
Discrete Mathematics

John W. Snow

©2024 John W. Snow
All Rights Reserved

Contents

1 The Division Algorithm and Modular Congruence 1

2 Modular Arithmetic 4

3 Base Notation 8

4 Propositional Logic 13

5 Truth Values 19

6 Logical Equivalence 23

7 Logic Circuits 29

8 Predicates and Quantifiers 33

9 Sets 38

10 Powers and Strings 44

11 Relations 47

12 Properties of Relations 51

13 Operations on Relations 55

14 Functions 60

15 Properties of Functions 63

16 Sequences 67

17 Summations 72

18 Cardinality 78

19 Diagonalization and Undecidability 83

20 Graphs 86

21 Euler Paths 97

22 Hamilton Paths 104

23 Trees 112

24 Basic Counting 122

25 Permutations and Combinations 127

26 Basic Probability 132

1 The Division Algorithm and Modular Congruence

The integers are the set Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}. This is the set of numbers we are most familiar with
doing arithmetic with. We can also list the integers with one ellipsis as Z = {0,−1, 1,−2, 2,−3, 3, . . .}.

Theorem 1.1. The Division Algorithm: Suppose that n is a positive integer and that a is any integer.
There are unique integers q and r so that a = nq + r and 0 ≤ r < n.

Note. The Division Algorithm is not actually an algorithm. It is a theorem that merely states we can
divide any integer a by an integer n and get a unique quotient q and nonnegative remainder r. Note that
the remainder must be less than what we are dividing by. The Division Algorithm does not actually tell us
how to do this division (then it would be an algorithm). It just says we can. Each number in the Division
Algorithm has a name.

Definition 1.2. Suppose that a = nq + r as in the division algorithm. Then n is called the divisor, a is the
dividend, q is the quotient, and r is the remainder. We denote the quotient q as adiv n and the remainder
r as amodn.

Example 1.3. Find 39div 7 and 39mod 7.

Solution: We find the largest multiple of 7 which is less than or equal to 39. This is 35 = 7 · 5. Then we note
that 39 = 7 · 5 + 4. Therefore, 39div 7 = 5 and 39mod 7 = 4. Alternatively, if we ask a calculator to divide,
we will get something like 39÷ 7 = 5.57142 Dropping the decimal gives 39div 7 = 5. Then subtracting
gives 39mod 7 = 39− 7 · 5 = 4.

Example 1.4. Find 567div 10 and 567mod 10.

Solution: Quotients and remainders are easy when dividing by 10. The remainder is the ones digit. The
quotient consists of all of the other digits. Since 567 = 10× 56 + 7, 567div 10 = 56 and 567mod 10 = 7.

Example 1.5. Find −567div 10 and −567mod 10.

Solution: It may be tempting here to just negate the answers from the last example since −567 = 10(−56) +
(−7). However, the Division Algorithm requires that our remainders be nonnegative. The largest multiple of
10 less than or equal to −567 is −570 = 10 · (−57) and −567 = 10 · (−57) + 3. Therefore, −567div 10 = −57
and −567mod 10 = 3.

Note. Most programming languages use the notation a%n for amodn. Most programming languages also
calculate mods incorrectly for negative numbers. When a is negative, a%n will return a negative remainder
like the tempting incorrect answer to the previous example.

Example 1.6. What are the possible remainders when dividing by 7?

Solution: The Division Algorithm for n = 7 requires that r be an integer so that 0 ≤ r < 7. The only integers
satisfying this are 0, 1, 2, 3, 4, 5, and 6.

Example 1.7. What is amod 2 when a is even? What is amod 2 when a is odd?

Solution: If a is even, then a is a multiple of 2 so there is an integer q with a = 2q + 0. Then amod 2 = 0.
If a is odd, then when we divide a by 2 we have a nonzero remainder. The only possible remainders when
dividing by 2 are 0 and 1, so there is an integer q with a = 2q + 1. This means that amod 2 = 1.

Definition 1.8. Suppose that n is a positive integer and that a and b are any integers. We say that a and
b are congruent modulo n if (a − b) is a multiple of n. That is, a and b are congruent modulo n if there is
an integer q with a− b = nq. In this case we write a ≡ b (mod n). If a and b are not equivalent modulo n,
then we write a ̸≡ b (mod n).

Example 1.9. Is 87 ≡ 62 (mod 5)?

1

Solution: We subtract 87− 62 = 15 = 5 · 3. Since this difference is a multiple of 5, 87 ≡ 62 (mod 5).

Example 1.10. Is 94 ≡ 81 (mod 3)?

Solution: We subtract 94− 81 = 13. Since 13 is not a multiple of 3, 94 ̸≡ 81 (mod 3).

Modular congruence shares some nice properties with equality that will help us in doing arithmetic and
algebra involving modular congruence.

Theorem 1.11. Suppose that n is a positive integer.

1. Equivalence modulo n is reflexive: for every integer a, a ≡ a (mod n).

2. Equivalence modulo n is symmetric: for all integers a and b if a ≡ b (mod n), then b ≡ a (mod n).

3. Equivalence modulo n is transitive: for all integers a, b, and c, if a ≡ b (mod n) and b ≡ c (mod n),
then a ≡ c (mod n).

Note. The properties listed in Theorem 1.11 declare that modular congruence is something called an equiv-
alence relation. We will talk about equivalence relations in depth later. If a = nq + r as in the Division
Algorithm, then a − r = nq, so a ≡ r (mod n). This observation along with Theorem 1.11 can be used to
prove that checking for modular congruence reduces to comparing remainders.

Theorem 1.12. Suppose that n is a positive integer and that a and b are any integers. Then a ≡ b (mod n)
if and only if amodn = bmodn.

Example 1.13. Is 57 ≡ 17 (mod 10)?

Solution: 57mod 10 = 7 and 17mod 10 = 7, so 57 ≡ 17 (mod 10).

Example 1.14. Is 57 ≡ 13 (mod 10)?

Solution: 57mod 10 = 7 and 13mod 10 = 3, so 57 ̸≡ 13 (mod 10).

Example 1.15. Is 57 ≡ −13 (mod 10)?

Solution: Since this question involves a negative integer we go back to the definition.

57− (−13) = 57 + 13 = 70 = 10 · 7

so 57 ≡ −13 (mod 10).

Exercises 1.16. Complete these exercises.

1. Why does the equality 23 = 5 · 3 + 8 not satisfy the conditions in the Division Algorithm with a = 23
and n = 5?

2. Why does the equality −23 = 7 · (−3) + (−2) not satisfy the conditions in the Division Algorithm with
a = −23 and n = 7?

3. What are the possible remainders when dividing by 5?

4. Calculate each of the following:

(a) 187div 7 and 187mod 7

(b) 100div 16 and 100mod 16

(c) 89div 5 and 89mod 5

(d) −73div 5 and −73mod 5

(e) −188div 9 and −188mod 9

2

5. Which of these congruences are true?

(a) 83 ≡ 13 (mod 5)

(b) 83 ≡ −13 (mod 5)

(c) 184 ≡ 337 (mod 17)

(d) 13 ≡ −13 (mod 2)

(e) −84 ≡ −48 (mod 9)

6. Find a number x so that x ≡ −x (mod 5)

7. For each number x below, calculate the sum of the digits in x. Call this sum y. Calculate x− y. For
which n is x ≡ y (mod n)? Do you notice any patterns?

(a) x = 13

(b) x = 245

(c) x = 1983

(d) x = 11111

8. Books are identified by ISBN numbers. In the ISBN-13 system, the ISBN is a 13 digit code

x1x2x3x4x5x6x7x8x9x10x11x12x13.

The first 12 digits encode the book’s national origin along with publisher and language information.
The 13th digit is a check digit selected so that this equation is true:

x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10 + x11 + 3x12 + x13 ≡ 0 (mod 10)

The first 12 digits of an ISBN are 978037571457. Find the check digit.

3

2 Modular Arithmetic

Modular congruence interacts nicely with arithmetic.

Theorem 2.1. Suppose that n is a positive integer and that a and b are any integers. Then

� (a + b)modn = ((amodn) + (bmodn))modn,

� (a− b)modn = ((amodn)− (bmodn))modn, and

� (a · b)modn = ((amodn) · (bmodn))modn.

Note. What this theorem states is that we can interchange arithmetic and mod-ing by n at will, and we
will always end up at the same result – as long as the last thing we do is mod by n.

Example 2.2. Calculate ((5 + 8 · 6)2 + 9 · (7 + 8))mod 10.

Solution: We will do this multiple times to see how we can use Theorem 2.1 to make the arithmetic convenient.
First, we perform all of the arithmetic and then mod. Recall that amod 10 is just the last digit in a. This
makes finding the mod easy for the example. We highlight where we perform arithmetic on each line.

((5 + 8 · 6)2 + 9 · (7 + 8))mod 10 = ((5 + 48)2 + 9 · (7 + 8))mod 10

= ((53)2 + 9 · (7 + 8))mod 10

= (2809 + 9 · (7 + 8))mod 10

= (2809 + 9 · 15)mod 10

= (2809 + 135)mod 10

= (2944)mod 10

= 4.

Next, we perform the same arithmetic, but each time we perform an operation we mod by 10. This has
the effect of keeping our numbers small. Here, we use the modular congruence notation since we are only
calculating mods on part of the arithmetic expression.

((5 + 8 · 6)2 + 9 · (7 + 8)) ≡ ((5 + 8)2 + 9 · (7 + 8)) (mod 10)

≡ ((3)2 + 9 · (7 + 8)) (mod 10)

≡ (9 + 9 · (7 + 8)) (mod 10)

≡ (9 + 9 · 5) (mod 10)

≡ (9 + 5) (mod 10)

≡ (4) (mod 10)

Performing arithmetic modulo n allows us to do arithmetic with only the numbers 0, 1, . . . n− 1. In
a sense this arithmetic is the usual arithmetic with integers, but once a calculation reaches n or higher,
the portion above n − 1 is lost as overflow. This arithmetic largely works as our usual integer arithmetic.
However, there are some odd things. For example, in the computation above note that 9 · 5 ≡ 5 (mod 10).
We define an environment in which to do arithmetic modulo n.

Definition 2.3. For any positive integer n, the integers modulo n are the set Zn = {0, 1, 2, . . . n−1}. When
we do arithmetic in Zn, it is understood that all arithmetic is modulo n. Therefore, we can add, multiply,
and subtract numbers in Zn and get numbers in Zn, as long as the last operation we do is mod by n.

Note. When we perform arithmetic in Zn, we should use modular congruence notation, such as 7 · 8 ≡ 16
(mod 20). However, mathematicians tend to be lazy and tend to create or abuse notation to make life
simpler. Some folks would write this as 7 ·8 ≡20 16 or 7 ·8 =20 16. We might even write, “In Z20, 7 ·8 = 16.”
If we know that we are working in Z20, then we might just write 7 ·8 = 16. If we perform the usual arithmetic
and then mod, we should use the modular congruence notation but we can write just one mod at the end,
such as 7 · 8 = 56 ≡ 16 (mod 20).

4

Definition 2.4. A number b is a multiplicative inverse of a number a if a · b = 1. Two non-zero numbers a
and b are zero divisors if a · b = 0.

Zero divisors and multiplicative inverses happen to be important in solving equations in the integers.

Example 2.5. The number 3 happens to have a multiplicative inverse in Z10. Find it.

Solution: We will find an inverse for 3 by brute force. We will multiply 3 by each element of Z10 and see
which one gives a product of 1. In Z10:

3 · 0 = 0, 3 · 1 = 3, 3 · 2 = 6, 3 · 3 = 9, 3 · 4 = 2,
3 · 5 = 5, 3 · 6 = 8, 3 · 7 = 1, 3 · 8 = 4, 3 · 9 = 7.

Since 3 · 7 = 1 in Z10, 3 and 7 are multiplicative inverses in Z10.

Example 2.6. There are zero divisors in Z12 find them.

Solution: We will address this problem by brute force also. We will multiply every number in Z12 by
every other number and see when we get 0. We organize the products into an array – which is actually a
multiplication table for Z12.

× 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 0 2 4 6 8 10
3 0 3 6 9 0 3 6 9 0 3 6 9
4 0 4 8 0 4 8 0 4 8 0 4 8
5 0 5 10 3 8 1 6 11 4 9 2 7
6 0 6 0 6 0 6 0 6 0 6 0 6
7 0 7 2 9 4 11 6 1 8 3 10 5
8 0 8 4 0 8 4 0 8 4 0 8 4
9 0 9 6 3 0 9 6 3 0 9 6 3
10 0 10 8 6 4 2 0 10 8 6 4 2
11 0 11 10 9 8 7 6 5 4 3 2 1

The zero divisors in Z12 are those non-zero numbers which have a 0 in their row other than the first column.
These are 2, 3, 4, 6, 8, 9, and 10.

Note. The multiplication table in the last example also lets us find multiplicative inverses easily. Since
5 · 7 = 1, 5 and 7 are multiplicative inverses. Since 11 · 11 = 1, 11 is its own inverse. Also, since 1 · 1 = 1, 1 is
its own inverse too. Notice that here every non-zero number is either a zero divisor or has a multiplicative
inverse.

Example 2.7. We will see later that calculating exponents using certain large moduli is an essential com-
ponent of many modern cryptographic algorithms. Calculate 3100 mod 403.

Solution: First of all, 3100 is too large to compute this number, divide by 403, and find the remainder. We
could begin calculating powers of 3 and then mod when a power exceeds 403. This is valid, and it would
require 100 multiplications. We will find our power using fewer multiplications. We are going to calculate
30, 31, 32, 34, 38, 316, 332, and 364. The exponents here are powers of 2. Since 34 = (32)2, to calculate 34,
we need only square 32. Since 38 = (34)2, to calculate 38, we need only square 34. If we continue this way,
we can calculate these exponents by squaring an mod-ing where appropriate. Performing arithmetic modulo
403:

30 = 1
31 = 3
32 = 9
34 = (32)2 = 92 = 81
38 = (34)2 = (81)2 = 6561 = 113
316 = (38)2 = (113)2 = 12769 = 276
332 = (316)2 = (276)2 = 76176 = 9
364 = (332)2 = 92 = 81

5

Now, we can use these powers to find 3100 mod 403. The key is to note that 100 = 64 + 32 + 4. Therefore,
modulo 403 we have:

3100 = 364+32+4

= 364 · 332 · 34

= 81 · 9 · 81

= 59049

= 211 (mod 403).

The method used here is related to base 2 representations of numbers, which we will address later.

Hash Functions. Suppose that we want to store records for employees or customers or citizens efficiently in
a way that they can be retrieved quickly. Assume that for each record there is a key or identification number
(such as a social security number). There may be so many potential identification numbers that allotting a
memory location for each number is not feasible from a memory standpoint. Storing all of the data in a list
could be just as impractical because searching the list for a single record may take too much time. Instead,
we can use a hash function to map each identification number to a code which is used to locate a place for
the record in memory. An extremely simple example of this would be to mod the identification number by a
modulus such as 1000 to obtain a code. The code is then linked to a memory location. It could be that many
identification numbers have the same hash code. This is called collision. One way to account for collision is
to have each memory location corresponding to a hash value contain a pointer to a list of records which have
that same hash code. If identification codes are uniformly distributed, then a solution such as this which
mods by 1000 would create a collection of lists which each would be about 1/1000 of the length of the entire
list of identification numbers. This speeds up searches by a factor of 1000. Instead of having each memory
location corresponding to a hash value contain a pointer to a list of records that have the same hash code,
a hash function might mod by a large number (1000 would be too small for this approach) and then begin
at that location in memory searching for the first open slot in memory to store the record.

Random Number Generators. When writing programs that involve simulation or cryptography, some
form of randomness is often needed. Modular arithmetic can be used to build a random number generator
– or a pseudo-random number generator, since nothing that comes out of a program is truly random. A
linear congruential random number generator involves a modulus n, a multiplier m, and an increment b.
At any point in time, the generator has a seed x. When the generator is asked for a number, it returns
(mx+b)modn as the pseudo-random number and then replaces x with this number – the calculated random
number becomes the new seed. For example, if we use a modulus of n = 31, a multiplier of m = 17, an
increment of 5, and an initial seed of 2, the linear congruential generator will give this sequence of numbers:

seed (x) mx + b (mx + b)modn
2 39 8
8 141 17
17 294 15
15 260 12
12 209 23
23 396 24
24 413 10
10 175 20
20 345 4
4 73 11
11 192 6
6 107 14
14 243 26
26 447 13
13 226 9
9 158 3

seed (x) mx + b (mx + b)modn
3 56 25
25 430 27
27 464 30
30 515 19
19 328 18
18 311 1
1 22 22
22 379 7
7 124 0
0 5 5
5 90 28
28 481 16
16 277 29
29 498 2
2 39 8
8 141 17

6

Notice how the last two lines here are the same as the first two. The generator has begun to repeat. If n,
m, and b are chosen appropriately, then the process can take several billion steps before it repeats. Most
computers use some form of linear congruential generator for random numbers. Java, POSIX, and glibc use
a modulus of n = 248, a multiplier of m = 25214903917, and an increment of b = 11. To make things less
predictable, they do not use all of the bits of the seed in the output.

Affine Cipher. Cryptography is the science of encrypting messages so that they cannot be read. Cryptology
is the study of cryptography. One of the oldest cryptographic methods is the Caesar cipher, attributed to
Julius Caesar. This cipher replaces every letter with the one three letters away (wrapping back to the
beginning of the alphabet when you reach the end). In the English alphabet, A becomes D, B becomes E,
C becomes F , and so on. We can describe this cipher (and more) with modular arithmetic. Identify the
letters A,B,C,D, . . . , Z with Z26, so A = 0, B = 1, C = 2, . . . , Z = 25. Then Caesar’s cipher encrypts a
letter x as (x + 3)mod 26. Here are the steps to encrypt DAY with the Caesar cipher:

original text D A Y
converted to numbers 3 0 24
add 3 and mod by 26 6 3 1

convert back to numbers G D B

To decrypt and find the original message, you would subtract 3 and mod by 26. The Caesar cipher is
a special case of an affine cipher. An affine cipher uses two numbers m and b and encrypts a letter x
as (mx + b)mod 26. In such a cipher, m must be chosen so that a multiplicative inverse m−1 so that
(m ·m−1)mod 26 = 1 so that encryption is reversible. To decrypt y = (mx+b)mod 26, one would calculate
x = (m−1(y − b))mod 26.

Exercises 2.8. Answer the following questions.

1. Perform these modular calculations:

(a) (23 · (47− 19))mod 25

(b) (12− 19 · 34)mod 64

(c) (1 + 2 · (3− 4 · (5 + 6 · (7 + 8))))mod 11

(d) (1 + 2 · (3− 4 · (5 + 6 · (7 + 8))))mod 2

2. Calculate 7276 mod 100 using the process of repeated squaring outlined in the section.

3. Calculate 31001 mod 5.

4. By trial and error, find all zero divisors in each of these.

(a) In Z8

(b) In Z10

(c) In Z12

5. By trial and error, find all pairs of multiplicative inverses in each of these.

(a) In Z8

(b) In Z10

(c) In Z12

6. Compare your responses to the last two questions and make a conjecture about when a number is a
zero divisor or has a multiplicative inverse modulo n.

7. Find all numbers m in Z26 with multiplicative inverses.

8. Consider the linear congruential random number generator with n = 16, m = 13, and b = 1. Begin
with a seed of 5 and calculate the pseudo-random numbers until you arrive at a repetition.

7

3 Base Notation

We typically use base ten notation to represent numbers. Ten digits – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – are put
into places that are each assigned a value, and the place values are all powers of ten. For example:

23456 = 2 · 104 + 3 · 103 + 4 · 102 + 5 · 101 + 6 · 100.

This number represents 6 ones plus 5 tens plus 4 hundreds plus 3 thousands plus 2 ten-thousands. There
are two major benefits of such a system: We can represent arbitrarily large numbers with just a few (ten)
symbols, and we have algorithms to extend arithmetic operations with single digits (those ten symbols) to
larger numbers. There is nothing special about the base ten (other than most people have ten fingers to
count on). Over the history of the world, cultures have used base ten, base four, base five, base twenty,
base forty, and base sixty. In most cases there is a biological or cultural reason for the choice of the base.
Computer scientists frequently use base two – a.k.a. binary – to represent two values such as on/off or
true/false. In a base two system, place values represent powers of two: 20, 21, 22, 23, . . ., and we have only
two symbols 0 and 1, which we call bits. In this section, we will be working with numbers in different bases.
When necessary, we will use subscripts to indicate which base we are in. A number in base ten may be
written something like 12310. A number in base two would look like 110112. Base 7 would look like 534627.

Example 3.1. Convert 1010112 to base ten.

Solution: We simply multiply each place value by 0 or 1, depending on what number is in that place.

1010112 = 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 25 + 23 + 21 + 20

= 32 + 8 + 2 + 1

= 4310.

Typically, we jump immediately to the second line of this computation. We also typically work from
right to left since it is easier to read the place value off that way. This computation might look like.

1010112 = 20 + 21 + 23 + 25

= 1 + 2 + 8 + 32

= 4310.

Example 3.2. Convert 111012 to base ten.

Solution: Working from right to left, and including only the place values where we have a one gives:

111012 = 20 + 22 + 23 + 24

= 1 + 4 + 8 + 16

= 2910.

Example 3.3. Convert 35710 to base 2.

Solution: This direction requires a bit more thought than the reverse; however, base 2 is easier to work with
than other bases. The secret is to write 357 as a sum of powers of 2, so it may be helpful to have some of
those readily available: 20 = 1, 21 = 2, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256, 29 = 512, and
210 = 1024. First, we find the highest power of 2 less than or equal to 357. This is 256. Then we subtract to
find 357− 256 = 101, so that 357 = 256 + 101. Then we repeat that process with 101. The highest power of
2 less than or equal to 101 is 64, and 101 = 64 + 37. Then we have 357 = 256 + 64 + 37. Next, 37 = 32 + 5,
so 357 = 256 + 64 + 32 + 5. Finally, 5 = 4 + 1, so

357 = 256 + 64 + 32 + 4 + 1 = 28 + 26 + 25 + 22 + 20.

8

Now to make the base 2 expansion of 35710, we just need 1s in the 28, 26, 25, 22, and 20 places and 0s
everywhere else.

35710 = 28 + 26 + 25 + 22 + 20 = 1011001012.

The 1s record which powers of 2 are included in the sum.

Example 3.4. Convert 35710 to base 5.

Solution: The process for converting to bases other than 2 repeatedly uses the Division Algorithm 1.1. First,
we divide 357 by 5 to get a quotient and remainder:

357 = 5 · 71 + 2.

Then we divide the quotient 71 by 5 to get another quotient and remainder:

71 = 5 · 14 + 1.

We then divide the new quotient 14 by 5 to get a quotient and remainder:

14 = 5 · 2 + 4.

One more repetition gives
2 = 5 · 0 + 2.

Once we have a quotient of 0, then our number converted to base 5 consists of the remainders in reverse
order:

35710 = 24125.

