilateral □ABCD, σ(□ABCD) < 360◦.

Proposition 7.3. There is no rectangle.

Proposition 7.4. The fourth angle in a Lambert quadrilateral is acute.

Proposition 7.5. The summit angles in a Saccheri quadrilateral are acute.

Proposition 7.6. In a Lambert quadrilateral, the length of a side between two right angles is less
than the length of the opposite side.

Definition. The segment joining the midpoints of the base and summit of a Saccheri quadrilateral
is called the altitude of the quadrilateral. Its length is called the height of the quadrilateral.

Proposition 7.7. In a Saccheri quadrilateral, the altitude is shorter than either side.

Proposition 7.8. In any Saccheri quadrilateral, the summit is longer than the base.

Proposition 7.9 (AAA Congruence). Suppose △ABC and △DEF are triangles. If △ABC ∼
△DEF then △ABC ∼= △DEF .

Proposition 7.10. Any two Saccheri quadrilaterals with congruent summits and equal defects are
congruent.

7.2 Common Perpendiculars

Definition. Suppose that P is a point not on a line ℓ. The distance from P to ℓ is |PF | where F
is the foot of the perpendicular from P to ℓ. We denote this as d(P, ℓ).

Proposition 7.11. Suppose that ℓ and m are distinct lines. There are at most two points P and
Q on m with d(P, ℓ) = d(Q, ℓ).

Definition. Two lines ℓ and m admit a common perpendicular if there is a line n so that n ⊥ ℓ
and n ⊥ m.

Proposition 7.12. If ℓ ∥ m and if there are two points on m that are the same distance from ℓ,
then ℓ and m admit a common perpedicular.

Proposition 7.13. If lines ℓ and m admit a common perpendicular, then they admit exactly one
common perpendicular.

Proposition 7.14. Let ℓ and m be parallel lines cut by a transversal t. Alternate interior angles are
congruent if and only if ℓ and m admit a common perpendicular and t intersects the perpendicular
segment at its midpoint.
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This proposition is proven by the following claimable lemmas.

Lemma 7.15 (Part of the proof of 7.14). Let ℓ and m be parallel lines cut by a transversal t. If
both pairs of alternate interior angles formed by t are congruent then ℓ and m admit a common
perpendicular, and t intersects the perpendicular segment at its midpoint.

Lemma 7.16 (Part of the proof of 7.14). Let ℓ and m be parallel lines cut by a transversal t. If
ℓ and m admit a common perpendicular and t intersects the perpendicular segment at its midpoint
then the alternate interior angles formed by t are congruent.
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