Note. This process of repeated division could also be used to convert to base 2 from base ten. However,
the approach of finding the highest power of 2 less than or equal to a number is faster.

Example 3.5. Convert 12345 to base ten.

Solution: We just use place values.

12345 = 1 · 53 + 2 · 52 + 3 · 51 + 4 · 50

= 1 · 125 + 2 · 25 + 3 · 5 + 4 · 1
= 125 + 50 + 15 + 4

= 19410.

Example 3.6. Add 111102 + 11002.

Solution: To add in base 2, we stack the numbers and align them by place value. Then, we add within each
place value, and we carry’ any overflow from one place value to the next place. Here, overflow amounts to a
quantity equal to or greater than 2. First, we stack and align:

1 1 1 1 0
+ 1 1 0 0

In the 20 place, 0 + 0 = 0, and in the 21place, 1 + 0 = 1:

1 1 1 1 0
+ 1 1 0 0

1 0

Now, in the 22 place, 1 + 1 = 210, but 210 = 102, so the 0 goes in the 22 place, and the 1 is overflow which
is carried over to the 23 place.

1
1 1 1 1 0

+ 1 1 0 0
0 1 0

9

Now in the 23 place, we have 1 + 1 + 1 = 310 = 112, so we have a 1 in the 23 place and a 1 as a carry.

1 1
1 1 1 1 0

+ 1 1 0 0
1 0 1 0

Finall, adding in the 24 place gives 1 + 1 = 210 = 102. The 0 goes in the 24 place, and the 1 that is carried
goes in the 25 place.

1 1
1 1 1 1 0

+ 1 1 0 0
1 0 1 0 1 0

Note. Notice that to add two numbers in base 2, we need to be able to add up to three bits to account for
the carry. This will be important later when we build circuits to add.

Example 3.7. Multiply 11012 × 10112. To multiply in base 2, we mimic the process we follow in base ten.
We first stack the numbers, and then we multiply the top number by the number in each place of the bottom,
staggering as we go. First we stack:

1 1 0 1
× 1 0 1 1

Then we multiply by the 1 in the 20 place of the bottom number. Multiplying by 1 is easy:

1 1 0 1
× 1 0 1 1

1 1 0 1

Before we multiply by the 1 in the 21 place, we add a zero to stagger the next line.

1 1 0 1
× 1 0 1 1

1 1 0 1
0

Then we multiply by the 1 from the 21 place.

1 1 0 1
× 1 0 1 1

1 1 0 1
1 1 0 1 0

For the next line, we stagger twice and then multiply by the 0 in the 22 place:

1 1 0 1
× 1 0 1 1

1 1 0 1
1 1 0 1 0

0 0 0 0 0 0

Next, we stagger three times and multiply by the 1 in the 23 place:

1 1 0 1
× 1 0 1 1

1 1 0 1
1 1 0 1 0

0 0 0 0 0 0
1 1 0 1 0 0 0

10

Finally, we add.
1 1 0 1

× 1 0 1 1
1 1 0 1

1 1 0 1 0
0 0 0 0 0 0

+ 1 1 0 1 0 0 0
1 0 0 0 1 1 1 1

Base One Thousand. We often use commas to group base ten numbers to make them more readable. For
example, the number 1234567890 is usually written as 1, 234, 567, 890, which is 1 billion, 234 million, 567
thousand, 890. It happens to be that one million is 10002 and that one billion is 10003. Then

1, 234, 567, 890 = 1 · 10003 + 234 · 10002 + 567 · 10001 + 890 · 10000.

The commas effectively turn base ten into base one thousand. That is, grouping digits into groups of 3
converts base 10 to base 103.

Base Eight. If we begin with a binary number such as 1111101010012 and separate it into groups of 3, we
get base 23 or base 8.

1111101010012 = 111 110 101 0012 = 76518.

Here, we used the base ten names for each of the sets of 3 bits to express the base 8 number. Base 8 is
usually called octal.

Base Sixteen. It is more common to group binary numbers into sets of four bits. When we do so, we are
converting the number to base 24 or sixteen. Writing a number in base sixteen is slightly more complex than
base 8. For base 8, we can take advantage of the names of the digits 0, 1, 2, 3, 4, 5, 6, 7 in base ten to use for
each place value. In base 16, we need 16 names of place values. We use:

0 1 2 3
4 5 6 7
8 9 A = 1010 B = 1110

C = 1210 D = 1310 E = 1410, F = 1510

Then
1111101010012 = 1111 1010 10012 = FA916.

Note here that 11112 = 1510 = F16 and 10102 = 1010 = A16 and 10012 = 910 = 916. Base sixteen is called
hexadecimal.

Exercises 3.8. Answer the following questions.

1. Convert each of these base ten numbers to base 2.

(a) 23 (b) 31 (c) 145 (d) 986

2. Convert each of these base ten numbers to base 5.

(a) 23 (b) 31 (c) 145 (d) 986

3. Convert each of these base 2 numbers to base ten.

11

(a) 111 (b) 10101 (c) 110011 (d) 111000

4. Convert each of these base 5 numbers to base ten.

(a) 23 (b) 31 (c) 144 (d) 432

5. Convert each of these base 3 numbers to base 2.

(a) 11 (b) 22110 (c) 21012 (d) 2222

6. Convert each of these base 2 numbers to octal.

(a) 111001 (b) 110011101111 (c) 11101 (d) 1010101

7. Convert each of these base 2 numbers to hexadecimal.

(a) 11010110 (b) 111100001111 (c) 11101 (d) 1010101

8. Convert each of these hexadecimal numbers to base 2 and to base ten.

(a) ABCD (b) FACE (c) 1111 (d) 10A01

9. Add these base 2 numbers.

(a) 1010 + 111 (b) 1001 + 1100 (c) 1111 + 101 (d) 11 + 11

10. Multiply these base 2 numbers.

(a) 1010 · 111 (b) 1001 · 1100 (c) 1111 · 101 (d) 11 · 11

11. In an algebra class log(x) means log10(x). This is the exponent to which we must raise 10 to get x.
For example, log10(100) = 2 because 102 = 100. We will use log(x) to represent log2(x). This is the
number to which we must raise 2 to get x. For example, log(8) = 3 because 23 = 8. Calculate each of
the following.

(a) log(16) (b) log(64) (c) log(1024) (d) log(2048)

12

4 Propositional Logic

A statement is a declarative sentence which must be either true or false but not both. Statements are also
called propositions.

Example 4.1. The following are statements.

� The grass is green.

� Clint Eastwood is the American president.

� The number 2 is less than the number 1.

� 1+1=2

� The sun will rise tomorrow.

Example 4.2. The following are not statements.

� Go to bed. (This is an imperative or command.)

� The house on the hill (This is not even a sentence.)

� Is this a statement? (This is an interrogative or question.)

� Paul is tall. (Since “tall” is relative, this might seem true to some people and false to others. It is not
strictly true or false.)

Assumptions. There are two underlying assumptions in our definition of a statement. First, every state-
ment must be either true or false. Second, no statement is both true and false. That any statement must
be either true or false but not both is called the law of the excluded middle.

Truth Values. Every statement has what we call a truth value of true (often written T) or false (often
written F). We will sometimes use 1 for true and 0 for false.

Symbols. We let variables represent statements. For example, we could let the letter P be the statement
“It is raining.” A single letter representing a statement is called an atomic statement or a Boolean variable.

Compound Statements. We can join atomic statements together with the words “and,” “or,” “not,” and
“implies.” We call these words logical operators or logical connectives. The more complex statements which
are formed using logical operators are called compound statements or Boolean expressions. We use symbols
for each of the logical operators. These are defined below.

Conjunction. The symbol ∧ means “and.” If P and Q are two statements, then P ∧Q is the new statement
“P and Q.” For example, if P is “It is raining,” and Q is “The grass is green,” then P ∧Q is “It is raining,
and the grass is green.” The statement P ∧ Q is called the conjunction of the statements P and Q. The
statement P ∧Q is true when both of the statements P and Q are true. Otherwise, it is false. We can sum
this up in this truth table:

P Q P ∧Q
T T T
T F F
F T F
F F F

The first two columns of the table list all of the possible combinations of truth values for P and Q. The
third column gives the corresponding truth value for P ∧Q.

Restating Conjunctions. In the English language, there are many ways of expressing P ∧ Q. Any
statement which communicates that both P and Q are true expresses P ∧Q. If P is “It is raining,” and Q
is “The grass is green,” then each of the following communicate P ∧Q.

13

� It is raining, and the grass is green.

� It is raining, but the grass is green.

� It is raining; however, the grass is green.

� Even though it is raining, the grass is green.

� While it is raining, the grass is green.

� The grass is green, and it is raining.

Disjunction. The symbol ∨ means “or.” If P and Q are two statements, then the statement P ∨Q is “P
or Q.” This is called the disjunction of the statements P and Q. The statement P ∨Q will be true when P
is true, Q is true, or both are true. This can be expressed in a truth table:

P Q P ∨Q
T T T
T F T
F T T
F F F

Again, the first two columns of the truth table list the all possible combinations of truth values for P and Q
(note that these are the same as the first two columns for ∧ above). The last column gives the corresponding
truth value for P ∨Q.

Exclusive Or. Our disjunction is an inclusive or – the times at which P ∨Q are true include when P and
Q are both true. It is sometimes convenient to use an exclusive or. The exclusive or of P and Q is written
as P ⊕Q. The statement P ⊕Q means, “P is true, or Q is true, but it is not the case that both P and Q
are true.” The truth table for P ⊕Q is:

P Q P ⊕Q
T T F
T F T
F T T
F F F

Negation. The symbol ¬ means “It is not the case that. . .” If P is any statement then ¬P means “It is
not the case that P .” For example, if P is “It is raining,” then ¬P is “It is not the case that it is raining.”
In English, a better way of saying this may be “It is not raining.” For simplicity, we will most often read
¬P as “Not P.” The truth table for ¬ is:

P ¬P
T F
F T

The statement ¬P is called the negation of P .

Implication (Conditional). The symbol → means “implies.” If P and Q are statements, then P → Q is
“P implies Q.” We will often read this as “If P , then Q.” For example, if P is “I left my hat at home,” and
Q is “It will rain,” then P → Q could be read as “If I left my hat at home, then it will rain.” To determine
the truth values for this new logical operator, it is useful to think of P → Q as a promise. Let P be the
statement “You win,” and let Q be the statement “We will go out to eat.” Then P → Q is “If you win, then
we will go out to eat.” Think of this as a promise. The statement will be true when the promise is kept and
false if it is broken. There is only one way in which the promise may be broken - if you win and we do not

14

go out to eat. This is the case where P is true and Q is false. Thus if P is true and Q is false, then P → Q
is false. Otherwise, the promise is not broken, so the statement should be true. Here is the truth table:

P Q P → Q
T T T
T F F
F T T
F F T

As with conjunction, there are many ways of expressing implication. Here are a few common ways of
expressing P → Q:

� If P , then Q.

� P implies Q.

� Q, if P .

� P only if Q.

� Q follows from P .

� Whenever P , Q.

� Q, whenever P .

� Not P unless Q.

� P is sufficient for Q.

� Q is necessary for P .

The part of an implication which comes before the arrow is called the antecedent or hypothesis. That which
comes after the arrow is the consequent or conclusion. Thus in B → K, B is the antecedent, and K is the
consequent. Notice in the last two statements on our list that the antecedent is the sufficient part and the
consequent is the necessary part.

Bi-Implication. The symbol ↔ means “if and only if.” The statement P ↔ Q is “P if and only if Q.”
This means that P implies Q and Q implies P . We could write this as (P → Q) ∧ (Q → P) This is called
the bi-implication or the biconditional. Here is the truth table:

P Q P ↔ Q
T T T
T F F
F T F
F F T

Notice that the truth value for P ↔ Q is exactly the negation of the truth value for P ⊕Q.

Order of Operations. For the most part, we will always use parenthesis to indicate order of operations
in compound statements. The one exception we will make to avoid too many parenthesis is to let ¬ take
precedence over all other operations. This means that unless a set of parenthesis is in the way, we apply all
negations first. For example, rather than writing ((¬P) ∧ (¬Q))→ (¬(R ∧ S)), we can write (¬P ∧ ¬Q)→
¬(R ∧ S).

Example 4.3. Let L be “The lights are on.” Let O be “The oven is on,” and let D be “The door is open.”
Here are some translations using these symbols.

15

Symbols Words

L→ (O ∨D)
If the lights are on then either the oven is on or
the door is open.

¬(L→ D)
It is not the case that if the lights are on then the
door is open.

(L ∧D) ∨ (L ∧O)
Either the lights are on and the door is open or
the lights are on and the oven is on.

¬D ∨ (L→ O)
The door is closed, or if the lights are on, then
the oven is on.

Example 4.4. Let S be “The sun will rise in the morning.” Let C “Candace leaves a candle in her window,”
and let D be “Doug passes his math test.” Translate this statement into symbols:

“If Candace leaves a candle in her window or Doug passes his math test, then the sun will rise in the
morning.”

Solution: We identify the atomic statements C, D and S in the statement:

“If

C︷ ︸︸ ︷
Candace leaves a candle in her window or

D︷ ︸︸ ︷
Doug passes his math class

then

S︷ ︸︸ ︷
the sun will rise in the morning.

We notice the “or” and the “if. . .then. . .” in the statement and can label them (notice we place the → over
the “then”):

If

C︷ ︸︸ ︷
Candace leaves a candle in her window

∨
or

D︷ ︸︸ ︷
Doug passes his math class

→
then

S︷ ︸︸ ︷
the sun will rise in the morning.

Finally, we can use the structure of the sentence and punctuation to determine placement of parenthesis.
This gives:

If

(C︷ ︸︸ ︷
Candace leaves a candle in her window

∨
or

D)︷ ︸︸ ︷
Doug passes his math class

→
then

S︷ ︸︸ ︷
the sun will rise in the morning.

Thus our statement is (C ∨ D) → S. The process is not always this straightforward since there are many
ways of expressing the logical operators in words.

Example 4.5. Using the symbols from above, translate this statement into symbols:

“If Doug fails his math test, then in order for the sun to rise tomorrow, it is sufficient that Candace leaves
a candle in her window.”

Solution: We notice the occurrence of ¬D, S, and C:

If

¬D︷ ︸︸ ︷
Doug fails his math test, then in order for

S︷ ︸︸ ︷
the sun to rise tomorrow, it is sufficient that

C︷ ︸︸ ︷
Candace leaves a candle in her window

We notice the “if. . .then. . .” and place an → over the “then” and group it by itself. The rest of the sentence
seems to be a single unit, so we place it in parenthesis:

16

If

¬D︷ ︸︸ ︷
Doug fails his math test,

→
then in order for

(S︷ ︸︸ ︷
the sun to rise tomorrow, it is sufficient that

C)︷ ︸︸ ︷
Candace leaves a candle in her window

What we have in parenthesis - “In order for S, it is sufficient that C” - is an implication. The sufficient part
is C, and we recall that the sufficient part of an implication is the antecedent - what comes before the arrow.
Thus, what is in parenthesis is C → S. We draw the arrow backwards here (←) to maintain the sentence
structure.

If

¬D︷ ︸︸ ︷
Doug fails his math test,

→
then in order for

(S︷ ︸︸ ︷
the sun to rise tomorrow,

←
it is sufficient that

C)︷ ︸︸ ︷
Candace leaves a candle in her window

Our statement is ¬D → (C → S).

Exercises 4.6. Answer the following questions.

1. Which of the following are statements?

(a) The brown and white dog ran down the long winding road.

(b) True is spelled t-r-u.

(c) This sentence is true.

(d) This sentence is neither true nor false.

(e) The old white house on the lonesome hill outside of town.

(f) Feed the lazy dog on the porch once every day.

(g) The clock is slow.

(h) The car is slow.

2. The sentence “This sentence is false” is not a statement. Explain why.

3. Let M be “The moon is full.” Let A be “The alarm is set for 4:00 AM,” and let F be “Fred is going
fishing in the morning.” Below are compound statement using A, F , M . Translate each into words.
(Try to be creative).

(a) F ∨ ¬A
(b) ¬F ∧ ¬A
(c) ¬(F ∨A)

(d) F ∧ (M ∨A)

(e) A ∧M ∧ F

(f) (F ∧M) ∨ (F ∧ ¬M)

(g) (M ∧A)→ F

(h) ¬A ∨ (M → F)

4. Let F be the statement “The fox is more clever than the rabbit.” Let R be “The rabbit is quicker
than the fox,” and let C be “The fox will catch the rabbit.” Write each of the following compound
statements using symbols:

(a) The rabbit is quicker than the fox; however, the fox is more clever than the rabbit and will catch
the rabbit.

(b) The fox is not more clever than the rabbit, and the rabbit is quicker than the fox.

(c) The rabbit is quicker than the fox, but the fox will catch the rabbit anyway.

17

(d) Although the fox is more clever than the rabbit, the fox will not catch the rabbit.

(e) If the fox is more clever than the rabbit or the rabbit is not quicker than the fox, then the fox
will catch the rabbit.

(f) In order for the fox to catch the rabbit, it is sufficient that the rabbit is not quicker than the fox.

(g) For the fox to catch the rabbit, it is necessary that the rabbit is not quicker than the fox.

(h) While the fox is more clever than the rabbit, the rabbit is quicker than the fox; hence, the fox
will not catch the rabbit.

18

5 Truth Values

We now turn to determining if a compound statement is true or false. Our first method will be to draw
truth tables for compound statements like we did for our logical operators. We illustrate the method with
an example.

Example 5.1. Draw a truth table for the statement (P ∨Q) ∧ (¬P ∨Q).

Solution: The first columns of the table will be labeled P and Q just as above. The next columns in the
table will be labeled by the compound statements in our statement which are slightly more complicated than
simply P or Q. These may be ¬P or P ∨Q. The next column will be the next more complicated statement -
¬P ∨Q, and the next would be the next more complicate (which in this case would be the whole statement)
and so on. Thus our table should have columns labeled by P , Q, ¬P , P ∨Q, ¬P ∨Q, and (P ∨Q)∧(¬P ∨Q).

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)

The atomic statements are single letters on the extreme left. They get more complicated as we move toward
the right until we reach the entire statement. Now, the first two columns will list all possible combinations
of truth values for P and Q as above (notice we use the same pattern):

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)
T T
T F
F T
F F

We next fill in the column for ¬P . The first line of the truth table for ¬ in section 1.10 could be read as
¬T = F , so anywhere we see a T under P , we should have a F under ¬P . The second row of ¬ could be
read as ¬F = T , so when P is false, we place a T under ¬P . The column for P ∨ Q is filled out similarly.
The rows of the truth table for ∨ could be read as T ∨ T = T , T ∨ F = T , and so on. Filling in these two
columns gives

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)
T T F T
T F F T
F T T T
F F T F

We fill in the column for ¬P ∨Q the same way - applying ∨ to the columns for ¬P and Q

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)
T T F T T
T F F T F
F T T T T
F F T F T

Finally, we apply ∧ to the last two columns to get the truth values for the entire statement. The truth table
for ∧ tells us that T ∧ T = T , and everything else is false.

P Q ¬P P ∨Q ¬P ∨Q (P ∨Q) ∧ (¬P ∨Q)
T T F T T T
T F F T F F
F T T T T T
F F T F T F

Example 5.2. Draw a truth table for the statement (A ∧B)→ ¬C.

19

Solution: This statement has three letters, so we need a column for each letter. We will also need columns
for A ∧ B, ¬C, and the whole statement. To get every possible combination of truth values for A, B, and
C, we need eight rows (it is best to memorize this pattern to make sure you get it right). We then fill in the
other columns as we did above to get

A B C A ∧B ¬C (A ∧B)→ ¬C
T T T T F F
T T F T T T
T F T F F T
T F F F T T
F T T F F T
F T F F T T
F F T F F T
F F F F T T

Note. We can now use this truth table to determine truth values of our statement. For example, the third
row says that if A and C are true but B is false, then the whole statement is true.

Calculating Truth Values. If we know the truth values of the letters in a compound statement and want
to know the truth value of the whole statement, we could draw a truth table for the statement and read off
the appropriate row. This is tedious - especially if there are more than two letters. A quicker way is to do
arithmetic with the T s and F s.

Example 5.3. Suppose that A, C, and D are true while B is false. What is the truth value of the statement

(A ∧ ¬B)→ ((C ∧B) ∨ (¬A ∧D))

Solution: First, replace all of the As, Cs, and Ds by T , and replace the Bs by F

(T ∧ ¬F)→ ((T ∧ F) ∨ (¬T ∧ T))

We can now do arithmetic with the T s and F s using the truth tables as guidlines. We follow the order of
operations dictated by the parenthesis and negations (the operations are indicated in red print):

(T ∧ ¬F) → ((T ∧ F) ∨ (¬T ∧ T)) = (T ∧T) → ((T ∧ F) ∨ (F ∧ T)) (since ¬F = T and ¬T = F)
= T → ((T ∧ F) ∨ (F ∧ T)) since T ∧ T = T
= T → (F ∨ (F ∧ T)) (since T ∧ F = F)
= T → (F ∨ F) (since F ∧ T = F)
= T → F (since F ∧ F = F)
= F (since T → F = F)

Example 5.4. Find a statement which has this truth table.

P Q · · · ?
T T F
T F T
F T T
F F F

Solution: To construct the statement, locate the rows where we want truth. In this case, these are the middle
two rows. The two rows give two conditions. The first row would require P to be true and Q to be false.
A statement which would give truth here is P ∧ ¬Q. The second true row requires P to be false and Q to
be true. A statement which has truth in this instance is ¬P ∧ Q. To construct the statement we need, we
simply join these two statements with an ∨: (P ∧ ¬Q) ∨ (¬P ∧ Q). This statement will have the desired
truth values.

20

Note. The strategy is this: For each true row in the truth table form a conjunction. Each letter involved
should appear once in the conjunction. If in that row the letter is false, it will be negated in the conjunction.
If in that row the letter is true, the letter appears not negated in the conjunction. Form a conjunction like
this for each true row. Then join these together with ∨.

Example 5.5. Find a statement with these this truth table.

P Q R · · · ?
T T T T
T T F F
T F T T
T F F T
F T T F
F T F T
F F T T
F F F F

Solution: The table has five true rows, so we must first make five conjunctions. The first true row is the row
where all three statements are true. The corresponding conjunction is P ∧Q∧R. The next true row is where
P and R are true and Q is false. The corresponding statement is P ∧ ¬Q ∧ R (the Q is negated because
Q is false on this row). The next has only P being true, so the corresponding statement is P ∧ ¬Q ∧ ¬R.
The fourth true row has only Q being true. It gives ¬P ∧Q∧¬R. The last true row has only R being true,
giving ¬P ∧ ¬Q ∧R. To make our statement, we now take these five conjunctions and join them with ∨ to
get

(P ∧Q ∧R) ∨ (P ∧ ¬Q ∧R) ∨ (P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧R)

Exercises 5.6. Answer the questions below.

1. Draw truth tables for each of these:

(a) ¬(P ∧Q)

(b) ¬P ∨Q

(c) ¬B → ¬A
(d) A ∧ (B ∨ C)

(e) (A ∧B) ∨ (A ∧ C)

2. Find the truth values of the following statements:

(a) (P ∨Q) ∧ (P ∨R) if P is false, Q is true, and R is true.

(b) ¬(¬P ∧ (Q ∨ ¬R)) if P is false, Q is false, and R is true.

(c) (¬P ∧ ¬Q) ∨ (P ∨Q) if P is false and Q is true.

(d) ¬(P ∨Q) ∧ (P ∨ ¬Q) if P is true and Q is false.

(e) If the sun rises in the east, then it sets in the west.

(f) In order for the sun to set in the west, it is necessary for it to rise in the east.

(g) In order for the sun to set in the north, it is sufficient for it to rise in the west.

(h) If I clap three times, the sun will rise tomorrow.

(i) The sun rises in the east only if it sets in the north.

(j) The sun rises in the south if and only if the sun rises in the north.

3. Suppose P and Q are statements (it does not matter what they are). Write a compound statement
using P and Q which is always true. (You do not have to use both P and Q if you do not need to.)

4. Suppose P and Q are statements (it does not matter what they are). Write a compound statement
using P and Q which is always false. (You do not have to use both P and Q if you do not need to.)

21

5. Find a statement which has this truth table

P Q R · · · ?
T T T F
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F T

6. Find a statement which has this truth table

P Q R · · · ?
T T T F
T T F T
T F T F
T F F F
F T T F
F T F F
F F T F
F F F T

7. Find a statement which has this truth table

P Q R · · · ?
T T T T
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F T

8. Find a compound statement using four atomic statements which is true when three or more of the
atomic statements is true.

9. Find a compound statement using four atomic statements which is true when exactly two of the atomic
statements is true.

10. Suppose that a truth table involves two letters P and Q.

(a) There are sixteen possible final columns of the truth table. Find them.

(b) Find a statement for each of the sixteen possible final columns.

22

6 Logical Equivalence

Definition 6.1. A compound statement which is always true regardless of the truth values of the atomic
statements involved is called a tautology. The standard example of a tautology is P ∨ ¬P . Any statement
P is either true or false. This means that one of P and ¬P must always be true. Hence, P ∨ ¬P must be
true. We can draw a truth table to verify this:

P ¬P P ∨ ¬P
T F T
F T T

We see that the last column consists of only T s. This is the tell-tale sign of a tautology.

Example 6.2. Show that (¬A ∨B)→ (A→ B) is a tautology.

Solution: To show this statement is a tautology, we can simply draw a truth table and see that the final
column contains only T s.

A B ¬A A→ B ¬A ∨B (¬A ∨B)→ (A→ B)
T T F T T T
T F F F F T
F T T T T T
F F T T T T

Definition 6.3. A compound statement which is always false regardless of the truth values of the atomic
statements involved is called a contradiction. The standard example of a contradiction is P ∧ ¬P . Since P
and ¬P will always have opposite truth values, they can never both be true, so P ∧¬P must be false. Here
is the truth table

P ¬P P ∧ ¬P
T F F
F T F

To show that any other statement is a contradiction, you may draw a truth table for the statement and see
that the final column is all F s.

Definition 6.4. When two compound statements always have the same truth values regardless of the truth
values of the atomic statements involved, the two statements are logically equivalent. This means that
two statements are equivalent if, when you draw their truth tables, the final columns in the two tables are
identical.

Example 6.5. Show that P → Q and ¬P ∨Q are logically equivalent.

Solution: We draw truth tables.

P Q P → Q
T T T
T F F
F T T
F F T

and

P Q ¬P ¬P ∨Q
T T F T
T F F F
F T T T
F F T T

We begin the two tables with P and Q (the same order in both tables), and the final columns are identical.
Therefore, these two statements are equivalent.

Notation. We will denote logical equivalence using the symbol ≡. For example, P ∧ Q ≡ Q ∧ P or
P → Q ≡ ¬P ∨Q.

Basic Equivalences. There are only eight types of equivalences you need to remember. All other logical
equivalences can be derived from these. We list them below.

23

Commutative Laws:. The english words “and” and “or” do not care about order. Saying “The grass is
green, or the sky is blue” communicates the same thing as “The sky is blue, or the grass is green.” The
same is true with “and.” Thus our first pair of equivalences should make sense:

P ∧Q ≡ Q ∧ P and P ∨Q ≡ Q ∨ P

Notice that these resemble the commutative laws for multiplication and addition.

Associative Laws:. Our next pair of equivalences resembles the associative laws for multiplication and
addition. The two statements “Jill and Jane passed math, and Janet passed math” and “Jill passed math,
and Jane and Janet passed math” communicate the same thing - all three women passed. The word “and”
does not care how statements are grouped together, and neither does “or.” Thus

(P ∧Q) ∧R ≡ P ∧ (Q ∧R) and (P ∨Q) ∨R ≡ P ∨ (Q ∨R)

Because of this equivalence, we will usually just write P ∧ Q ∧ R or P ∨ Q ∨ R and dispense with the
parenthesis.

Idempotent Laws:. Our next set of equivalences again reflect the English language. All three of these
statements

“It is not the case that it is not raining.”
“It is raining, and it is raining.”

“Either it is raining, or it is raining.”

communicate the same thing - “It is raining.” Thus we have three equivalences called the idempotent laws

¬(¬P) ≡ P and P ∧ P ≡ P and P ∨ P ≡ P

Absorption Laws:. The next pair of equivalences are perhaps the least intuitive and least reflect a situation
in English. For now, we will justify them by truth tables. The equivalences are

P ∧ (P ∨Q) ≡ P and P ∨ (P ∧Q) ≡ P

Here is a truth table for P ∧ (P ∨Q)

P Q P ∨Q P ∧ (P ∨Q)
T T T T
T F T T
F T T F
F F F F

Notice that when P is true this statement is true. When P is false, this statement is false. Hence they are
equivalent.

Distributive Laws:. Consider the statement “It is raining, and either Hal forgot his hat or he forgot his
coat.” If this is true, what do we know? We know it is raining. We know that Hal forgot either his hat or
his coat. In the first case, it is raining and he forgot his hat. In the second, it is raining and he forgot his
coat. The statement seems to say “It is raining and Hal forgot his coat, or it is raining and Hal forgot his
hat.” This reflects our next pair of equivalences:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

and

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

24

These resemble the way in which we distribute multiplication over addition.

DeMorgan’s Laws:. Consider the sentence “It is not true that Sam passed math and English.” What
does this mean? Let P be “Sam passed math,” and let Q be “Sam passed English.” The statement we are
looking at is ¬(P ∧Q). In order for this to be true, P ∧Q needs to be false. This happens if at least one of
P and Q is false. Thus our sentence appears to be ¬P ∨ ¬Q - “Either Sam did not pass math, or sam did
not pass English.” This is an example of one of DeMorgan’s Laws:

¬(P ∧Q) ≡ ¬P ∨ ¬Q and ¬(P ∨Q) ≡ ¬P ∧ ¬Q

You can think of DeMorgan’s Laws as distributing negation over ∧ and ∨ - except that the negation applies
to everything, even the ∧ and the ∨.

Disjunctive Implication:. We already saw this equivalence as an example earlier. Here it is

P → Q ≡ ¬P ∨Q

This reflects what was said in the first chapter that P → Q can be phrased as “Not P unless Q.”

Contrapositive:. Suppose you know this statement is true “If Sam won his game, he is going to play in
the championship game.” If someone tells you that Sam is not going to play in the championship game,
then you immediately conclude that Sam did not win his game. You are intuitively aware of this final logical
equivalence

P → Q ≡ ¬Q→ ¬P
The statement ¬Q→ ¬P is called the contrapositive of P → Q. You should be careful not to confuse it with
the statement ¬P → ¬Q known as the inverse of P → Q or with Q→ P known as the converse of P → Q.
These statements are not equivalent to P → Q.

Basic Equivalences. Here are all of the basic equivalences together:

P ∧Q ≡ Q ∧ P commutative law
P ∨Q ≡ Q ∨ P commutative law
P ∧ (Q ∧R) ≡ (P ∧Q) ∧R associative law
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R associative law
¬(¬P) ≡ P idempotent law
P ∧ P ≡ P idempotent law
P ∨ P ≡ P idempotent law
P ≡ P ∨ (P ∧Q) absorption law
P ≡ P ∧ (P ∨Q) absorption law
P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) distributive law
P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) distributive law
¬(P ∧Q) ≡ ¬P ∨ ¬Q DeMorgan’s Law
¬(P ∨Q) ≡ ¬P ∧ ¬Q DeMorgan’s Law
P → Q ≡ ¬P ∨Q disjunctive implication
P → Q ≡ ¬Q→ ¬P contrapositive

Special Equivalences:. Suppose A is a true statement and P is any statement. A truth table for P ∧ A
would look like

P A P ∧A
T T T
F T F

First of all, notice that we only need two rows since A is true. Second, notice that the truth values for P ∧A
are identical to those for P . The statements P and P ∧ A are equivalent if A is known to be true. We
can summarize this by writing P ∧ T ≡ P - where the T denotes a true statement or tautology. A similar
equivalence holds for disjunction with a contradiction. It can be written as P ∨F ≡ P - where F represents
a contradiction.

25

Example 6.6. Rewrite the statement (B ∧D) ∨ (B ∧ ¬D) using logical equivalences.

Solution: We can use the distributive law to “undistribute” the B∧ and re-write this as B∧ (D∨¬D). Now,
D ∨ ¬D is a tautology, so this statement looks like B ∧ T (where T is the tautology). This is equivalent to
B. Thus, (B ∧D) ∨ (B ∧ ¬D) ≡ B.

Example 6.7. Use basic equivalences to show that ¬(A ∧ ¬B) is equivalent to A→ B.

Solution: We can use the basic equivalences to show this. Notice that ¬(A ∧ ¬B) is of the form of one of
DeMorgan’s Laws, so we will “distribute” the negation to get ¬(A ∧ ¬B) ≡ ¬A ∨ ¬(¬B). Next, notice the
double negation. We can use one of the idempotent laws to get ¬A∨¬(¬B) ≡ ¬A∨B. This last statement
looks just like part of disjunctive implication, which tells us that ¬A ∨ B ≡ A → B. This is what we were
looking for. Here is our work all together:

¬(A ∧ ¬B) ≡ ¬A ∨ ¬(¬B) DeMorgan’s Law
≡ ¬A ∨B Idempotent Law
≡ A→ B Disjunctive Implication

Notice how we set up our work here. To show that ¬(A ∧ ¬B) ≡ A → B, we begin with one statement on
the left of an equivalence sign (here we use ¬(A ∧ ¬B), but we could very well have started with the other
statement). We then apply equivalences to this statement, listing the results to the right of equivalence signs
until we arrive at A→ B.

Example 6.8. Show A→ (P ∨R) ≡ (A→ P) ∨ (A→ R)

Solution:
(A → P) ∨ (A → R) ≡ (¬A ∨ P) ∨ (¬A ∨R) (disjunctive implication)

≡ ¬A ∨ (P ∨ (¬A ∨R)) (associative law
≡ ¬A ∨ ((P ∨ ¬A) ∨R) (associative law)
≡ ¬A ∨ ((¬A ∨ P) ∨R) (commutative law)
≡ ¬A ∨ (¬A ∨ (P ∨R)) (associative law)
≡ (¬A ∨ ¬A) ∨ (P ∨R) (associative law)
≡ ¬A ∨ (P ∨R) (idempotent law)
≡ A → (P ∨R) (disjunctive implication)

This looks a little confusing with all of the associative law applications. It is actually much simpler. If we abuse a
little notation, the work looks like:

(A → P) ∨ (A → R) ≡ (¬A ∨ P) ∨ (¬A ∨R) (disjunctive implication)
≡ ¬A ∨ P ∨ ¬A ∨R (associative law)
≡ ¬A ∨ ¬A ∨ P ∨R (commutative law)
≡ ¬A ∨ P ∨R (idempotent law)
≡ ¬A ∨ (P ∨R) (associative law)
≡ A → (P ∨R) (disjunctive implication)

Note. Usually, we will abuse notation like this and ignore parenthesis when associativiy allows it.

Example 6.9. Show (A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡ (A ∨B)

Solution:
(A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡ (A ∨B) ∨ (P ∧A) ∨ (P ∧B)

(commutative law)
≡ (A ∨B) ∨ (P ∧ (A ∨B))
(distributive law)
≡ (A ∨B) ∨ ((A ∨B) ∧ P)
(commutative law)
≡ (A ∨B)
(absorption law)

The second step in this example can be thought of as “factoring” a common P from the last two terms. Commutativity
actually lets us distribute from both directions, so we could shorten this just commuting and absorbing:

(A ∨B) ∨ (A ∧ P) ∨ (B ∧ P) ≡ (A ∨B) ∨ ((A ∨B) ∧ P) ≡ (A ∨B)

Example 6.10. Show (P → B) ∧ (Q→ B) ≡ (P ∨Q)→ B

26

Solution:
(P → B) ∧ (Q→ B) ≡ (¬P ∨B) ∧ (¬Q ∨B) (disjunctive implication)

≡ (¬P ∧ ¬Q) ∨B (distributive law)
≡ ¬(P ∨Q) ∨B (DeMorgan’s Law)
≡ (P ∨Q)→ B (disjunctive implication)

Example 6.11. Use logical equicalences to simplify the statement “It is not true that I passed and you did
not.”

Solution: Let I be “I passed,” and let Y be “You passed.” The statement we are considering is ¬(I ∧ ¬Y).
Using DeMorgan’s Law and then the idempotent law, we see ¬(I ∧ ¬Y) ≡ ¬I ∨ ¬¬Y ≡ ¬I ∨ Y . Thus the
original statement is equivalent to the simpler statement “Either I did not pass, or you did.”

Example 6.12. Suppose you are building a machine with a warning light and you are told that “The
warning light should come on if either the temperature is high while the pressure is high and the door is
open or the temperature is high while it is not the case that both the pressure is not high and the door is
closed.” Use logical equivalences to simplify this is a baffling condition.

Solution: Let T be “The temperature is high.” Let P be “The pressure is high,” and let D be “The door
is open.” Our condition for the warning light to come on is (T ∧ P ∧ D) ∨ (T ∧ ¬(¬P ∧ ¬D)). This is so
confusing, the circuitry to build the warning light could be quite complicated. However, notice

(T ∧ P ∧D) ∨ (T ∧ ¬(¬P ∧ ¬D)) ≡ T ∧ ((P ∧D) ∨ (P ∨D)) (distributive law)
≡ T ∧ (((P ∧D) ∨ P) ∨ ((P ∧D) ∨D)) (distributive law)
≡ T ∧ (P ∨D) (absorption law)

so the condition is equivalent to the much simpler statement “The temperature is high and either the
pressure is high or the door is open.”

Rewriting Implications. There are many cases in our natural language when an implication may be
expressed without the words “if...then..” For example, the sentence

The square of any even integer is even.

is logically the same as the implication

If n is an even integer, then n2 is even.

The statement

All kittens are cute.

can be expressed as

If it is a kitten, then it is cute.

The sentence

When it rains, it pours.

can be expressed

If it is raining, then it is pouring.

Example 6.13. Write this sentence as an implication. Then rewrite the sentence using the contrapositive,
as a disjunction, using the word necessary and using the word sufficient. Finally, write the inverse and
converse of the implication (which happen not to be equivalent to the implication).

Original: When it rains, it pours.

Solution:

27

� Implication: If it is raining, then it is pouring.

� Contrapositive: If it is not pouring, then it is not raining.

� Disjunction: Either it is not raining, or it is pouring.

� Necessary: In order for it to rain, it is necessary that it pours.

� Sufficient: In order for it to pour, it is sufficient for it to rain.

� Inverse: If it is not raining, then it is not pouring.

� Converse: If it is pouring, then it is raining.

Fewer Logical Connectives. Not all of our logical connectives are necessary. The biconditional can be
expressed with conjunction and implication. Disjunctive implication lets us express the implication with ¬
and ∨. In fact, DeMorgan’s Laws let us write ∨ with ¬ and ∧:

P ∨Q ≡ ¬(¬P ∧ ¬Q).

We can also express ∧ with ¬ and ∨:
P ∧Q ≡ ¬(¬P ∨ ¬Q).

We could write all of our logical statements using fewer logical connectives. However, having all of our
connectives makes it easier to translate between symbols and english.

Exercises 6.14. Answer the questions below.

1. Use the basic logical equivalences to show that these statements are equivalent.

(a) (P → R) ∨ (Q→ R) ≡ (P ∧Q)→ R

(b) ¬(A ∨B) ∨ P ≡ (A→ P) ∧ (B → P)

(c) (A ∨B) ∧ (C ∨D) ≡ (A ∧ C) ∨ (B ∧ C) ∨ (A ∧D) ∨ (B ∧D)

(d) A ∨ (B ∨ C) ≡ (A ∨B) ∨ (A ∨ C)

2. Use logical equivalences to simplify the following statements. Write your answers in words.

(a) It is not true that both it is not cold and it is raining or snowing.

(b) The possible combinations of toppings on the sandwich are meat and pickles and cheese, or meat
and onions and cheese, or meat and pickles and tomatoes.

(c) You will pass if either you pass both the midterm and the final, or if you do not fail both the
major project and the final.

(d) If we beat the “Cats” and the “Dogs” but not the “Penguins,” or if we beat the “Cats” and the
“Penguins” but not the “Dogs,” or if we beat all three, then we will go to the playoffs.

3. Write each sentence as an implication. Then rewrite the sentence using the contrapositive, as a disjunc-
tion, using the word necessary and using the word sufficient. Finally, write the inverse and converse of
the implication (which happen not to be equivalent to the implication).

(a) All men are liars.

(b) When the sun shines, she dances.

(c) She cries when it rains.

(d) All primes greater than 2 are odd. (Hint: “If n is...”)

(e) If you build it, he will come.

4. Express every connective in terms of ¬ and ∧.

5. Define a new connective (called the Sheffer Stroke) by P |Q = ¬(P ∧ Q). Express all of the logical
connectives using |. For example, ¬P = P |P and P ∧ Q = (P |Q)|(P |Q). (Check these.) This means
that we could do all of our logic with only one logical connective.

28

7 Logic Circuits

In this section, we will draw diagrams which reflect circuits. Since we will be using our tools of logic to
draw these diagrams, we call them logic circuits. Rather than using the symbols T and F , when drawing
logic circuits, we will use the symbols 0 and 1. Lines represent wires or copper traces that carry electricity.
Each diagram will have one or more wires coming from the left side labeled by a Boolean variable (atomic
statement) such as this:

P

These wires we will call inputs. When the statement P is true, the input wire labeled P is carrying electricity.
We say that it is on or open or hot. When the statement P is false, the input wire is not carrying electricity.
We say that it is off or closed. All of the inputs to a diagram are routed through gates that perfom logical
operations. Each diagram will have one wire exiting to the right called the output that looks something like
this:

· · ·

For each logic circuit, there is a logical statement or Boolean expression that tells, based on the inputs, when
the output wire will be on or off.

We have logic gates that mirror our logical operators ¬, ∧, and ∨. A NOT-gate or inverter has one input
and one output. When the input is on, the output is off. When the input is off, the output is on. We draw
NOT-gates like so:

P NOT ¬P

An AND-gate has two inputs and one output. The output is on if both inputs are on. Otherwise it is
off. Here is how we draw AND-gates:

P
AND

Q
P ∧Q

An OR-gate also has two inputs and one output. The output is off if both inputs are off. Otherwise, it
is on. Here is a diagram:

P
OR

Q
P ∨Q

To draw logic circuits, we connect the inputs to the circuit to inputs of logic gates, and we connect the
outputs of logic gates to inputs of other logic gates.

Example 7.1. Draw a logic gate for the statement (¬P ∧Q) ∨R.

Solution: Since our statement has three variables, we begin with three inputs labeled by the variables.

P

Q

R

We now work from the inside out to build the statement. This is similar to how we built the columns for
truth tables. The portion of the statement which is just a bit larger than what we have already draw is ¬P ,
so we add a NOT-gate and run the input for P through it.

29

P

Q

R

NOT

We now have a wire for ¬P . We must run this and the wire for Q through an AND-gate to compute ¬P ∧Q.
We add an AND-gate and route the wires appropriately.

P

Q

R

NOT

AND

The wire farthest to the right now represents ¬P ∧ Q. We need to or this with R, so we add an OR-gate
and run the wire for ¬P ∧Q and the wire from R through it.

P

Q

R

NOT

AND

OR

Since the output from the OR-gate is the output of our statement, we finish off the diagram with a small
circle at the end of the output.

We can solder wires together so that we can split the flow from an input. This is demonstrated in the
next example. Note that we only solder to split the flow of electricity. We never solder to join the flow of
electricity through different wires (although, philosophically, this would simply be an or).

Example 7.2. Draw a logic circuit for ¬P ∨ P .

Solution: We have one input P . The input needs to be fed into a NOT-gate to get ¬P , and it needs to be
fed into an OR-gate. This means we need to split the P wire. This is indicated in the diagram by the black
dot joining where the input from P separates.

P NOT

OR

Note that since ¬P ∨ P is a tautology, this logic circuit is always on.

Note. It is sometimes difficult to draw logic circuits without crossing lines, especially if we want the flow of
electricity always to be from left to right. If two lines in a diagram cross but do not have the circle solder
mark, then we will assume the lines are not connected.

Example 7.3. Draw a logic circuit for (P ∨Q) ∧ (¬P ∨ ¬Q).

30

Solution: A solution is pictured below.

OR

AND

NOT

NOT

OR

P

Q

This circuit is on if exactly one of P and Q is on, so it is a gate for exclusive or. Many texts provide XOR-
gates. We are not using them. Notice that if we were to use De Morgan’s Law to rewrite this statement
as

(P ∨Q) ∧ (¬P ∨ ¬Q) ≡ (P ∨Q) ∧ ¬(P ∧Q)

then we could make a slightly smaller circuit. Smaller means simpler, which in the real world means cheaper
and faster.

Example 7.4. A hall light is to operated by two switches labeled P and Q. When both switches are on,
the light is to be on. If the light is on and either switch is flipped, then the light should turn off. If the light
is off and either switch is flipped, then the light should turn on. Design a logic circuit to operate this light.

Solution: First, we will come up with a Boolean expression (statement) that mimics the operation of the
light. Then we will draw a circuit for this expression. Our statement has two variables, P and Q, so we
start a truth table with two variables and all possible combination of truth values.

P Q ?
1 1
1 0
0 1
0 0

If both switches are on, then the light is supposed to be on, so there is a 1 in the first row. We can get from
the first row (light on) to either the second or third row by flipping one switch, so in both of these rows, the
light should be off.

P Q ?
1 1 1
1 0 0
0 1 0
0 0

Finally, we can get from the third row (light off) to the last row by flipping the switch Q, so the light should
turn on in the last row. Here is our truth table:

P Q ?
1 1 1
1 0 0
0 1 0
0 0 1

Focusing on the 1s in the last column, a statement which has this truth table is

(P ∧Q) ∨ (¬P ∧ ¬Q).

This is what we need to draw a logic circuit for.

31

AND

OR

NOT

NOT

AND

P

Q

Exercises 7.5. Complete the questions below.

1. Draw a logic circuit for the statement P ∧Q∧¬R. Note that our AND gate can only accept two inputs
at a time.

2. Draw a logic circuit for the statement P → Q. Note that we do not have a gate for →.

3. Draw a logic circuit for the statement (P ∧Q) ∨ ¬(Q ∧R).

4. Design a logic circuit for a hall light operated by three switches P , Q, and R. The light should be on
if all three switches are on, and the light should change states if any single switch is flipped.

5. When we add two one bit numbers, the result may be one bit or two bits. For example, 0 + 1 = 1 but
1 + 1 = 10. This question builds logic circuits to calculate these bits.

(a) Design a logic circuit with two inputs P and Q. The inputs are interpreted as bits, and the output
is the ones place of P + Q.

(b) Design a logic circuit with two inputs P and Q. The inputs are interpreted as bits, and the output
is the twos place of P + Q. (This is the carry bit.)

(c) Combine the two circuits you just designed into one circuits with two inputs (P and Q) and two
ouputs, one called S for the ones bit and one called C for the carry or twos bit.

6. We have seen that when adding two base two numbers we may end up needing to add three bits – two
bits from the numbers being added along with a carry bit. So the circuit built in the last exercise does
not do the full job of adding. We call it a half-adder. Treat a half-adder like a new type of logic gate.
It has two inputs (the bits being added) and two outputs (the sum bit and the carry bit). Use two
half-adders to design a circuit that adds three bits. The circuit should have three inputs P , Q, and
R. The circuit should have two outputs. S will be the ones place of the sum, and C will be the twos
place or carry bit. This circuit is a full-adder.

32

8 Predicates and Quantifiers

Predicates. Consider the sentence, “Bob is a man.” The sentences “Larry is a man,” “Lola is a man,”
and “Glenda is a man” are all related to this sentence. They are all of the form “x is a man.” Each has
a different name (or person) substituted for the letter x. The sentence “x is a man” is an example of a
predicate. A predicate or open statement is a sentence involving variables which takes on a truth value
once specific objects are substituted for the variables.

Predicate Notation. We use letters to represent predicates. If a predicate has a variable x, and if we want
to name the predicate P , we will usually refer to the predicate as P (x) (read “P of x”). The same predicate
with “Bob” substituted for x would be P (Bob). For example, if P (x) is “x is a man” then P (Bob) would
be “Bob is a man.” P (Glenda) is “Glenda is a man.”

Predicates can have more than one variable. If Q(x, y) is “x is married to y,” then Q(Bob,Glenda) is
“Bob is married to Glenda.” Q(1, 2) is “1 is married to 2” (which makes no sense). Suppose that B(x, y, z)
is “y is between x and z.” Then B(1, 2, 3) is “2 is between 1 and 3.” B(Bob,Frank,Hank) is “Frank is
between Bob and Hank.”

Definition 8.1. The number of variables in a predicate is called the rank of the predicate. Here, P has
rank 1, Q has rank 2, and B has rank 3. We can also say that Q is a 2-place predicate or that B is a 3-place
predicate.

Quantifiers. Consider the sentence, “All men are mortal.” There is clearly the predicate “x is mortal” at
play here. The difference is that we are trying to substitute all men for x at the same time. We can rewrite
this sentence in this way to account for all men:

For all x, if x is a man, then x is mortal.

Here there are two predicates which have been combined: “x is a man” and “x is mortal.” We also have an
implication in the form of “if...then...” What is new is the “For all x.” This is a quantifier. We will have
two quantifiers, one to mean “For all” and one to mean “For some.”

Definition 8.2. The universal quantifier is the symbol ∀. The expression ∀x can be read as “For all x.” If
P (x) is any predicate, then ∀xP (x) can be read “For all x, P (x).”

Definition 8.3. The existential quantifier is the symbol ∃. The expression ∃x can be read as “For some x”
or “There exists x.” If P (x) is any predicate, then ∃xP (x) can be read “For some x, P (x)” or “There exists
x so that P (x).” (Note: Here “some” means “at least one.”)

Varying Translations. As with our logical connectives, there are a variety of ways to translate quantifiers
into English. Some translations of ∀xP (x) are

For all x, P (x).
For any x, P (x).
P (x), for all x.

Some translations of ∃xP (x) are

For some x, P (x).
For at least one x, P (x).

There exists an x so that P (x).
There is an x so that P (x).

There is at least one x so that P (x).
P (x) for some x.

P (x) for at least one x.

33

Sets:. We need some very basic ideas about sets before we continue (we will spend much more time with
sets later). Even though most of mathematics is built upon the theory of sets, a set is something which
mathematicians never define. Any definition of a set would require the use of a word such as “collection.” Of
course, we would then need to define “collection.” This might include a word like “gathering” or “group.”
These words would then need to be defined. Since we only have a finite number of synonyms for any word,
we would eventually circle around again to the word “set.” To avoid this, we simply do not define the word
and hope everyone has some intuitive idea what a set is. The things which compose a set are called the
elements of the set. To denote that something called x is an element of a set named S, we would use the
notation x ∈ S. This can be read as “x is in S,” or “x is an element of S,” or simply “x in S.” We will
denote the set of real numbers as R and the set of integers as Z.

Quantifiers and Sets. The symbols ∀x ∈ S will be used to mean “For all x in S . . .” For example, if P (x)
is the open statement x2 ≥ 0 we can write “For all x in the real numbers, x2 > 0” as (∀x ∈ R)P (x). The
statement (∀x ∈ S)P (x) is true if this statement is true: “If s ∈ S, then P (s).”

The symbols ∃x ∈ S will mean “There is an x in S so that. . .” For example, if P (x) is the statement
x2 = x, we can write “There is an x in the real numbers so that x2 = x” as (∃x ∈ R)P (x). The statement
(∃x ∈ S)P (x) is true if P (s) is true for some s ∈ S.

Example 8.4. Let P (x) be the statement “x received an A,” and let S is the set of people in class. Translate
this sentence into words: (∃x ∈ S)P (x).

Solution: There are many ways to do this. Here are a few.

� Someone in class received an A.

� There is a person in class who received an A.

� There exists a student in class who received an A.

Example 8.5. Translate the the statement “2 has a square root in the real numbers” into symbols.

Solution: This sentence can be written as (∃x ∈ R)(x2 = 2).

Abbreviations. If the set is known, we can abbreviate ∃x ∈ S and ∀x ∈ S simply as ∃x and ∀x. Sometimes,
we will need to use more than one quantifier. For example, the statement “For all real numbers x, y, and z,
if x ≤ y and y ≤ z then x ≤ z” really begins with three quantifiers

(∀x ∈ R)(∀y ∈ R)(∀z ∈ R)([(x ≤ y) ∧ (y ≤ z)]→ (x ≤ z))

We can abbreviate this as
(∀x, y, z ∈ R)([(x ≤ y) ∧ (y ≤ z)]→ (x ≤ z)).

Laziness. If all of the elements in a certain discussion are members of the same set, then we may omit
the set in our quantifiers. For example, if every object being discussed is a reall number, then instead of
(∀x ∈ R)P (x), we will usually write ∀xP (x) and let the “in R” be understood

Example 8.6. Translate the sentence into words and then find the truth value:

(∀x ∈ R)(∃y ∈ R)(y2 = x)

Solution: This sentence says, “For every real number x there is a real number y so that y2 = x.” The
equation y2 = x is declaring that y is the square root of x, so this says, “Every real number has a real square
root.” This sentence is false since −1 is a real number without a real square root.

Example 8.7. Let S be the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Translate this sentence into symbols: “There is a
number in S which is less than or equal to every number in S.”

34

Solution: The statement begins with “There is. . .” This is an existential quantifier, so we will have an
(∃x ∈ S) in our translation. The rest of the statement says x is less than or equal to every number in S.
The “every” is a universal quantifier, so we must have a (∀y ∈ S) also. We have no other quantifiers. Our
statement should begin (∃x ∈ S)(∀y ∈ S). The statement communicates that x is less than or equal to y.
Thus the whole statement should be (∃x ∈ S)(∀y ∈ S)(x ≤ y).

Example 8.8. Translate this sentence into symbols. “Not every element of S has a square in S.”

Solution: The “every element” is a (∀x ∈ S). The “has” symbolizes an existence, so we will need an (∃y ∈ S).
Thus, we have so far (∀x ∈ S)(∃y ∈ S). Next, the statement says that y (the thing that x “has”) is the
square of x, so we get (∀x ∈ S)(∃y ∈ S)(x2 = y). Finally, there is a “not” preceding everything, so we negate
this statement to get ¬((∀x ∈ S)(∃y ∈ S)(x2 = y)).

Example 8.9. Let P (x) be the open statement “x is prime.” Translate the statement into symbols: “Any
number in S larger than 7 is not prime.”

Solution: To begin, we translate “any number in S” as (∀x ∈ S). The statement communicates that if x > 7,
then x is not prime. We can write this using P (x): (∀x ∈ S)((x > 7)→ ¬P (x)).

Example 8.10. Translate this sentences into symbols: Every dog chases some cat.

Solution: We actually give two solutions here, based on whether being a dog or cat is expressed with a
predicate or a set. First, let D(x) be “x is a dog.” Let C(x) be “x is a cat.” Let H(x, y) be “x chases y.”
Our sentence begins with “every dog.” This is a universal quantifier ∀x, but it only applies if x is a dog.
Therefore, we begin our sentence with ∀x(D(x)→ (· · ·)). To address the (· · ·), we look to the sentence for
what must be true if x is a dog. If x is a dog, then x must chase some cat. That is, there is some y so that
both y is a cat (that is, C(y)) and x chases y (or H(x, y)). Our sentence is

∀x(D(X)→ ∃y(C(y) ∧H(x, y))).

For our second solution, instead of using predicates to declare that something is a dog or cat, we use sets.
Let D be the set of all dogs. Let C be the set of all cats. Let H(x, y) be “x chases y.” The sentence begins
wtih “every dog” so our symbols begin with (∀x ∈ D). If x ∈ D, then x must chase some cat. We can call
that cat y, but before we can say that x chases y, we need to declare that y is “some cat.” Our symbols are

(∀x ∈ D)(∃y ∈ C)H(x, y).

Universal Negation. If you are told, “It is not the case that everyone in class received an A,” then you
know immediately that someone did not get an A. This is an example of

¬(∀x ∈ S)P (x) ≡ (∃x ∈ S)¬P (x).

Existential Negation. If you are told, “It is not the case that someone received an A,” you are dissapointed
because you know everyone scored below an A. Intuitively, you know

¬(∃x ∈ S)P (x) ≡ (∀x ∈ S)¬P (x).

Example 8.11. Convert this sentence to symbols. Then negate the sentence and rewrite it with universal
and existential negation so that no negations are outside any quantifiers. Then translate this negation back
into words: There is an integer which is greater than or equal to every integer.

35

Solution: First, we translate to symbols. “There is an integer” gives us ∃x ∈ Z. What we want to say about
x is that x is greater than or equal to every integer. This “every integer” gives a universal quatification,
∀y ∈ Z. Therefore, we will have our two quantifiers declaring the variables x and y followed by the statement
that x ≥ y. That is, (∃x ∈ Z)(∀y ∈ Z)(x ≥ y).

Now, the negation of this statement is:

¬(∃x ∈ Z)(∀y ∈ Z)(x ≥ y) ≡ (∀x ∈ Z)(∃y ∈ Z)¬(x ≥ y) ≡ (∀x ∈ Z)(∃y ∈ Z)(x < y).

In words, this is, “Every integer has an integer greater than it.”

Exercises 8.12. Answer the questions below.

1. Let S be the set of numbers {2, 3, 4, 6, 8}. Let P (x) be “x is prime,” and let T (x) be “x is a multiple
of 2.” Translate each of the following statements into symbols.

(a) There is a number in S which is both prime and a multiple of two.

(b) Every number in S is either prime or is a multiple of two.

(c) There is a number in S which is greater than or equal to every number in S.

(d) There is a number in S which is prime but is not a multiple of two.

(e) There is a prime number in S which is less than or equal to every number in S.

(f) There is a prime number x in S so that for any number y in S, if y is prime, then y ≤ x.

2. Translate each of these English sentences into symbolic sentences using quantifiers. Use D for the set
of dogs and C for the set of cats. Use F (x) for “x has fleas.” Use H(x, y) for “x chases y.”

(a) All dogs have fleas.

(b) Some dogs have fleas.

(c) Not every dog has fleas.

(d) Some dogs do not have fleas.

(e) No dog has fleas.

(f) Every dog chases some cat.

(g) Every dog chases every cat.

(h) Some dog chases every cat.

(i) Some dog does not chase any cat.

(j) No dog chases every cat.

3. Negate each of these statements.

(a) [(∀x)P (x)] ∨ [(∃x)Q(x)]

(b) (∀x)(P (x)→ [(∀y)Q(x, y)])

(c) (∃x)(∀y)(P (x, y) ∨ (∃z)Q(x, y, z))

(d) For every n ∈ Z, there is an x ∈ R so that x2 = n.

4. Here are eight sets of “holes.” Some are filled (the dark ones). Some are not filled.

A. ◦ ◦ ◦
B. ◦ ◦ •
C. ◦ • ◦

D. ◦ • •
E. • ◦ ◦
F. • ◦ •

G. • • ◦

H. • • •

Let F (x) be “x is filled.” Translate the following statements into symbols and then decide which sets
of holes satisfy the statement. You may assume that all quantifiers are over the set of holes. (This
means that you can simple write ∀x . . . rather than (∀x ∈ H) · · · or ∀x(H(x)→ · · ·).)

36

(a) All holes are filled.

(b) Some holes are filled.

(c) A hole is filled.

(d) There is a hole which is filled.

(e) There is a hole which is not filled.

(f) All holes are not filled.

(g) Some holes are not filled.

(h) A hole is not filled.

(i) It is not the case that all holes are filled.

(j) It is not the case that some holes are filled.

(k) It is not the case that all holes are not filled.

(l) It is not the case that some holes are not filled.

(m) Not all holes are filled.

(n) Not all holes are not filled.

37

9 Sets

In any spoken language, at any point in time, there are only finitely many words. This has surprising con-
sequences when you try to define words. Suppose we try to define the word “little.” Many dictionaries will
have this definition: “small in size.” The same dictionaries will define “small” as “little in size.” If we do
not know what “little” or “small” means, these dictionaries are useless.

Sets. To avoid circular definitions, mathematicians begin with primitives – undefined terms. The most
fundamental primitive in all of mathematics is set. We will not define what a set is. Presumably, collection
is a synonym. Sets contain things which we call elements. To indicate that an element x is in a set A, we
write x ∈ A. This notation can be read as “x is an element of A,” or as “x is in A,” or if necessary, “x in
A.” To express that x is not in A, we would write x ̸∈ A.

Roster Notation. If we can list the elements of a set, we will do so between braces. For example, the set
containing the symbols a, b, 1, and 2 is {a, b, 1, 2}. We can use braces to list infinite sets if there is a clear
pattern. For example, the even integers are {. . . ,−4,−2, 0, 2, 4, 6, . . .}. An element of a set can be listed
within braces repeatedly without changing the set. For example, the sets {a, b, c} and {a, a, b, b, c, c} are the
same sets. Within braces, order also does not matter. The sets {t, e, a} and {a, t, e} are the same set.

Special Sets of Numbers. The natural numbers are the numbers {0, 1, 2, 3, 4, . . .}. This set is denoted
N. Historically, 0 was not included in the set of natural numbers. However, many modern textbooks do
include 0 as it makes certain statements simpler later. The set {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, . . .} is called
the set of integers and is denoted as Z. The set of all numbers which can be expressed as an integer divided
by a non-zero integer is called the set of rational numbers and is denoted by Q. These are precisely those
numbers which in decimal form “repeat” such as 1.456121212121212 . . . or which “terminate” such as 1.234.
The irrational numbers are those numbers which cannot be expressed as a fraction of integers. These are
those numbers which in decimal form do not repeat or terminate. The set of all numbers which are rational
or irrational is the set of real numbers and is denoted R.

Set Builder Notation. Sometimes we need to describe a set which is too big or complicated to simply
list. In this case, we can sometimes use set builder notation. This notation looks like:

{x : P (x)} or {x ∈ S : P (x)}.

The colon inside the braces is read as “such that.” The notation on the left is defined to mean the set of
all x such that P (x) is true. This means that an element x is in the set if and only if the statement P (x)
is true. The notation on the right is similar; however, this notation lets us restrict our attention to things
which are in the set S. This is the set of all x in the set S for which the statement P (x) is true.

Example 9.1. Use set builder notation to describe the set of even integers.

Solution: The even integers are those integers which are multiples of 2. A number n is a multiple of 2 if
n = 2k for some number k, that is, n is even if (∃k ∈ Z)(n = 2k). Therefore, our set builder notation for
the set of even integers is {n ∈ Z : (∃k ∈ Z)(n = 2k)}.

Abuse of Notation. We can abbreviate set builder notation like we just built in the last example. This set
might be written as {2k : k ∈ Z}. This is the set of all elements that look like 2k for some integer k. This
type of set builder notation looks like {f(x) : P (x)} where f is some function. We will talk about functions
later.

Example 9.2. Use set builder notation to describe the interval [2,∞) in R.

Solution: This is the set of real numbers which are greater than or equal to 2, or {x ∈ R : x ≥ 2}.

Example 9.3. Use set builder notation to describe the set of real solutions to the equation x2− 3x+ 2 = 0.

38

Solution: This is easier than it sounds: {x ∈ R : x2 − 3x + 2 = 0}.

Example 9.4. Let H(x) be the predicate “x is a horse” and let B(x) be “x is brown.” Use set builder
notation to describe the set of brown horses.

Solution: An element x is in this set if it is a horse – H(x) – and it is brown – B(x). So this is the set
{x : H(x) ∧B(x)}.

Definition 9.5. A set A is a subset of another set B if every element of A is also an element of B. We
denote this relationship by A ⊆ B. This notation is read as “A is a subset of B.” If A ⊆ B but A is not the
same set as B, then we say A is a proper subset of B. This is denoted as A ⊂ B.

Warning. Some older textbooks (and folks educated out of them) use the symbol ⊂ for ⊆. Be aware of
this if you are getting help online or from a different text.

Caution. It is very important not to confuse the symbols ∈ and ⊆. The notation X ∈ Y implies that Y is
a set and X is a single element of that set. The notation X ⊆ Y implies that X and Y are both sets and X
is a subset of Y . However, there are times when X and Y might both be sets and we still have X ∈ Y . For
example, this happens if X = {1, 2} and Y = {{1, 2}, 3}. Note here that Y is a set with two elements. They
are {1, 2} and 3.

Definition 9.6. The empty set (denoted ∅) is the set which contains no elements. The empty set is a subset
of every set (including itself) since the implication “If x ∈ ∅ then x ∈ A” is always true because x ∈ ∅ is
always false. Note that ∅ = { }.

Example 9.7. List all of the subsets of {a, b, c}.

Solution: We list the subsets from smallest to largest. First, there is one subset with zero elements – ∅. Next
we move to subsets with one element. There are three of these – {a}, {b}, {c}. Next we list the two elements
subsets. For a larger set, these may be difficult to list. For this set, it is easiest to focus on what element
is being left out. We can leave out a, b, or c to get three subsets – {b, c}, {a, c}, {a, b}. Finally, there is
one subset with three elements, the entire set – {a, b, c}. The set of subsets of {a, b, c} (which we will name
below) is

{∅, {a}, {b}, {c}, {b, c}, {a, c}, {a, b}, {a, b, c}}.

Intersection. If A and B are sets, then the intersection of A and B (denoted A ∩B) is the set

A ∩B = {x : (x ∈ A) ∧ (x ∈ B)}

For example, if A is the set of even integers and B is the set of multiples of three, then A ∩ B is the set of
even multiples of three. This is the set of multiples of six.

Union. If A and B are sets, then the union of A and B (denoted A ∪B) is the set

A ∪B = {x : (x ∈ A) ∨ (x ∈ B)}

For example, if A = {1, 2, 3} and B = {2, 3, 4}, then A ∪B = {1, 2, 3, 4}.

Difference. If A and B are sets, then the difference, A−B, of A and B is the set

A−B = {x : (x ∈ A) ∧ (x ̸∈ B)}

For example, if A = {a, b, c}, B = {b, d, f} and C = {a, b, c, d}, then A − B = {a, c} and A − C = ∅. It is
not uncommon for some texts to use the confusing notation A \B for A−B.

Complement. In some situations, there is a universe of discourse U which contains all of the elements
that we are concerned with at the time. When there is such a universe, then we may want to talk about the

39

elements which are not in a set A. We call this the complement of A. That is, the complement of A is the
set

Ā = U −A = {x ∈ U : x ̸∈ A}.
Some texts refer the complement as A′.

Cartesian Product. The Cartesian product of two sets A and B (denoted by A × B) is the set of all
ordered pairs (a, b) so that a ∈ A and b ∈ B. For example, if A = {1, 2, 3} and B = {a, b}, then

A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

It is important to remember that in the pairs (a, b) order matters. The Cartesian plane on which we learn
to graph in elementary algebra and calculus can be thought of as R×R. If there is some algebraic structure
that we care about on the sets in a Cartesian product, then we use the words direct product to describe the
Cartesian product with with the inherited algebraic structure. This can be confusing at times, so we will
likely use both terms to refer to A×B. We may simply call this the product of the sets. We will never call
it the cross product. That is a product between vectors, not sets. Unfortunately, it uses the same notation.

Powerset. The powerset of a set A (denoted by P(A)) is the set of all subsets of A. For example, if
A = {a, b, c}, then

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Note. Note that the symbol for intersection resembles that for “and.” This is no accident. The word “and”
is important in the definition of intersection. Similarly, note that the symbol for union resembles that for
“or.”

Example 9.8. Working in the universe U = {a, b, c, d, e, f, g}, let A = {a, b, c, d, e}, B = {c, d, f}, and
C = {a, f}. Find the indicated sets.

1. A ∩B

2. B ∪ C

3. B −A

4. B × C

5. P(C)

6. (A ∩B) ∪ C

7. A− (B ∪ C)

8. Ā

Solution:

1. To calculate A ∩B, we step through each element of A and ask if that element is in B also. If so, we
include it in the intersection. This gives

A ∩B = {c, d}.

2. To calculate B ∪ C, we list all of the elements of B and all of the elements of C in braces. Then, we
remove any duplicates. For readability, we alphabetize the elements.

B ∪ C = {c, d, f , a, f} = {a, c, d, f}.

3. To calculate B −A, we list the elements of B, and then we cross out those in the list which are in A.

B −A = {c−, d−, f} = {f}.

4. The set B × C is all ordered pairs where the first element comes from B and the second from C.

B × C = {(c, a), (d, a), (f, a), (c, f), (d, f), (f, f)}

.

40

5. The powerset of C contains subsets with zero, one, or two elements.

P(C) = {∅, {a}, {f}, {a, f}}.

6. For (A ∩ B) ∪ C, we work inside parentheses and first find A ∩ B. Luckily we have already done this
and know that A ∩B = {c, d}. Now, we union this with C to get

(A ∩B) ∪ C = {c, d} ∪ {a, f} = {a, c, d, f}.

7. For A− (B ∪C), we first need B ∪C, which we already know to be B ∪C = {a, c, d, f}. Then we find
the difference.

A− (B ∪ C) = {a, b, c, d, e} − {a, c, d, f} = {b, e}.

8. For Ā we want those elements of U which are not in A. These are

Ā = {f, g}.

Venn Diagrams. Diagrams can be drawn to help visualize set operations. Each set is represented by an
oval or a circle. The intersection, union, and difference of the sets can then be seen geometrically:

BA

&%
'$

&%
'$

@
@

@I

A ∩B�
�
���

A−B

The union of A and B would be all of the area inside either circle. These diagrams of circles are called Venn
Diagrams. Venn Diagrams can also be used to visualize more complicated set operations:

C

BA

&%
'$&%

'$
&%
'$

@
@I

(B ∩ C)−A

Example 9.9. Let A = {1, 2, 3, 4, 5, 6} and B = {4, 5, 6, 7, 8, 9}. Calculate (A−B) ∪ (B −A).

Solution: First, A− B = {1, 2, 3} and B − A = {7, 8, 9}. Then (A− B) ∪ (B − A) = {1, 2, 3, 7, 8, 9}. These
are the elements that A and B do not have in common.

Symmetric Difference. The set (A−B)∪ (B −A) calculated in the last example is called the symmetric
difference of A and B and is denoted by A ⊕ B. Note that this is the same notation that we used for the
exclusive or. We use this notation because (A − B) ∪ (B − A) consists of those elements which are in one
set or the other but not both.

Set Equality. If A and B are sets, then A = B if and only if A ⊆ B and B ⊆ A.

Set Identities. Logical equivalences can be applied to the definitions of set operations to establish identities
using those operations. The following are true for any sets A, B, and C.

41

A ∩B = B ∩A commutative law
A ∪B = B ∪A commutative law
A ∩ (B ∩ C) = (A ∩B) ∩ C associative law
A ∪ (B ∪ C) = (A ∪B) ∪ C associative law
A ∩A = A idempotent law
A ∪A = A idempotent law
A ∩ (A ∪B) = A absorption law
A ∪ (A ∩B) = A absorption law
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) distributive law
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) distributive law
A− (B ∩ C) = (A−B) ∪ (A− C) DeMorgan’s Law
A− (B ∪ C) = (A−B) ∩ (A− C) DeMorgan’s Law

Exercises 9.10. Complete the following questions.

1. Use set builder notation to describe each of the following sets.

(a) The set of real solutions to the equation x3 = x.

(b) The set of all integer multiples of 6.

(c) The set of all real numbers which are less than −2 or greater than 2.

(d) The set of all numbers which can be written as an integer divided by a positive power of 2.

(e) The set of all real numbers which are larger than their squares.

2. Let E(x) be “x is even.” Let O(x) be “x is odd.” Let P (x) be “x is prime.” Recall that Z is the set
of integers, so to say “x is an integer” you can write x ∈ Z. Write the following sets in set-builder
notation.

(a) The set of integer multiples of 3.

(b) The set of odd integers less than 10.

(c) The set of all integers which are either even or greater than 10.

(d) The set of all integers which are prime.

(e) The set of all even prime integers.

3. Let U be the set of all bit strings of length 4 (there are 16 of them). Let B be the set of elements of U
which begin with 1. Let E be the set of elements of U which end with 1. Let T be the set of elements
of U with exactly two 1s. Draw a Venn diagram for U showing B, E, and T with all sixteen elements
of U in the appropriate regions.

4. List the elements of these sets

(a) {x ∈ N : x2 < 10}
(b) {x ∈ N : (x < 20) ∧ ∃y[(y ∈ N) ∧ ((x = 3y) ∨ (x = 5y))]}
(c) {n : (n ∈ N) ∧ ∃m[(m ∈ N) ∧ (n = m2)] ∧ (n < 20)}
(d) {x ∈ N : ∃a∃b[(a ∈ N) ∧ (b ∈ N) ∧ (a > 1) ∧ (b > 1) ∧ (a < 5) ∧ (b < 5) ∧ (x = ab)]}

5. Let A = {a, b, c}, B = {a, b}, C = {b, c, d}, and D = {a, b, B}. Fill in the blank with ∈ or ⊆ or both.

(a) a A

(b) B A

(c) B D

(d) ∅ C

42

6. Answer the questions below about subsets.

(a) List all of the subsets of ∅
(b) List all of the subsets of {1}
(c) List all of the subsets of {1, 2}
(d) List all of the subsets of {1, 2, 3}
(e) How many subsets should {1, 2, 3, 4} have?

(f) Guess at a formula for the number of subsets of an n-element set.

7. Let A = {a, b, c}, B = {a, b}, C = {b, c, d}, and D = {a, b, B}. Fill in the blank with ∈ or ̸∈.

(a) a A

(b) b B

(c) c B

(d) B D

(e) B A

(f) (a, b) A× C

(g) (a, b) C ×D

(h) ab A× C

(i) 4 N× Z
(j) 4 Z
(k) −4 Z
(l) −4 N

8. Let A, B, and C be the sets
A = {a, b, c, d, e}

B = {c, d, e, f, g}

C = {a, c, d, e, h, i, j}.

Draw a Venn diagram with the elements {a, b, c, d, e, f, g, h, i} in the appropriate regions.

9. Shade each of these sets in Venn diagrams.

(a) (A ∩B) ∪ (A ∩ C)

(b) A− (A ∩B ∩ C)

(c) (C − (A ∩B))− (A ∩ C)

43

10 Powers and Strings

Example 10.1. Let A = {0, 1}. Calculate (A×A)×A and A× (A×A). Are these sets the same?

Solution: A×A is the set of order pairs of elements from A:

A×A = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Then (A×A)×A is the set of ordered pairs, where the first element is from A×A and the second is from
A. Note, the first element of these ordered pairs is itself an ordered pair. Each element of A× A shows up
twice – once paired with 0 and once paired with 1.

(A×A)×A = {((0, 0), 0), ((0, 1), 0), ((1, 0), 0), ((1, 1), 0), ((0, 0), 1), ((0, 1), 1), ((1, 0), 1), ((1, 1), 1), }

The set A× (A×A) is similar, except that the elements of A×A come second in the pairs.

A× (A×A) = {(0, (0, 0)), (0, (0, 1)), (0, (1, 0)), (0, (1, 1)), (1, (0, 0)), (1, (0, 1)), (1, (1, 0)), (1, (1, 1)), }

These sets are not equal to each other. They appear similar, but the parentheses are in different locations.

Note. The fact that (A× A)× A ̸= A× (A× A) in the last example indicates that the Cartesian product
is not associative. However, we may want to find products of more than two sets without having to worry
about the parentheses. Therefore, we define a general Cartesian product of more than two sets.

Definition 10.2. Suppose that A1, A2, . . . , An are sets. The Cartesian product of these sets is the set

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : ∀i(ai ∈ Ai)}.

Elements of the form (a1, a2) are called ordered pairs. Elements of the form (a1, a2, a3) are ordered triples.
In general, elements of the form (a1, a2, . . . , an) are ordered n-tuples.

Example 10.3. Let A = {0, 1}, B = {a, b}, and C = {c, d}. Find A×B × C.

Solution: A × B × C is the set of all ordered triple where the first element comes from A, the second from
B, and the third from C.

A×B × C = {(0, a, c), (0, a, d), (a, b, c), (a, b, d), (1, a, c), (1, a, d), (1, b, c), (1, b, d)}.

Definition 10.4. If A is any set and if n is an integer greater than 1, then the Cartesian power An is the
set of all ordered n-tuples of elements of A. That is

An = A×A× · ×A = {(a1, a2, . . . , an) : ∀i(ai ∈ A)}.

For convenience, we let A1 = A.

Example 10.5. Let A = {0, 1}. Find A3.

Solution: A3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Definition 10.6. Suppose that A is any set and n is a positive integer. A string of length n over A is an
element of An written with no parentheses or commas. The elements of A are characters of the string, and
A is called the alphabet. The empty string is the string with no characters in it. This is denoted λ (the
lowercase Greek letter lambda). The set of all strings of length n over A is denoted (rather unfortunately)
as An. The set of all strings over A is denoted A∗. The set of all non-empty strings over A is A+.

Note. The notation An for strings of length n is unfortunate because of our notation for the Cartesian
power An. We will avoid the notation when possible. However, context will usually tell which we mean.

Example 10.7. Find all strings of length 3 over A = {0, 1}.

44

Solution: The strings are {000, 001, 010, 011, 100, 101, 110, 111}. This is the same as the last example with
the commas and parentheses removed.

Definition 10.8. Strings over the alphabet {0, 1} are called bit strings.

By identifying 0 with false and 1 with true, we can apply our logical operators to bit strings in a bitwise
manner – that is, one bit at a time.

Example 10.9. Calculate the bitwise operations: ¬(11010), 11010∧01110, 11010∨01110, and 11010⊕01110.

Solution: We perform each operation one bit at a time. For ¬(11010), we simply exchange 0s and 1s:
¬(11010) = 00101. We stack the rest and apply each operation vertically.

1 1 0 1 0
∧ 0 1 1 1 1

0 1 0 1 0

1 1 0 1 0
∨ 0 1 1 1 1

1 1 1 1 1

1 1 0 1 0
⊕ 0 1 1 1 1

1 0 1 0 1

Exercises 10.10. Answer the following questions.

1. Calculate A×B × C if A = {1}, B = {1, 2}, and C = {1, 2, 3}.

2. List all strings with length 1 over the alphabet A = {a, b, c}.

3. Modify your answer to the last quest to list all strings with length 2 over the alphabet A = {a, b, c}.
Try to do so in a regular way that would be programmable.

4. Modify your answer to the last quest to list all strings with length 3 over the alphabet A = {a, b, c}.
Try to do so in a regular way that would be programmable.

5. Let x = 1101101 and y = 1010101. Calculate z = x ⊕ y (do your operations bitwise). Then calculate
z ⊕ y. What do you notice?

6. The last exercise is the basis for a cipher known as the Vernam cipher. In this cipher, the plaintext
(the message to be scrambled) is converted to a long bitstring. Then, an encryption bitstring is created
(from a key). The plaintext bitstring and encryption bitstring are then XORed to create the ciphertext
(the scrambled message). We experiment with an extremely simplified version of this system in this
exercise. Note that this is a toy system, paired down so that computations by hand are easy.

We are going to encode characters as four bits each. Since there are only 16 length 4 bitstrings, and
since we have 26 letters in the alphabet, we have to identify some letters. The chart below shows how
we will encode each letter when converting our plaintext to a bitstring.

letter bitstring letter bitstring
A 0000 L 1000
B 0001 M, N 1001
D 0010 O 1010
E 0011 P 1011
F 0100 R 1100
G 0101 S, Z 1101

H, I, J, Y 0110 T 1110
C, K, Q 0111 U, V, W 1111

We use a linear congruential random number generator with modulus 16 to generate our encryption
bitstring. The modulus of 16 is used here to ensure bitstrings of length 4 to XOR with our plaintext
bitstring. For this example, we will use m = 3 as a multiplier, b = 7 as an increment, and x = 9 as an
initial seed. In this exercise, we encrypt the word COWS.

(a) Convert the letters COWS to a bitstring using the table above. Leave a space every 4 bits for
readability.

45

(b) Use the values of m, b, and x above and a modulus of 16 to calculate the next 4 random numbers
using a linear congruential random number generator. (Do not include the initial seed as one of
these four numbers).

(c) Convert each of the four random numbers to binary using 4 bits each (so you may have to pad
some 0s) and combine them into one bitstring (from left to right). Leave a space every 4 bits for
readability.

(d) XOR the two bitstrings you have computed.

(e) Use the table above to convert four bits at a time of this new bitstring to letters. When there is
a choice of letters, choose whichever you like.

7. The nice thing about the encryption system we outlined in the last question is that encryption and
decryption work the same way. Follow the steps above to decrypt this message: OCFO

46

11 Relations

Predicates express properties of and relationships between the variables involved. For example

x is taller than y.

expresses a relationship between x and y. The sentence

x robbed the bank.

expresses the property that x may have of having robbed the bank. Mathematicians use the notion of a
relation to describe abstract properties and relationships.

Definition 11.1. P is a 1-ary (or unary) relation on a set A if P is a subset of A. When thinking of a
subset P as a relation, we can write P (x) for x ∈ P . If we let P be the set of all people who robbed the
bank. Then P (x) and x ∈ P both mean the same thing as the predicate “x robbed the bank.”

Definition 11.2. P is a 2-ary (or binary) relation on a set A if P is a subset of A × A (so P is a set
of ordered pairs of A such as (x, y)). When thinking of P as a relation, we can write P (x, y) or xPy for
(x, y) ∈ P . We will also use the words “x is P -related to y” to express (x, y) ∈ P . If we let P be the set of
all pairs of people (x, y) so that x is the father of y, then P (x, y), xPy, and (x, y) ∈ P all mean the same
thing as the predicate “x is the father of y.”

Definition 11.3. P is a 3-ary (or ternary) relation on a set A if P is a subset of A × A × A (so P is a
set of ordered triples of A such as (x, y, z)). When thinking of P as a relation, we can write P (x, y, z) for
(x, y, z) ∈ P .

Definition 11.4. If n is a positive integer, then P is an n-ary relation on a set A if P is a subset of An

so that P is a set of n-tuples of A such as (x1, x2, . . . , xn). When thinking of P as a relation, we can write
P (x1, x2, . . . , xn) for (x1, x2, . . . , xn) ∈ P . For emphasis, we will also say “P (x1, x2, . . . , xn) is true” to mean
that “(x1, x2, . . . ,n) ∈ P is true.”

Note. The notation we are using for relations is intended to match exactly the notation we have used for
predicates and open formulas. The two concepts are intimately related. An open formula P (x, y) can be
used to define a set – the set of all pairs (x, y) for which P (x, y) is true. In set builder notation, this is
{(x, y) : P (x, y)}. This set of ordered pairs can be treated as a set or a relation. We can call both the set
and the relation P . In this case, P (x, y) means exactly the same thing as (x, y) ∈ P . We are intentionally
blurring the lines between subset, relation, and predicate.

Infix vs. Prefix Notation. The notation R(x, y) is called prefix notation. The notation xRy is infix
notation. For binary relations, we will usually prefer infix notation since we commonly use this notation
with relations such as = and ≤.

Example 11.5. Suppose that A = {1, 2, 3, 4}. Define this relation on A:

P = {(x, y, z) : y is strictly between x and z}.

Is P (1, 2, 3) true? Is P (2, 1, 3) true? Give one other true statement using P and one other false statement.

Solution: P (1, 2, 3) is true because 2 is strictly between 1 and 3. P (2, 1, 3) is not true because 1 is not strictly
between 2 and 3. Another true statement is P (2, 3, 4). Another false statement is P (1, 1, 1).

Example 11.6. Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let

P = {x ∈ A : x is prime}.

Give a statement of the form P (x) which is false and one which is true.

47

Solution: P (1) is false because 1 is not prime. P (2) is true because 2 is prime. We can list the elements of
P as {2, 3, 5, 7}.

Example 11.7. Let A be the set {2, 3, 4, 5, 6}. Define a binary relation D on A so that for all x, y ∈ A,
xDy exactly when y is a multiple of x. Use D to write a statement which is true and a statement which is
false. Write the true statement using prefix notation, infix notation, and set notation.

Solution: Since 6 is a multiple of 2 we know that D(2, 6). This can be written as 2D6 or (2, 6) ∈ D. Since 6
is not a multiple of 5, P (5, 6) is false. As a set of ordered pairs, D is

D = {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}.

Example 11.8. Let A be the set of lines in this figure:

a

c

d b

So A = {a, b, c, d}. Define a relation I on A so that xIy exactly when line x intersects line y. Give two pairs
that are in I and two pairs that are not in I.

Solution: Both aIb and dIc are true so (a, b) and (d, c) are in I. However, dIb and aIc are false, so (d, b) is
not in I and (a, c) is not in I.

Definition 11.9. We can draw pictures of small sets with binary relations. The picture consists of one
point for each element of the set. For each relation xRy, there is an arrow in the picture from x to y. Such
a pictorial representation is called a directed graph or digraph.

Example 11.10. Draw a directed graph for the relation

R = {(1, 2), (2, 3), (3, 1)}

on the set A = {1, 2, 3}.

Solution:
•1 •2 •3//`` //

Note. What matters in directed graphs is how the points are connected by arrows, not the physical ar-
rangement of the points in the picture. Thus, this is another depiction of the graph from the previous
example:

48

•1 •2

•3

//��

WW

Example 11.11. Draw a directed graph for the relation ≤ on the set {1, 2, 3, 4, 5}.

Solution:

•1 •2 •3 •4 •5// GG II JJ// GG GG// ==//
�� �� �� �� ��

Definition 11.12. Suppose that A and B are sets. A relation from A to B is a subset R of A×B.

Note. A relation from A to B is just a set of ordered pairs (a, b) where a ∈ A and b ∈ B.

Example 11.13. Let A be the set of all students at a certain college and let B be the set of all classes being
offered at that college. There is a relation R from A to B so that (a, b) ∈ R means that a is taking class b.

Exercises 11.14. Answer the questions below.

1. List two more pairs which are not in the relation I of Example 11.8 and two more pairs that are.

2. Define a relation S on N so that S(x, y) means that x + 1 = y. List a few pairs in the relation S. It
turns out that most of the properties of the natural numbers which we studied in arithmetic can be
derived from this relation.

3. Let A = {1, 2, 3, 4, 5, 6}. Define R on A so that xRy means that x− y ∈ A. List the pairs in R.

4. Let E and F be two unary relations on N so that E(x) means “x is even” and F (x) means “x is a
multiple of 4.”

(a) Find an x which makes E(x) ∧ F (x) true.

(b) Find an x which makes E(x) ∧ ¬F (x) true.

(c) Is this statement true? ∀x(E(x)→ F (x))

(d) Is this statement true? ∀x(F (x)→ E(x))

(e) Is this statement true? ∃x(E(x)→ F (x))

(f) Is this statement true? ∃x(F (x)→ E(x))

5. Draw digraphs of relations ⇒ which satisfy each of these statements.

(a) ∀x(x⇒ x)

(b) ∀x∀y(x⇒ y)

49

(c) ∃x∀y(x⇒ y)

(d) ∃x∃y∃z[(x⇒ y) ∧ (y ⇒ z)]

(e) ∀x∀y¬[(x⇒ y) ∧ (y ⇒ x)]

(f) ∀x∀y([(x⇒ y) ∨ (y ⇒ x)] ∧ ¬[(x⇒ y) ∧ (y ⇒ x)])

50

12 Properties of Relations

Definition 12.1. A relation R on a set A is reflexive if aRa for every a ∈ A. This could also be written
as (a, a) ∈ R for all a ∈ A.

Example 12.2. Is the relation

R = {(a, a), (a, c), (b, d), (b, b), (c, c), (d, d)}

on S = {a, b, c, d} reflexive?

Solution: Since R contains (a, a), (b, b), (c, c), and (d, d), R is reflexive.

Example 12.3. Is the relation < on the real numbers reflexive?

Solution: The relation < on R is not reflexive because it is not the case that 1 < 1.

Example 12.4. Is the relation = on R reflexive?

Solution: The relation = is reflexive on R since x = x is true for all real numbers x.

Definition 12.5. A relation R on a set A is symmetric if for all a, b ∈ A whenever aRb, then also bRa.

Example 12.6. Is the relation R = {(a, b), (b, a), (c, c), (d, c), (c, d)} on the set S = {a, b, c, d} symmetric?

Solution: This relation is symmetric because if we reverse any ordered pair in R we get another ordered pair
in R.

Example 12.7. Is the relation R = {(a, b), (d, c), (c, d)} on the set S = {a, b, c, d} symmetric?

Solution: This relation is not symmetric because (a, b) ∈ R but (b, a) ̸∈ R.

Example 12.8. Is the relation ≤ on R symmetric?

Solution: The relation ≤ on R is not symmetric since 1 ≤ 2, but it is not the case that 2 ≤ 1.

Example 12.9. Is the relation = on R symmetric?

Solution: The relation = is symmetric on R. If x = y, then x and y are actually the same number, so y = x.

Definition 12.10. A relation R on a set A is anti-symmetric if for all a, b ∈ A whenever aRb and bRa then
also a = b. This is equivalent to, if a ̸= b and (a, b) ∈ R, then (b, a) ̸∈ R.

Example 12.11. Is the relation ≤ on R is anti-symmetric?

Solution: The relation ≤ on R is anti-symmetric. If x ≤ y and y ≤ x, then x = y.

Example 12.12. Is the relation = on R is anti-symmetric?

Solution: The relation = on R is anti-symmetric. If x = y and y = x, then x = y.

Example 12.13. Is the relation R = {(a, b)(b, c)(d, d)} on S = {a, b, c, d} anti-symmetric?

Solution: If we reverse any of the ordered pairs in this relation other than (d, d), we do not get another
element of R. Therefore, if xRy and yRx, we have that x = d = y.

Definition 12.14. A relation R on a set A is transitive if for all a, b, c ∈ A the relations aRb and bRc
together imply aRc.

Example 12.15. Are the relations ≤ and = on R transitive?

51

Solution: These relations are transitive. They are, in fact, the motivation behind the definition of transitivity.

Example 12.16. Is the relation R = {(c, d), (d, a), (c, a)} on S = {a, b, c, d} transitive?

Solution: R is transitive. The only case where we have xRy and yRx is cRd and dRa. Since cRa, R is
transitive.

Example 12.17. Is the relation R = {(b, d), (d, a)} on S = {a, b, c, d} transitive?

Solution: This relation is not transitive. We have bRd and dRa, so to be transitive we would also need to
have bRa.

Example 12.18. Is the relation R = {(a, b), (b, a)} on S = {a, b, c, d} transitive?

Solution: This relation is not transitive. We have aRb and bRa, so to be transitive we would also need to
have aRa.

Definition 12.19. A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Example 12.20. The equality relation (=) is an equivalence relation on any set. Actually, this relation is
the motivation behind the concept of equivalence relation. An equivalence relation is a relation that behaves
somewhat like equality.

Example 12.21. Is the relation R on the real numbers defined by xRy if x2 = y2 an equivalence relation?

Solution: R is an equivalence relation. For any real number x, x2 = x2 so xRx. This means that R is
reflexive. For any real numbers x and y, if if xRx, then x2 = y2. Then y2 = x2, so yRx. Thus, R is
symmetric. For any real numbers x, y, and z, if xRy an yRz, then x2 = y2 and y2 = z2, so x2 = z2. This
means that xRz. Thus R is also transitive.

Note. It turns out that every equivalence relation R can be realized like the one in the previous example.
There is some function so that xRy means f(x) = f(y). In the example, f(x) = x2. Every proof that a
relation is an equivalence relation can be formulated like the last example.

Example 12.22. If n is any positive integer then congruence modulo n is an equivalence relation on Z.

Definition 12.23. Suppose R is an equivalence relation on a set A. If a ∈ A, then the equivalence class of
a modulo R is the set {x ∈ A : aRx}. The equivalence class of a modulo R is denoted as [a]R or a/R. If R
is understood from context, we will sometimes just write [a]. Note that just by this definition the statement
x ∈ [a]R means the same thing as aRx. The set of all equivalence classes of R is denoted A/R. This is the
factor set of A modulo R.

Example 12.24. The equivalence classes of congruence modulo 3 on Z are

{. . . ,−6,−3, 0, 3, 6, 9, . . .}

{. . .− 5,−2, 1, 4, 7, 10, . . .}

{. . .− 4,−1, 2, 5, 8, 11, . . .}.

Example 12.25. Let A = {1, 2, 3, 4}. Let R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 4), (4, 3)}. R is an
equivalence relation. Find [1]R, [2]R, [3]R, and [4]R.

52

Solution: All of the elements to which 1 is related are [1]R = {1, 2}. All of the elements to which 2 is related
are [2]R = {1, 2}. All of the elements to which 3 is related are [3]R = {3, 4}. All of the elements to which 4
is related are [4]R = {3, 4}.

Note. Notice in the last example that every element of A is in an equivalence class and that the equivalence
classes are disjoint. If we select two elements of A, either they have the same equivalence class or their
equivalence classes are disjoint. We have a special name for this situation.

Definition 12.26. A partition of a set A is a set P of nonempty subsets of A so that

• If a ∈ A, then there is a set D ∈ P so that a ∈ D.

• If E,F ∈ P and E ̸= F , then E ∩ F = ∅.

The elements of P are called the partition classes or blocks of P .

Example 12.27. Each of the following is an example of a partition on {1, 2, 3, 4, 5}.

{{1, 2}, {3, 4}, {5}}

{{1, 2, 3, 4, 5}}

{{1}, {2}, {3}, {4}, {5}}

{{1, 2, 3}, {4, 5}}

Example 12.28. This is a partition of N: {{n ∈ N : n is even}, {n ∈ N : n is odd}}.

Equivalence Relations and Partitions. Suppose R is an equivalence relation on a set A. We know
that if a ∈ A, then a ∈ [a]R. We also know that if two equivalence classes [a]R and [b]R are different, then
[a]R ∩ [b]R = ∅. These two facts imply that the set of equivalence classes of R (the factor set A/R) is a
partition of A.

Suppose P is a partition of a set A. Define a relation ∼P on A by a ∼P b if a and b are in the same
partition class. Then the relation ∼P is an equivalence relation on A. The equivalence classes of ∼P are
precisely the partition classes of P .

Exercises 12.29. Answer the questions below.

1. Draw one digraph of a relation on {a, b, c} which is reflexive and one which is not reflexive. Conjecture
how to decide from the digraph whether or not a relation is reflexive.

2. Draw one digraph of a relation on {a, b, c} which is symmetric and one which is not symmetric.
Conjecture how to decide from the digraph whether or not a relation is symmetric.

3. Draw one digraph of a relation on {a, b, c} which is anti-symmetric and one which is not anti-symmetric.
Conjecture how to decide from the digraph whether or not a relation is anti-symmetric.

4. Draw one digraph of a relation on {a, b, c} which is transitive and one which is not transitive. Conjecture
how to decide from the digraph whether or not a relation is transitive.

5. Determine if each of the following relations on the set {a, b, c, d} is reflexive, symmetric, anti-symmetric,
or transitive.

(a) R = {(a, b), (b, c), (c, d)}
(b) R = {(a, a), (c, c), (d, d)}
(c) R = {(a, b), (b, a), (a, a), (c, c), (d, d)}
(d) R = ∅
(e) R = {(a, b), (a, a), (d, d), (b, a), (c, c), (d, c), (c, d), (b, b)}

53

(f) R = {(a, a), (b, b), (c, c), (d, d)}

6. Which of the following are equivalence relatations?

(a) R is the relation on R defined by xRy when sin(x) = sin(y).

(b) R is the relation on R defined by xRy if x2 = y2.

(c) R is the relation on N defined by xRy if x and y are either both even or both odd.

(d) R = N× N as a relation on N.

(e) R = {(a, a) : a ∈ N} as a relation on N.

7. Find all equivalence relations on the set {1, 2}.

8. Find all equivalence relations on the set {1, 2, 3}.

9. Find all partitions on the set {1, 2}.

10. Find all partitions on the set {1, 2, 3}.

54

13 Operations on Relations

Definition 13.1. Suppose R and S are relations on a set A. The composition of R and S is the relation

R ◦ S = {(a, c) : (∃b ∈ A)[(aRb) ∧ (bSc)]}

Example 13.2. Let R = {(1, 2), (3, 4)} and S = {(2, 3), (2, 4), (4, 4)} be binary relations on {1, 2, 3, 4}. Find
R ◦ S.

Solution: We like to draw pictures of the relations to aid us in computing compositions.

R S

1

2

3

4

1

2

3

4

1

2

3

4

In the picture, there are three copies of the underlying set {1, 2, 3, 4}. Between the first two are arrows
depicting the relationships in R. Betwee the second two are arrows depicting the relationships in S. To
compose, we follow arrows. Since we can get from 1 on the left to 3 and to 4 on the right by following arrows,
(1, 3) and (1, 4) are in the composition. Since we can get from 3 to 4 by following arrows, (3, 4) is also in the
composition. Therefore, R ◦ S = {(1, 3), (1, 4), (3, 4)}.

Example 13.3. Let P be the set of all people. Let R be the relation on P defined so that xRy means that
“x is a parent of y.” What is the interpretation of R ◦R?

Solution: If (x, z) ∈ R ◦R then there is a y so that xRyRz. Since, xRy, then x is a parent of y. Since yRz,
then y is a parent of z. Since x is a parent of a parent of z, x is a grandparent of z. R ◦R is the grandparent
relation.

Definition 13.4. The converse of a relation R on a set A is the set R∪ = {(a, b) : bRa}. To calculate the
converse of a relation, you simply reverse every ordered pair in the relation.

Example 13.5. Let R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 4)}. Find the converse of R.

Solution: We simply reverse every ordered pair, so R∪ = {(1, 1), (2, 1), (2, 2), (3, 2), (4, 3)}.

Example 13.6. We can apply composition and converse to relations between sets too. Let S be the set of
students at a college, and let C be the set of classes at the college. Let T be the relation from S to C so
that xTy means that “student x is taking class y.” What does the relation T∪ mean?

Solution: If yT∪x, then y is a class that x is taking.

Example 13.7. With S, C and T as in the last problem, what does the relation T ◦ T∪ mean?

Solution: If xT ◦ T∪z, then there is a y so that xTyT∪z. This means that x and z are both students, that y
is a class, and that x and z are both taking the class y. Therefore, T ◦ T∪ is the classmate relation.

Note. Some folks call R∪ the inverse of R and denote it as R−1. This has to do with the concept of the
inverse of a function which we will talk about later. However, we choose to use the more common word
converse to mimic the converse of an implication.

55

Composition, Converse, Symmetry, and Transitivity. The operations of composition and converse
are related to the properties of symmetry and transitivity. A binary relation R is symmetric if R∪ = R. R
is transitive if R ◦R ⊆ R.

An Aside on Matrices. Here is a very quick review of some basic matrix facts. We will generalize the
notion of matrix arithmetic to perform operations with relations. A matrix is a rectangular array of numbers
such as this: 1 2 3 4

5 6 7 8
9 10 11 12

The (vertical) columns and (horizontal) rows of a matrix are numbered from the upper-left corner beginning
at 1.

col 1 col 2 col 3 col 4()
row 1 1 2 3 4
row 2 5 6 7 8
row 3 9 10 11 12

The dimensions of a matrix tell the number of rows and columns with a × between them. An m× n matrix
has m rows and n columns, so the matrix above is a 3× 4 matrix. The i, j-entry of a matrix is the number
in row i and column j. For example, the 2, 3-entry of the matrix above is 7. If a matrix is named M , then
the notation Mi,j is the i, j-entry of M .

The transpose of a matrix M is the matrix MT obtained by exchanging the rows and columns of M :

 1 2 3 4
5 6 7 8
9 10 11 12

T

=

1 5 9
2 6 10
3 7 11
4 8 12

Note, the i, j entry of MT is MT

i,j = Mj,i.
If two matrices have the same dimensions, then they can be added. The i, j-entry of the sum of the

matrices is the sum of the i, j-entries from the two matrices. For example:(
1 2 3
4 5 6

)
+

(
7 8 9
10 11 12

)
=

(
1 + 7 2 + 8 3 + 9
4 + 10 5 + 11 6 + 12

)
=

(
8 10 12
14 16 18

)
If A is an m× n matrix and if B is an n× p matrix, then A and B can be multiplied. The product AB

will be an m× p matrix whose i, j-entry (AB)i,j is computed by multiplying the entries in the ith row of A
one at a time times the entries in the jth column of B and adding the results. For example:

(
1 2 3
4 5 6

) 7 10
8 11
9 12

 =

(
1 · 7 + 2 · 8 + 3 · 9 1 · 10 + 2 · 11 + 3 · 12
4 · 7 + 5 · 8 + 6 · 9 4 · 10 + 5 · 11 + 6 · 12

)
=

(
50 68
122 167

)

Matrices and Relations. Suppose that R is a binary relation on the set {1, 2, . . . , n}. We can represent R
as an n×n matrix MR in which all entries are 0 or 1. The i, j-entry of MR, denoted as MR

i,j , is 1 if iRj and

is 0 otherwise. This is equivalent to saying that the i, j-entry of MR is 1 if (i, j) ∈ R and is 0 otherwise.

Example 13.8. Find the matrices for the relations R = {(1, 2), (3, 4)} and S = {(2, 3), (2, 4), (4, 4)} on the
set {1, 2, 3, 4}.

56

Solution: Each of these should be a 4× 4 matrix. MR should have 1s in the 1, 2-entry and the 3, 4 entry:

MR =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

MS should have 1s in the 2, 3-entry, the 2, 4-entry, and the 4, 4-entry:

MS =

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 1

Example 13.9. Consider this matrix: 1 0 1

0 1 1
1 0 1

Treat this matrix as the matrix MR for a binary relation R on the set {1, 2, 3}. Find R.

Solution: The locations of the 1s in the matrix tell us which elements are related.

R = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}.

Motivation. We care about using matrices for relations for two reasons. First, it is a simple way to represent
a relation in a computer. We could store a relation R in a computer as a list of ordered pairs, but then, to
see if two elements i and j are related by R, we would have to search through the list for the pair (i, j). On
the other hand, if we store the relation as a matrix (or an array), all we have to check is whether or not the
array has a 1 in the i, j-entry. The other reason for using matrices is that we will see below that relation
operations are easy to compute with matrices.

Relation Matrices and Logical Operators. If R and S are binary relations on the set {1, 2, . . . , n}, then
we can apply the logical operations coordinatewise to the matrices MR and MS . (Here, we are treating 0
as false and 1 as true.) Then, the i, j-entry of MR ∨MS is MR

i,j ∨MS
i,j , and the i, j-entry of MR ∧MS is

MR
i,j ∧MS

i,j .

Example 13.10. Calculate MR ∧MS and MR ∨MS for the binary relations

R = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} and S = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}

on {1, 2, 3}.

Solution: The relation matrices are

MR =

 1 1 1
0 1 1
0 0 1

 and MS =

 1 0 0
1 1 0
1 1 1

Then

MR ∧MS =

 1 1 1
0 1 1
0 0 1

 ∧
 1 0 0

1 1 0
1 1 1

 =

 1 ∧ 1 1 ∧ 0 1 ∧ 0
0 ∧ 1 1 ∧ 1 1 ∧ 0
0 ∧ 1 0 ∧ 1 1 ∧ 1

 =

 1 0 0
0 1 0
0 0 1

and

MR ∨MS =

 1 1 1
0 1 1
0 0 1

 ∨
 1 0 0

1 1 0
1 1 1

 =

 1 ∨ 1 1 ∨ 0 1 ∨ 0
0 ∨ 1 1 ∨ 1 1 ∨ 0
0 ∨ 1 0 ∨ 1 1 ∨ 1

 =

 1 1 1
1 1 1
1 1 1

57

Intersections, Unions, and Coordinatewise Logical Operations. The matrix MR ∧MS has a 1 in
the i, j-entry if and only if MR and MS do. This happens exactly if (i, j) is in both R and S – that is,
if (i, j) ∈ R ∩ S. Thus, MR ∧MS = M (R∩S). Similarly, the matrix MR ∨MS has a 1 in the i, j-entry if
and only if MR or MS does. This happens exactly if (i, j) is in R or S – that is, if (i, j) ∈ R ∪ S. Thus,
MR ∨MS = M (R∪S). This gives our next theorem.

Theorem 13.11. Suppose that R and S are binary relations on the set {1, 2, . . . , n}. Then MR ∧MS =
M (R∩S) and MR ∨MS = M (R∪S).

Converses are even easier. The converse corresponds to the transpose.

Theorem 13.12. If R is a binary relation on the set {1, 2, . . . , n} then M (R∪) =
(
MR

)T
.

Matrix Multiplication with Logical Operations. If A and B are n × n matrices of 0s and 1s, then
we can “multiply” the matrices but replace every addition with an o∨ and every multiplication with an ∧.
When we do so, we call the resulting matrice A ◦B.

Example 13.13. Find MR ◦MS for the relations from Example 13.8.

Solution: We mimic the process of matrix multiplication using ∨ for + and ∧ for ×:

MR ◦MS =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ◦

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 1

=

(0 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 1)
(0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 1)
(0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (1 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (1 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 1)
(0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 1)

=

0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0

Matrices and Relation Composition. The relations in this last example were the same relations from
Example 13.2. The final version of MR ◦MS is the matrix for the relation {(1, 3), (1, 4), (3, 4)} = R ◦ S.
This will always be the case because the i, k-entry of MR ◦MS is 1 if and only if there is a j so that the
i, j-entry of MR is 1 and the j, k-entry of MS is 1. This happens if and only if iRjSk so (i, k) ∈ R ◦S. This
implies the next theorem.

Theorem 13.14. If R and S are binary relations on the set {1, 2, . . . , n}, then MR ◦MS = M (R◦S).

Exercises 13.15. Answer the questions below.

1. Compute R∪, R ◦ S, R ∩ S, and R ∪ S in each of the following.

(a) R = {(1, 2), (1, 3), (2, 3)} and S = {(3, 4), (2, 3), (3, 3), (1, 2)}
(b) R = {(1, 1), (2, 2), (3, 3)} and S = {(3, 4), (2, 3), (3, 3), (1, 2)}
(c) R = {(1, 2), (1, 1), (2, 2), (3, 3), (2, 3)} and

S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

2. Calculate R ◦ S, R ∧ S and R ∨ S for each of the following.

(a) R =

 0 1 0
1 1 1
0 1 0

 and S =

 1 0 1
0 1 0
1 0 1

58

(b) R =

 1 0 1
1 0 1
1 0 1

 and S =

 1 1 1
0 0 0
1 1 1

3. How can you tell from the matrix of a relation that the relation is reflexive?

4. How can you tell from the matrix of a relation that the relation is symmetric?

5. Let P be the set of all people, and let R be the parent relation – xRy means “x is a parent of y.”

(a) What is the interpretation of R∪?

(b) What is the interpreation of R ◦R∪?

(c) What is the interpretation of R∪ ◦R?

59

14 Functions

Definition 14.1. Suppose A and B are sets. A function or transformation from A to B is a subset T of
A×B so that for every a ∈ A, there is precisely one b ∈ B with (a, b) ∈ T .

Example 14.2. If A = {a, b, c, d} and B = {1, 2, 3, 4, 5}, then T = {(a, 4), (b, 2), (c, 4), (d, 5)} is a function
from A to B.

A function from A to B is a roadmap for transforming the set A into the set B one element at a time.
In our example, the transformation T says that the elements a and c of A are turned into the element 4 of
B. The element b is turned into 2, and d is transformed into 5. Notice that more than one element of A can
be turned into the same element of B and that not all of the elements of B are things into which elements
of A are transformed.

Definition 14.3. To communicate that T is a function from A to B, we will use the notation T : A → B.
This is read “T is a function from A to B.” In this case, the set A is called the domain of T . The set B is
called the codomain of T . The set of all b ∈ B so that there is an a ∈ A with (a, b) ∈ T is called the range
or the image of T .

Potato Pictures. We can sometimes draw diagrams representing transformations between small sets. For
example, the diagram �

�

�

�

�

�

�

�
uuu uu u

uu-
������:

-
��

����*

-

A B

A transformation.

depicts a transformation from the set A with five elements on the left to the set B with three elements on the
right. To determine which element of B an element of A is transformed into, you simply follow the arrows.

Some Terminology. Transformations have many names. The most common of these are transformation,
function, mapping, or simply map. The words mapping and transformation are perhaps the most descriptive
as they communicate how one set is transformed or moved into another set.

Notation 14.4. To communicate that a pair (a, b) is in a function T we will write T (a) = b. This notation
is intended to communicate that the mapping T moves the element a to the element b. As a set a function
T is precisely the set of pairs of the form (a, T (a)). The set of all such ordered pairs is called the graph of T
.

Definition 14.5. Suppose that f : A → B is any function, that C ⊆ A and that D ⊆ B. The image of C
is the set of all values f(a) where a ∈ C. That is, the image of C is

f(C) = {f(a) : a ∈ C}.

The preimage of D is the set of all a so that f(a) is in D. That is, the preimage of D is

f−1(D) = {a ∈ A : f(x) ∈ D}.

Example 14.6. Let A be the set of length four bitstrings, and let B be the set of length 3 bitstrings. Define
f : A→ B to be the function that “forgets” the right-most bit. That is, for any x ∈ A, we calculate f(x) by
removing the last bit from x. For example, f(1011) = 101.

1. What are the domain and codomain of f?

2. What is the image of 1010?

60

3. What is the image of {1111, 1011, 1101, 0011}?

4. What is the preimage of 111?

5. What is the preimage of {111, 000}?

Solution: We address the questions one at a time.

1. The domain of f is A. The codomain of f is B.

2. The image of 1010 is f(1010) = 101.

3. We find the image of {1111, 1011, 1101, 0011} by applying f to each element of the set:

f ({1111, 1011, 1101, 0011}) = {f(1111), f(1011), f(1101), f(0011)}
= {111, 101, 110, 001}.

4. The preimage of 111 is the set of all strings that begin 111. These are {1110, 1111}.

5. The preimage of {111, 000} is the set {1110, 1111, 0000, 0001}.

Matrix Notation. A convenient notation for depicting functions out of small sets is matrix notation for
functions. In this notation, the function is displayed as a matrix with two rows. Each element of the domain
of the function is listed in the first row. The image of each element is listed directly beneath that element.

Example 14.7. The matrix for the function f : {1, 2, 3, 4, 5} → N given by f(x) = x2 is(
1 2 3 4 5
1 4 9 16 25

)
A Function as a Rule. Rather than thinking of a function T : A → B as a roadmap for transforming A
into B, we can think of it as a “rule of assignment.” T provides a rule for assigning to each element a of A
a unique element of B. This unique element is usually called T (a). This is, in fact, a naive way of defining
a function. However, it is complicated by the fact that “rule” is not well defined.

Definition 14.8. If f : A → B and g : B → C are functions, then the composition of f followed by g is a
function g ◦ f : A→ C given by g ◦ f(a) = g(f(a)) for all a ∈ A.

Example 14.9. Suppose f : R → R+ is the function f(x) = x2 + 1 and g : R+ → R− is the function
g(x) = −

√
x. Find g ◦ f .

Solution:

g ◦ f(x) = g(f(x)

= g(x2 + 1)

= −
√

x2 + 1.

Note. Notice that g ◦ f is only defined if the codomain of f is the same as the domain of g.

Example 14.10. Let A be the set of length four bitstrings, and let B be the set of length 3 bitstrings.
Define f : A→ B to be the function that “forgets” the right-most bit. That is, for any x ∈ A, we calculate
f(x) by removing the last bit from x. For example, f(1011) = 101. Let g : B → N be defined so that g(x)
is the number of 1s in the string x. For example, g(101) = 2.

1. Find the preimage of 1 under g.

2. Find g ◦ f(1101).

61

Solution: We address one question at a time.

1. The preimage of 1 is the set of strings in B which contain exactly one 1. These are {100, 010, 001}.

2. g ◦ f(1101) = g(f(1101)) = g(110) = 2.

Exercises 14.11. Answer the questions below.

1. Which of the following are functions?

(a)

�

�

�

�
uuu

�

�

�

�
uuu

XXXXXXzXXXXXXz

(b)

�

�

�

�
uuu

�

�

�

�
uuu

-

������:

������:

(c)

�

�

�

�
uuu

�

�

�

�
uuu

-XXXXXXz

-

(d)

�

�

�

�
uuu

�

�

�

�
uuu

-XXXXXXz

-
XXXXXXz

2. Is T a function from A to B if A = {a, b, c}, B = {1, 2, 3, 4}, and T = {(a, 1), (b, 1), (c, 1)}?

3. Is T a function from A to B if A = {a, b, c}, B = {1, 2, 3, 4}, and T = {(a, 2), (b, 1), (a, 3), (c, 3)}?

4. Is T a function from A to B if A = {a, b, c}, B = {1, 2, 3, 4}, and T = {(a, 2), (b, 1), (a, 2), (c, 3)}?

5. Is T a function from A to B if A = {a, b, c}, B = {1, 2, 3, 4}, and T = {(1, a), (2, b), (3, c)}?

6. Let A = ∅, B = {1, 2}, and T = ∅. Is T a transformation from A to B?

7. Let B = ∅, A = {1, 2}, and T = ∅. Is T a transformation from A to B?

8. Let A be the set of length four bitstrings, and let B be the set of length three bitstrings. Define
f : A→ B so that f(x) is x with the last bit removed. Define g : B → A so that g(x) = x1. That is,
g(x) is calculated by concatenating a 1 onto the end of x.

(a) Calculate g ◦ f(1111) and g ◦ f(1110).

(b) Calculate f ◦ g(111) and f ◦ g(010).

(c) Find the image of {101, 010} under the function g.

(d) Find the preimage of {1111, 1011, 0001} under the function g.

(e) Find the preimage of 0000 under the function g.

(f) Find the preimage of 010 under the function f .

62

15 Properties of Functions

Definition 15.1. A function (transformation) T : A→ B is injective (or one-to-one) if for all x and y in A
if T (x) = T (y) then x = y.

Example 15.2. If T is injective, then different elements of A are mapped by T to different elements of B.
For example, the transformation f : R → R given by f(x) = x3 is injective. On the graph of this function,
no two x-values give the same y-value.

Example 15.3. The function g : R → R given by g(x) = x2 is not one-to-one since g(−1) = g(1) but
−1 ̸= 1.

Example 15.4. Consider theses two diagrams of functions.�

�

�

�

�

�

�

�
uuu

uuu
XXXXXXz������:

-

�

�

�

�

�

�

�

�
uuu

uuu
XXXXXXz-

-

Injective Not Injective

A B A B

The first function is injective. You can see this because each element of B has at most one arrow pointing at
it. The second function is not injective, because one element of B has more than one arrow pointing at it.

Definition 15.5. A transformation T : A → B is surjective (or onto) if for every b ∈ B there is an a ∈ A
so that T (a) = b.

Example 15.6. The function f(x) = 3x + 1 mapping R to R is onto because if b ∈ R and a =
b− 1

3
, then

f(a) = 3a + 1 = 3(
b− 1

3
) + 1 = (b− 1) + 1 = b.

Example 15.7. The function g : R→ R given by g(x) = x2 + 1 is not onto because there is no x ∈ R with
x2 + 1 = 0.

Example 15.8. Consider these two diagrams of functions.

�

�

�

�

�

�

�

�

uuuuu
uuu

XXXXXXz-

-

-

������:

A B

Surjective

�

�

�

�

�

�

�

�

uuuuu
uuu

XXXXXXz-

-

������:

A B

Not Surjective

������:

The first function is surjective because every element of B has an arrow pointing at it. The second is not
surjective since there is an element of B without an arrow pointing at it.

Definition 15.9. A function which is both injective (one-to-one) and surjective (onto) is called bijective.

Theorem 15.10. Suppose that f : A→ B and g : B → C are functions.

� If f and g are both injective, then g ◦ f is injective.

� If f and g are both surjective, then g ◦ f is surjective.

� If f and g are both bijective, then g ◦ f is bijective.

Example 15.11. Let A be the set of all bitstrings of length four, and let B be the set of all bitstrings of
length 3. Define f : A → B so that f(x) is the bitstring obtained by removing the last bit from x. Is f
injective? Is f surjective?

63

Solution: The function f is not injective since f(1111) = f(1110). The function is surjective. If y is any
bitstring in B, then f(y1) = y. Here, y1 is the concatenation of y and 1. For example, if y = 101, then
y1 = 1011.

Example 15.12. Let A be the set of all bitstrings of length four, and let B be the set of all bitstrings of
length 3. Define g : B → A so that g(x) is the bitstring obtained by cocatenatig x with 1. For example, if
x = 101, then g(x) = 1011. Is g injective? Is g surjective?

Solution: The function g is injective. If x, y ∈ B, and if g(x) = g(y), then x1 = y1. Removing the 1s gives
x = y, so if g(x) = g(y), then x = y. The function g is not surjective. There is no x with g(x) = 0000.

Definition 15.13. Let A be any set. The identity function on A is the function 1A : A → A given by
1A(x) = x.

Definition 15.14. Suppose f : A→ B is a function. A function g : B → A is an inverse of f if g ◦ f = 1A
and f ◦ g = 1B . This is equivalent to saying that for all a ∈ A g(f(a)) = a and for all b ∈ B f(g(b)) = b.
(You can imagine that the functions g and f “unwrap” each other.) If f has an inverse, it has only one, and
we denote it f−1.

Example 15.15. Show that the function g : R → R given by g(x) =
x− 1

2
is the inverse of the function

f : R→ R given by f(x) = 2x + 1.

Solution: Let a ∈ R. We calculate g(f(a)).

g(f(a)) = g(2a + 1) =
(2a + 1)− 1

2
=

2a

2
= a.

Next, let b ∈ R. We calculate f(g(b)).

f(g(b)) = f(
b− 1

2
) = 2

b− 1

2
+ 1 = (b− 1) + 1 = b.

Since g(f(a)) = a and f(g(b)) = b for all a and b in R, g is the inverse of f .

Example 15.16. Are the functions f and g from Examples 15.11 and 15.12 inverses?

Solution: If x ∈ B, then f(g(x)) = f(x1) = x, so things look hopeful. However, g(f(0000)) = g(000) = 0001,
so g and f are not inverses.

Finding Inverses. To find the inverse of a function f : A → B, you can attempt to solve the equation
b = f(a) for a. This will yield an equation a = g(b). If g(b) ∈ A for all b, and if g(f(a)) = a for all a ∈ A,
then g is the inverse of f .

Example 15.17. Let f(x) = 3x− 6. Consider f first as a function from R to R. Find an inverse function
for f .

Solution: First, we set up the equation b = f(a) and solve. The equation is b = 3a− 6. When we solve, we

get a =
1

3
b+ 2. Thus it appears our inverse should be g(b) =

1

3
b+ 2. We must check two things. First, note

that for any real number b, g(b) ∈ R. Second, we must see if g(f(a)) = a for all real numbers a. We check:

g(f(a)) = g(3a− 6) =
1

3
(3a− 6) + 2 = a− 2 + 2 = a

Hence, we have found the inverse of f .

Example 15.18. Let f(x) = 3x − 6. Consider f as a function from Z to R. Try to find an inverse for f
and explain what goes wrong.

64

Solution: If we set up the equation above, we still get the same g, and we still get that g(f(a)) = a for all
a ∈ Z. However, notice that g(1) = 7/3, so g is not even a function from R to Z, so it cannot be an inverse
for f if we consider f to be a function from Z to R. In this form, f has no inverse.

Theorem 15.19. A function f : A→ B has an inverse if and only if f is bijective.

Definition 15.20. A permutation of a set A is a bijection from A to A. We will denote the set of all
permutations on a set A by SA.

Example 15.21. Find all permutations on the set {a, b, c}.

Solution: We write our solutions using matrix notation. The element a must map to a, b, or c, so we have
three “types” of permutations:(

a b c
a

)
and

(
a b c
b

)
and

(
a b c
c

)
In the first case, since a is already mapped to, then b must map to b or to c to maintain injectivity. This
gives two options: (

a b c
a b c

)
and

(
a b c
a c b

)
In the second case, since b is already mapped to, then b must map to a or to c to maintain injectivity. This
gives two options: (

a b c
b a c

)
and

(
a b c
b c a

)
In the third case, since c is already mapped to, then b must map to a or to b to maintain injectivity. This
gives two options: (

a b c
c a b

)
and

(
a b c
c b a

)
Cryptography. The notion of invertible function is essential to cryptography. Let P be the set of all
messages which we might want to encode (P is for plaintext), and let C be a set which contains all encrypted
messages (C is for ciphertext). Cryptography works with two functions, an encryption function E : P → C
and a decryption function D : C → P . To encrypt a piece of plaintext x, we calculate E(x). To decrypt a
piece of ciphertext y, we calculate D(y). The two functions should satisfy the condition that for all plaintext
messages x ∈ P , if we encrypt x and then decrypt x, we should arrive back at x. In symbols, this is
D(E(x)) = x or D ◦ E(x) = x or D ◦ E = 1P . This does not quite require that E and D are inverses.
For the functions to be true inverses, we would also need E ◦ D = 1C . Ideally, the function E is easy to
calculate, while the function D is difficult to calculate. In practice, the set P is not truly the set of all
messages but a set of blocks from which messages could be built. For example, for the traditional affine
cipher mentioned earlier, P would be the set of letters. For more general ciphers, P would be the set of
bitstrings of a particular length. For example, you might convert a message to binary and then divide the
binary message up into blocks of 256 bits.

Keys. The encryption and decryption functions in any cryptographic system actually take an additional
argument called a key, so E and D are actually functions of more than one variable. For example, if E and D
both require one key variable k, then to encrypt a piece of plaintext x, we calculate E(x, k), and to decrypt
a piece of ciphertext y, we calculate D(y, k). What is required with this notation is that D(E(x, k), k) = x
for every x ∈ P and for every key k. Ideally, there are so many keys k that one could not decrypt y by
simply trying every key until one works.

Hash Functions. Suppose that we want to store records for employees or customers or citizens efficiently in
a way that they can be retrieved quickly. Assume that for each record there is a key or identification number
(such as a social security number). There may be so many potential identification numbers that allotting a
memory location for each number is not feasible from a memory standpoint. Storing all of the data in a list
could be just as impractical because searching the list for a single record may take too much time. Instead,

65

we can use a hash function to map each identification number to a code which is used to locate a place for
the record in memory. An extremely simple example of this would be to mod the identification number by a
modulus such as 1000 to obtain a code. The code is then linked to a memory location. It could be that many
identification numbers have the same hash code. This is called collision. One way to account for collision is
to have each memory location corresponding to a hash value contain a pointer to a list of records which have
that same hash code. If identification codes are uniformly distributed, then a solution such as this which
mods by 1000 would create a collection of lists which each would be about 1/1000 of the length of the entire
list of identification numbers. This speeds up searches by a factor of 1000. Instead of having each memory
location corresponding to a hash value contain a pointer to a list of records that have the same hash code,
a hash function might mod by a large number (1000 would be too small for this approach) and then begin
at that location in memory searching for the first open slot in memory to store the record.

Exercises 15.22. Answer the questions below.

1. Let A = {1, 2, 3}, B = {a, b, c}, C = {x, y, z, w}, and D = {u, v}.

(a) Use matrix notation to give examples of injective functions from A to B and A to C.

(b) Explain why there can be no injective function from A to D.

(c) Use matrix notation to give examples of surjective functions from C to B and C to A.

(d) Explain why there can be no surjective function from D to A.

(e) Use matrix notation to give an injective function from A to A. Is this function surjective?

(f) Use matrix notation to give an surjective function from A to A. Is this function injective?

2. Find all permutations on the set {1, 2}. Write your solutions in matrix form.

3. Find all permutations on the set {1, 2, 3, 4}. Write your solutions in matrix form.

4. Find an injection from N to N which is not surjective. Use a picture if necessary.

5. Find a surjection from N to N which is not injective. Use a picture if necessary.

6. Is there a bijection from N to Z? Explain.

7. Let B be the set of all bitstrings. Define f : B → N so that f(x) is the length of the bitstring x. Is f
injective? Is f surjective?

8. Draw potato pictures of functions f and g which can be composed in the order g ◦ f so that:

(a) g ◦ f is injective but g is not.

(b) g ◦ f is surjective but f is not.

66

16 Sequences

Definition 16.1. A sequence is a function whose domain is a set of integers of the form {n ∈ Z : n ≥ k} for
some fixed k. Usually k = 0 (in which case the domain is {0, 1, 2, . . .}) or k = 1 (in which case the domain is
{1, 2, 3, 4, . . .}). We call the values of the sequence terms. The value of the sequence on an input n is called
the nth term.

Sequence Notation. We can think of a sequence f as an infinitely long ordered list (f(0), f(1), f(2), f(3), . . .).
Usually, rather than traditional function notation, we use subscripts when referencing the terms of a sequence
f . That is, rather than (f(0), f(1), f(2), f(3), . . .) we would write (f0, f1, f2, f3, . . .).

Sequences and Strings. Some books will call strings and elements of Cartesian powers sequences. It is
correct to think of these objects as functions. For example, an element of R3 may look like (x1, x2, x3) and
may be though of as a function from {1, 2, 3} to R. However we will reserve the term sequence for “infinite
ordered lists.”

Example 16.2. List the first five terms of the sequence s given by sn = (−1)n
n

n + 1
for n ≥ 0.

Solution: We just plug in n = 0, 1, 2, 3, 4.

s0 = (−1)0
0

0 + 1
= 0

s1 = (−1)1
1

1 + 1
= −1

2

s2 = (−1)2
2

2 + 1
=

2

3

s3 = (−1)3
3

3 + 1
= −3

4

s4 = (−1)4
4

4 + 1
=

4

5

Alternating Sequences. Notice how the signs in this sequence alternate between positive and negative.
We call this an alternating sequence. The simplest way to make a sequence alternate is to include a factor
of (−1)n.

Multiple Formulas. We could also have defined the sequence in the last example using sn = (−1)n−1
n− 1

n
for n ≥ 0. Most sequences can be described in more than way.

Example 16.3. Find a formula for the nth term of this sequence:

(
2,

3

4
,

4

9
,

5

16
,

6

25
, . . .

)
Solution: Name the function an. We notice that the tops of the fractions are increasing 2, 3, 4, 5, 6, So

we could have an =
n

?
for n ≥ 2. Now the bottoms of the fractions are perfect squares (treating the first

term as
2

1
). However, it is not the tops that are being squared, but one less than the top. So we could use

an =
n

(n− 1)2
for n ≥ 2. An alternative answer would be an =

n + 1

n2
for n ≥ 1.

Recursively Defined Sequences. Sometimes, rather than a formula for each term of a sequence, we are
given a way to calculate one term based on the previous term. For example, suppose that s is a sequence
and we know that s0 = 1 and that whenever we know sn, then sn+1 = 2 · sn + 1. Then

s0 = 1

67

s1 = 2 · s0 + 1 = 3

s2 = 2 · s1 + 1 = 7

s3 = 2 · s2 + 1 = 15

s4 = 2 · s3 + 1 = 31

and so on. Such a definition of a sequence is called a recursive definition. The equation sn+1 = 2 · sn + 1
is called a recursive relation or recurrence relation. Rather than defining sn+1 in terms of sn, we could also
define sn in terms of sn−1. Then this sequence would be defined as: s0 = 1 and sn = 2 · sn−1 + 2 for n > 0.

Example 16.4. Find the first five terms of the sequence defined by

s0 = 5 and sn+1 =
1 + sn

2
for n ≥ 0.

Solution: We plug in repeatedly:
s0 = 5

s1 =
1 + s0

2
= 3

s2 =
1 + s1

2
= 2

s3 =
1 + s2

2
=

3

2

s4 =
1 + s3

2
=

5

4

Example 16.5. Recursive definitions may refer to more than one previous term. Consider the sequence Fn

defined by
F0 = 0 and F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

List the first six terms of Fn.

Solution: Again, we just plug in.
F0 = 0

F1 = 1

F2 = F1 + F0 = 1

F3 = F2 + F1 = 2

F4 = F3 + F2 = 3

F5 = F4 + F3 = 5

This sequence is known as the Fibonacci sequence.

Definition 16.6. An arithmetic sequence is a sequence an whose nth term is given by an = m · n + b for
n ≥ 0. Such a sequence has the recursive definition

a0 = b and an+1 = an + m for n ≥ 0.

Here the number m is called the common difference.

Example 16.7. List the first five terms of the arithmetic sequence an = 4n− 7 for n ≥ 0.

68

Solution: We plug in n = 0, 1, 2, 3, 4.
s0 = 4 · 0− 7 = −7

s1 = 4 · 1− 7 = −3

s2 = 4 · 2− 7 = 1

s3 = 4 · 3− 7 = 5

s4 = 4 · 4− 7 = 9.

Notice how each term is 4 more than the previous term.

Example 16.8. Find a formula for the nth term of the arithmetic sequence (2, 5, 8, 11, 14, . . .).

Solution: The formula is sn = mn + b. The number m is the common difference, which is 3. The number b
is the 0th term, which is 2. So the formula is sn = 3n + 2.

Definition 16.9. A geometric sequence is a sequence bn whose nth term is given by bn = a · rn for n ≥ 0.
Such a sequence has the recursive definition

b0 = a and bn+1 = r · bn for n ≥ 0.

Here the number r is called the common ratio.

Example 16.10. List the first five terms of the geometric sequence bn = 3 · 2n.

Solution: We simply plug in n = 0, 1, 2, 3, 4.

s0 = 3 · 20 = 3

s1 = 3 · 21 = 6

s2 = 3 · 22 = 12

s3 = 3 · 23 = 24

s4 = 3 · 24 = 48.

Notice how each term is twice the previous term.

Example 16.11. Find a formula for the sequence sn which begins

(
8, 4, 2, 1,

1

2
,

1

4
, . . .

)
.

Solution: The formula is sn = a · rn. The number a is the 0th term, 8, and the number r is the common

ratio,
1

2
. So the formula is sn = 8 ·

(
1

2

)n

.

Exercises 16.12. Answer the questions below.

1. List the first five terms of the sequences below.

(a) an = 1 +
(−1)n

n
for n ≥ 1

(b) bn =

(
1 +

1

n

)n

. Find exact answers for each term and then give a decimal approximation to the

last term.

2. List the first four terms of the sequence below. Find exact answers for each term and then give a
decimal approximation to the last term.

(a) a0 = 1 and an+1 =
a2n + 2

2an
for n ≥ 0

69

(b) b1 = 1, b2 = 1, and bn+1 = bn −
1

n
bn−1 for n > 2.

3. Find a formula for the nth term of the sequence.

(a) a = (7, 10, 13, 16, 19, 22, . . .)

(b) b = (2, 6, 18, 54, 162, 486, . . .)

(c) c = (3, 8, 15, 24, 35, 48, 63, 80, 99, . . .)

(d) d =

(
1

4
,− 1

10
,

1

28
,− 1

82
,

1

244
, . . .

)
4. Find initial conditions and a recurrence relation for the sequence (1, 4, 13, 40, 121, 364, 1093, . . .).

5. Suppose that you invest $1000 at 3% simple interest compounded anually. Write initial conditions and
an recurrence relation giving the value an of your investment after n years.

6. In this exercise, we will find a recurrence relation for the number of ways that you can walk up a flight
of n stairs assuming you can take either 1 or 2 stairs at a time. Let an be the number of ways you can
walk up a flight of n stairs assuming you can take either 1 or 2 stairs at a time. Note that an should
be defined for n ≥ 1.

(a) What is a1? That is, how many ways can you walk up one step if you are allowed to take 1 or 2
steps at a time?

(b) What is a2? That is, how many ways can you walk up two steps if you are allowed to take 1 or 2
steps at a time?

(c) Suppose now that you want to walk up n steps. You can start one of two ways, either taking one
step or two. If you take one step, how many steps are left? What is the symbol for the number
of ways you can take these steps?

(d) Suppose now that you want to walk up n steps. You can start one of two ways, either taking one
step or two. If you take two steps, how many steps are left? What is the symbol for the number
of ways you can take these steps?

(e) Write a recurrence relation and initial conditions for the number an of ways you can walk up a
flight of n stairs assuming you can take either 1 or 2 stairs at a time.

7. In this exercise, we will find a recurrence relation for the number of bitstrings of length n which do not
contain two consecutive 0s. Let an be the number of bitstrings of length n which do not contain two
consecutive 0s.

(a) What is a1? That is, how many bitstrings of length 1 do not contain two consecutive 0s?

(b) What is a2? That is, how many bitstrings of length 2 do not contain two consecutive 0s?

(c) Suppose that n > 2. Consider the bitstrings of length n which do not contain two consecutive 0s
and which end in 1. The first (n− 1) bits of such a bitstring cannot contain two consecutive 0s.
How many such bitstrings are there?

(d) Suppose that n > 2. Consider the bitstrings of length n which do not contain two consecutive
0s and which end in 0. Since these bitstrings cannot end with two consecutive 0s, the (n − 1)st

bit in each of these must be 1. This means that the first (n − 1) bits form a bitstring of length
(n − 1) that ends in 1 and that does not contain two consecutive 0s. How many such bitstrings
are there?

(e) Now write a recurrence relation and initial condistions for an.

8. Towers of Hanoi This is a puzzle involving three pegs mounted on a board and a collection of disks
with holes in the center. The disks are all of different sizes, and they begin all stacked on the first peg,
in order of size, with the largest disk on bottom. The objective of the puzzle is to move the disks one
at a time until they are all on the second peg with the restriction that no disk can be placed on top
of a smaller disk. Let Hn be the number of steps necessary to move n disks from the first peg to the
second peg according to this restriction.

70

(a) What is H1? That is, how many steps are necessary to move 1 disk from the first peg to the
second?

(b) What is H2? That is, how many steps are necessary to move 2 disks from the first peg to the
second?

(c) What is H3? That is, how many steps are necessary to move 3 disks from the first peg to the
second?

(d) Find a recurrence relation for Hn. Hint: Begin by moving all but the largest (bottom) disk to
the third peg.

(e) Use your recurrence relation to list several values of Hn. Guess a formula for Hn.

(f) The original Tower of Hanoi puzzle included the myth about monks solving the problem with 64
gold disks. According to the myth, when the monks finish, the world will end. If they can transfer
1 disk per second, how long would it take to move all 64 disks?

71

17 Summations

Definition 17.1. The notation
n∑

i=1

ai

is called summation notation. The symbol
∑

is a capital Greek sigma, which means (for us) to sum. The

decorations i = 1 and n are limits of the summation. The variable i is the index. The symbol ai is a function
using the subscript notation we used for sequences. The notation is short-hand for a sum

n∑
i=1

ai = a1 + a2 + · · ·+ an.

The summation is calculated by plugging in 1, 2, 3, . . . , n for the index i in the function ai and then adding
the results. The limits of the summation tell where to begin and end the values plugged into the index.

A summation as a for-loop. You could think of the summation
n∑

i=1

ai = a1 + a2 + · · ·+ an as calculating

the value of the variable S in the following code.

S = 0;
for (i = 1; i <= n; i + +)

S = S + ai;

Example 17.2. Calculate the summation
5∑

i=1

(
i

i + 1

)
.

Solution: We plug in and add:

5∑
i=1

(
i

i + 1

)
=

1

2
+

2

3
+

3

4
+

4

5
+

5

6
=

71

20
.

Example 17.3. Calculate the summation

2∑
k=−1

(2k + 1).

Solution: Again, we just plug in:

2∑
k=−1

(2k + 1) = (2 · (−1) + 1) + (2 · 0 + 1) + (2 · 1 + 1) + (2 · 2 + 1) = 8.

Summation Equations. There are a few equations that summations satisfy that can help in computations.
These follow from the commutative, associative, and distributive properties of addition.

n∑
i=1

c · an = c · a1 + c · a2 + · · · c · an = c · (a1 + a2 + · · · an) = c
n∑

i=1

an

n∑
i=1

(an+bn) = (a1+b1)+(a2+b2)+· · · (an+bn) = (a1+a2+· · · an)+(b1+b2+· · · bn) =

(
n∑

i=1

an

)
+

(
n∑

i=1

bn

)
n∑

i=1

(an−bn) = (a1−b1)+(a2−b2)+· · · (an−bn) = (a1+a2+· · · an)−(b1+b2+· · · bn) =

(
n∑

i=1

an

)
−

(
n∑

i=1

bn

)

72

These are called the linear properties of summations. In addition, there are some standard formulas for
adding up simple functions of the index:

n∑
i=1

c = c + c + · · ·+ c = n · c

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

n∑
i=1

i3 = 13 + 23 + 33 + · · ·+ n3 =

(
n(n + 1)

2

)2

n∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rn =
rn+1 − 1

r − 1

Example 17.4. Calculate
100∑
i=1

(i2 + 2i + 3).

Solution: We could plug in i = 1, 2, 3, . . . , 100 and add. That would be tedious. Instead, we apply the
equations above.

100∑
i=1

(i2 + 2i + 3) =

(
100∑
i=1

i2

)
+

(
100∑
i=1

2i

)
+

(
100∑
i=1

3

)

=

(
100∑
i=1

i2

)
+

(
2

100∑
i=1

i

)
+

(
100∑
i=1

3

)

=
100 · 101 · 201

6
+ 2 · 100 · 101

2
+ 100 · 3

= 338350 + 10100 + 300

= 348480.

Example 17.5. How many multiplications are performed in this piece of code?

c = 0
for (i = 1; i ≤ 100; i + +) {

c = c · c;
for (j = 1; j ≤ i; j + +) {

c = c · c + 2 · c + 3;
}

}

Solution: We begin with the inside loop. For a fixed value of i, this loop is executed i times. For each
execution of the loop, there are two multiplications, so for each i, there are 2i multiplications done in the
inside loop. Now we address the outside loop. Each time this loop is executed, there are 2i multiplications
in the inside loop and one multiplication outside the inside loop. Therefore, there are a total of

100∑
i=1

(2i + 1)

73

multiplications here. We can use the formulas above to calculate this value:

100∑
i=1

(2i + 1) =

(
100∑
i=1

2i

)
+

(
100∑
i=1

1

)

=

(
2 ·

100∑
i=1

i

)
+

(
100∑
i=1

1

)

= 2 · 100 · 101

2
+ 100 · 1

= 10200.

When the code is executed, there are 10200 multiplications.

Here is another solution: We can turn the for-loops into summations. The outside for-loop becomes

100∑
i=1

· · ·

Inside this for-loop, there is one multiplication plus the inside loop. The inside loop is also a summation:

100∑
i=1

1 +
i∑

j=1

· · ·

Within the inside loop, there are two multiplications (well, one could be done as a shift). The number of
multiplications is

100∑
i=1

1 +
i∑

j=1

2

Now we can use the formulas:

100∑
i=1

1 +

i∑
j=1

2

 =

100∑
i=1

(1 + 2i)

=

(
100∑
i=1

1

)
+

(
100∑
i=1

2i

)

=

(
100∑
i=1

1

)
+

(
2

100∑
i=1

i

)

= 100 + 2 · 100 · 101

2
= 10200.

When the code is executed, there are still 10200 multiplications.

Example 17.6. Calculate this sum:
100∑
i=3

(i + 1)

Solution: The tricky part here is that the summation starts at 3 rather than 1. If the summation started at
1, then we would have

100∑
i=1

(i + 1) =

(
100∑
i=1

i

)
+

(
100∑
i=1

1

)
=

100 · 101

2
+ 100 · 1 = 5150.

74

However, this includes terms where i = 1 and i = 2. It includes:

2∑
i=1

(i + 1) = (1 + 1) + (1 + 2) = 2 + 3 = 5.

To find the sum we want, we just subtract:

100∑
i=3

(i + 1) =
100∑
i=1

(i + 1)−
2∑

i=1

(i + 1) = 5150− 5 = 5145.

Exercises 17.7. Answer the questions below.

1. Calculate each of these summations by plugging in.

(a)
2∑

i=−2

i

i2 + 1

(b)
4∑

i=0

(
1

2

)i

(c)
4∑

i=0

(2i3 − 3i2)

2. Calculate each of these summations by using the summation formulas in the section.

(a)
50∑
i=1

(3i + 4)

(b)
50∑
i=1

(i3 − i2)

(c)
10∑
i=0

(2i + 2i) (Does the initial value i = 0 instead of i = 1 matter?)

(d)
10∑
i=1

(2i + 2i) (Does the initial value i = 1 instead of i = 0 matter?)

(e)
10∑
i=0

((
1

2

)i

+
1

2

)

(f)
100∑
i=5

i2

3. The code below finds the maximum number in the list a1, a2, . . . , an. How many times is the comparison
in line 3 executed?

max = a1;
for (i = 2; i ≤ n; i + +)

if (ai > max)
max = ai;

4. The code below evaluates the polynomial a0 + a1x + a2x
2 + · · · anxn. How many multiplications are

done in this code?

75

//This variable is an accumulator that will contain the value of the polynomial.
v = 0;
//The variable i will be the exponent.
for (i = 0; i ≤ n; i + +) {

//The variable t will contain the next term to add to the polynomial.
//We initialize t to the coefficient ai.
t = ai;
//Then we multiply by i copies of x to get the right exponent.
for (j = 0; j < i; j + +)

t = t · x;
//Add the new term onto v.
v = v + t;

}

5. The code below also evaluates the polynomial a0 + a1x+ a2x
2 + · · · anxn, but it uses something called

Horner’s Algorithm. How many multiplications are done in this code?

//This variable is an accumulator that will contain the value of the polynomial.
v = an;
for (i = 1; i ≤ n; i + +)

v = v · x + an−i;

6. The code below multiplies an n×n matrix A times an n×n matrix B and places the result in an n×n
matrix C. The notation Ai,j is the entry of A in the ith row and jth column. How many multiplications
are executed in the code?

//The variable i will traverse the rows of A.
for (i = 1; i ≤ n; i + +) {

//The variable k will traverse the columns of B.
for (k = 1; k ≤ n; k + +) {

//Initialize Ci,k to 0.
Ci,k = 0;

//The variable j will be used to traverse the ith row of A and the kth column of B.
for(j = 1; j ≤ n; j + +)

Ci,k = Ci,k + Ai,j ·Bj,k;
}

}

7. The code below performs a simple bubble sort to place the numbers a1, a2, . . . , an in order from least
to greatest. How many times is the if statement in the third line executed?

for (i = 1; i ≤ n; i + +)
for (j = i + 1; j ≤ n; j + +)

if (ai > aj)
swap(ai, aj);

8. The code below checks objects a1, a2, . . . , an for collisions and “does something” if there is a collision.
How many times is the function tooClose() called?

for (i = 1; i ≤ n; i + +)
for (j = i + 1; j ≤ n; j + +)

if (tooClose(ai, aj))
doSomething(ai, aj);

76

9. The code below performs some weird calculation. How many multiplications does it perform?

x = 0;
for (i = 0; i < n; i + +)

for (j = 0; j < i; j + +)
for (k = 0; k < j; k + +)

x = x + i · j + j · k;

10. The code below performs some weird calculation. How many multiplications does it perform?

x = 0;
for (i = 0; i < n; i + +)

for (j = 0; j < i; j + +)
for (k = 0; k < i; k + +)

x = x + i · j + j · k;

77

18 Cardinality

Bijections and Finite Sets. Suppose that A and B are finite sets and that f : A → B is any function.
If f is injective (one-to-one) then all of the elements in B of the form f(a) where a ∈ A are distinct. This
means that B must have at least as many elements as A. If f is surjective (onto), then for each b ∈ B, there
is at least one a ∈ A with f(a) = b. Since every element of b can be paired with at least one element of A,
there are at least as many elements in A as in B. Then, if f is injective the number of elements of A is less
than or equal to the number of elements of B, and if f is surjective the number of elements of A is greater
than or equal to the number of elements of B. Therefore, if f is a bijection, the number of elements of A is
equal to the number of elements of B.

We would like to extend this observation to infinite sets. We would like to be able to talk about the
“number” of elements in a set and to compare these “numbers” even when the sets are infinite. To do so,
we cannot use “numbers” in the usual sense. When we talk about the “size” of a set or the “number” of
elements of a set, we will use a different number system called cardinal numbers. We will use the symbol
|A| for the number of elements in a set, and we will call this the cardinality of the set. The following are
assumptions we make about cardinal numbers and cardinality.

Axiom 18.1. We assume the following about cardinal numbers and cardinalities of sets.

1. To every set A is associated a unique cardinal number |A| called the cardinality of A.

2. For every cardinal number κ, there is a set A with |A| = κ.

3. For every positive integer n, |{0, 1, 2, . . . , (n− 1)}| = n.

4. For any set A, |A| = 0 if and only if A = ∅.

5. For any sets A and B, |A| = |B| if and only if there is a bijection from A to B.

6. For any sets A and B, |A| ≤ |B| if and only if there is an injection from A to B.

7. For any sets A and B, |A| < |B| if and only if |A| ≤ |B| but |A| ≠ |B|.
Terminology. When there is a bijection between two sets so that the sets have the same cardinality, some
texts will say that the two sets are equipotent, equinumerable, or bijective. We choose simply to say they
have the same cardinality.

Since the composition of bijections is a bijection, and since every bijection has an inverse which is a
bijection, most of the following theorem is not hard to prove.

Theorem 18.2. Suppose that A, B, and C are sets.

1. |A| = |A| (The relationship of having the same cardinality is reflexive.)

2. If |A| = |B|, then |B| = |A|. (The relationship of having the same cardinality is symmetric.)

3. If |A| = |B| and |B| = |C|, then |A| = |C|. (The relationship of having the same cardinality is
transitive.)

4. |A| ≤ |A| (The less than or equal to relation for cardinalities is reflexive.

5. If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. The less than or equal to relation for cardinalities is
antisymmetric.)

6. If |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|. The less than or equal to relation for cardinalities is
transitive.)

Cantor-Schroeder-Bernstein Theorem. The only portion of this theorem which is difficult to prove is
part 5. This is known as the Cantor-Schroeder-Bernstein Theorem. It says that we can prove two sets A
and B have the same cardinality by proving there is an injection from A to B and an injection from B to
A.

Example 18.3. Let n be a positive integer. Show that |{1, 2, . . . , n}| = n.

78

Solution: Let A = {0, 1, 2, . . . , (n − 1)} and B = {1, 2, . . . , n}. From Axiom 18.1 part 3, we know that that
|A| = n. Define f : A→ B by f(x) = x + 1. Then f is clearly a bijection, so |B| = |A| = n.

Example 18.4. Let A = {0, 1, 2, 3, . . .} and let B = {1, 2, 3, . . .}. Show that |A| = |B|.

Solution: We just have to find a bijection between A and B. The function f : A→ B given by f(x) = x + 1
is a bijection. (We know it is a bijection because it has an inverse which consists of subtracting 1.) Since
f : A→ B is a bijection, |A| = |B|.

Example 18.5. Let C = [0, 1] be the interval in R from 0 to 1, and let D = [0, 17] be the interval in R from
0 to 17. Show that |C| = |D|.

Solution: Again, all we need is a bijection from C to D. The function f : C → D given by f(x) = 17x will
do.

Wait. These last two examples should make you pause to ponder. In Example 18.4, the set A seems larger
because it has one element that B does not. In Example 18.5, the set D seems larger since it is longer. There
are two morals here. First, weird things can happen with infinite sets. Second, cardinality has nothing to
do with length or area or volume.

Definition 18.6. Suppose that A is a set.

� A is finite if |A| is a natural number.

� A is infinite if A is not finite.

Theorem 18.7. A set A is infinite if and only if there is an injection f : A→ A which is not surjective.

Example 18.8. Let S be the set of sequences of 0s and 1s. Show that there is no surjection from N to S.

Solution: Suppose that f : N → S is any function. We will show that f is not surjective. To do so, we
will find a sequence of 0s and 1s which is not in the range of f . The tricky part is the notation. For each
n ∈ N, f(n) is a sequence. We will denote this sequence by fn, and we will index the sequence with natural
numbers. Each fn is a sequence. We denote the ith term of fn as fn

i . We now define a new sequence s. For
each n ∈ N we let sn = 1− fn

n . That is, if fn
n = 0, then sn = 1− 0 = 1, and if fn

n = 1, then sn = 1− 1 = 0.
The term sn is the opposite of the nth term in fn. The sequence s cannot be in the range of f . If s were in
the range of f , then there would be some n so that s = f(n) = fn. However, we know that s ̸= fn because
the terms sn and fn

n are different. Since there is a sequence s ∈ S which is not in the range of f , the function
f is not surjective. This applies to all f : N→ S, so there is no surjection from N to S.

This theorem now follows.

Theorem 18.9. The set S of sequences of 0s and 1s is not the same cardinality as the set N of natural
numbers.

Two Different Infinite Cardinals. In the last example, S and N are both infinite. However, they have
different cardinalities. This gives two different infinite cardinals! This should begin to bother you.

Definition 18.10. Suppose that A is any set.

� A is countably infinite if |A| = |N|.

� A is countable if A is finite or countably infinite.

� A is uncountably infinite or uncountable if A is not countable. (This means that A is not finite and not
the same cardinality as N.)

Example 18.11. We saw in Example 18.8 that the set S of sequences of 0s and 1s is uncountable.

Example 18.12. Let P be the powerset of N (the set P(N) of subsets of N). Then P is uncountable.

79

Solution: There is a bijection from P to the set S of sequences of 0s and 1s that maps any subset A ⊆ N to
the sequence s defined so that sn = 1 if and only if n ∈ A. Since there is such a bijection, |P | = |S|. Since
S is uncountable, so is P .

Note. The sequence sn related to the set A ⊆ N in the last example is called the characteristic function
of A. In general if X ⊆ Y are sets, the characterisitc function of X is the function χ : Y → {0, 1} so that
χ(y) = 1 if and only if y ∈ X.

Powersets. Example 18.12 is actually a special case of a theorem by Cantor that the powerset of a set
always has a larger cardinality.

Theorem 18.13. Cantor’s Theorem If A is any set, then |A| < |P(A)|.

This theorem has disturbing consequences. we know |N| < |P(N)|, but P(N) is just a set, so we can
apply Cantor’s Theorem to it also to get |P(N)| < |P(P(N))|. In fact, we can apply the theorem repeatedly
to find an infinite sequence of increasingly larger infinite cardinals:

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < |P(P(P(P(N))))| < |P(P(P(P(P(N)))))| · · ·

Are these the only infinite cardinal numbers? In particular, is there an infinite cardinal number between |N|
and |P(N)|? The thought for a long time was no:

The Continuum Hypothesis: There is no set A with |N| < |A| < |P(N)|.

However, it was proven in the 1960s that the Continuum Hypothesis is independent of the current axioms
of mathematics – we can assume it is true or that it is false without affecting the consistency of mathematics.
That should really be disturbing.

Example 18.14. Let B be the set of all real numbers in the interval [0, 1) whose decimal expansions use
only 0s and 1. B contains numbers like 0, 0.1 0.1, and 0.01. The set B is uncountable.

Solution: There is a bijection from B to S from Example 18.8 which maps any number 0.b1b2b3... to the
sequence (b1, b2, b3, . . .), so |B| = |S|. Since S is uncountable, so is B.

Example 18.15. Since the set B in the previous example is uncountable, so is any set which contains it.
This means that [0, 1] is uncountable and R is uncountable. Because of Example 18.5, every interval in R is
uncountable.

Example 18.16. The integers have the same cardinality as the natural numbers.

Solution: We can draw a picture of a bijection between the two sets:

0 1 2 3 4 5 6 7 8 · · ·
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ · · ·
0 1 −1 2 −2 3 −3 4 −4 · · ·

Since such a bijection exists, |Z| = |N|. This implies, by the way, that Z is countably infinite.

Listable. The manner in which we listed the elements of Z in this example with one ellipsis is important.
Essentially, if we can list the elements of a set in a reasonable way then that set will be countable.

Example 18.17. The set Z× Z is countably infinite.

80

Solution: The elements of Z× Z are ordered pairs (x, y) where both x and y are integers. These are exactly
those points on the plane which have integer coordinates. What we need is a way to number these points to
set up a bijection with the natural numbers. We can do this by assigning 0 to the origin (0, 0) and spiraling
outwards, assigning a natural number to each integer point, in a pattern like so:

36 ← 35 ← 34 ← 33 ← 32 ← 31 ← 30
↓ ↑
37 16 ← 15 ← 14 ← 13 ← 12 29
↓ ↓ ↑ ↑
38 17 4 ← 3 ← 2 11 28
↓ ↓ ↓ ↑ ↑ ↑
39 18 5 0 → 1 10 27
↓ ↓ ↓ ↑ ↑
40 19 6 → 7 → 8 → 9 26
↓ ↓ ↑
41 20 → 21 → 22 → 23 → 24 → 25
↓
42 → 43 → 44 → 45 → 46 → 47 → 48 · · ·

Since such a bijection exists, we know that |N| = |Z× Z|.

Example 18.18. The set Q is countably infinite.

Solution: It is difficult to come up with a single function to show that these sets have the same cardinality.
Since N ⊆ Q, we know that |N| ≤ |Q|. We can define a function f : Q→ Z× Z so that f(0) = (0, 0) and for

x ̸= 0, f(x) = (a, b) where x =
a

b
is in lowest terms with b > 0. This f is an injection, so |Q| ≤ |Z× Z|. We

know from the last example that |Z× Z| = |N|, so we have:

|N| ≤ |Q| ≤ |Z× Z| = |N|.

Therefore, all of these cardinalities are equal.

Example 18.19. The set T of all bitstrings is countably infinite.

Solution: We need to find a way to list all of the bitstrings in T in an organized way so that we can assign a
natural number to each. We will do so by length. First, we will list the bitstrings of length 0, then those of
length 1, and then those of length 2, and then 3, and so on. Within each length, we will order the bitstrings
as if they are base 2 numbers. This gives the following list and implied bijection.

0 ↔ λ
1 ↔ 0
2 ↔ 1
3 ↔ 00
4 ↔ 01
5 ↔ 10
6 ↔ 11
7 ↔ 000
8 ↔ 001
9 ↔ 010

10 ↔ 011
11 ↔ 100
12 ↔ 101
13 ↔ 110
14 ↔ 111
15 ↔ 0000
16 ↔ 0001

...
...

...

81

Example 18.20. The set of strings over any finite alphabet is countably infinite.

Solution: Suppose that A is any finite alphabet (a set). We can mimic the last example and list the strings
of length 0, then those of length 1, and then those of length 2, and then 3, and so on. This gives a list which
can be paired with the natural numbers.

Example 18.21. Programming Languages. Any reasonable programming language has finitely many
symbols in it. A program in that language is a string using those symbols which adheres to some grammatical
rules. By the last example, there are a countably infinite number of possible strings. This means that the
number of programs in any reasonable language is countably infinite.

Cardinality Examples. Here is a summary of cardinality examples from the section in table form.

Finite Countably Infinite Uncountable
∅ N, Z, Q, Z× Z R, intervals

{0, 1, 2} bitstrings sequences of 0s and 1s
Symbols in any programming language programs in any language subsets of N

strings over a finite alphabet

Consequences. The fact that are only countable many programs in any language but that there are
uncountably many subsets of N and uncountably many functions from N (sequences) to {0, 1} has some
surprising consequences. Each statement below follows from the fact that there are more subsets of N and
more functions from N to {0, 1} ⊆ N than there are programs.

� There are functions f : N → N which are not computable. This means there is no program which
inputs a natural number n and outputs f(n) correctly.

� There are subsets A ⊆ N for which it is impossible to write a program to decide if a number n is in A.

Treating a program as some sort of algorithmic description:

� There are functions f : N→ N which cannot be described algorithmically.

� There are subsets A ⊆ N which cannot be described algorithmically.

82

19 Diagonalization and Undecidability

� Liar’s Paradox

� Russel’s Paradox

� Cantor’s Theorem

� Halting Problem

� Uncomputable functions and sets

� Continuum Hypothesis

83

84

85

20 Graphs

Definition 20.1. A graph G consists of a nonempty set GV called the vertices (or nodes) of G and a set GE

called the edges of G. Each edge is associated with a set of either one or two vertices called its endpoints.

Example 20.2. The table below describes a graph G with vertices GV = {v1, v2, v3, v4, v5, v6}.

Edge Endpoints
e1 {v1, v2}
e2 {v2, v3}
e3 {v3, v1}
e4 {v3}
e5 {v6}
e6 {v5, v6}
e7 {v5, v6}

Diagrams of Graphs. We can draw diagrams representing a graph G with vertex set GV and edge set
GE . The diagram consists of a point for each vertex and a curve between the endpoints of each edge. A
diagram of the graph in Example 20.2 is below.

Graphs can usually be depicted in more than one way. The diagram below represents the same graph as the
diagram above. All that matters is that the right edges connect the right vertices.

Directed Graphs. Our graphs will be almost exclusively undirected. That is, an edge is represented as an
unordered pair {i, j} between vertices i and j. In a directed graph edges are represented as ordered pairs
(i, j). When drawing such edges, we draw an arrow from vertex i to vertext j. If we are going to work
with a directed graph, we will explicitly state so. Unless otherwise stated, “graph” for us means “undirected
graph.”

Finite Graphs. If the vertex set of a graph is infinite, we say the graph is infinite. Almost every graph we
will work with will be finite, so we assume that, unless otherwise stated, graphs are finite.

Definition 20.3. Two vertices in a graph are adjacent if there is an edge between them. In the graph above,
v1 is adjacent to v2. An edge with one endpoint is a loop. In the graph above, e4 and e5 are loops. Any
edge is said to be incident with its endpoints. A graph which has no loops and which has at most one edge
between any two vertices is a simple graph.

Example 20.4. The graph in Example 20.2 is not a simple graph because it contains loops and because
there are two edges between v5 and v6. The graph below is a simple graph.

86

Binary Relations. You should be wondering whether or not graphs (or directed graphs) are simply binary
relations. The answer is, almost. Directed graphs are almost identical to the concept of digraph that we drew
for binary relations. However, with binary relations, we can have at most one edge/arrow between vertices i
and j. We allow multiple edges between vertices in graphs. Simple graphs are essentially symmetric binary
relations without loops. Directed graphs with no multiple edges are essentially binary relations.

Definition 20.5. An edge in a graph is said to be incident with its edges. The degree of a vertex v, denoted
deg(v), is the number of edges incident with v, with loops being counted twice.

Example 20.6. In the graph of Example 20.2, deg(v1) = 2, deg(v3) = 4, and deg(v4) = 0.

Map Coloring. Graphs can be used to model states or countries on a map. The vertices of the graph
associated with a map in this way are the states or countries. There is an edge between two vertices if the
states they represent share a border. For example, on the left below is a map of several “states.” On the
right is a graph depicting the map. To make the graph, simply place a dot in the center of each state and
draw edges across state boundaries to connect the dots. Then, erase the map.

When drawing a map, it is ideal to color the map so that no two adjacent states have the same color.
Reprsenting states as a graph can help with coloring the map with the fewest number of colors possible. We
illustrate this here. It is helpful to work in the order of degrees, from highest to lowest. The vertex with
highest degree is G, so we color G blue. None of the vertices adjacent to G can be blue. To help our process,
we temporarily color G blue along with all edges incident to G.

Among the vertices not touching anything blue, C has the highest degree, so we color C and its incident
edges blue.

Among the vertices not touching anything blue, A has the highest degree, so we color A and its incident
edges blue.

87

There is now one vertext not incident to any blue, L. We color L and its incident edges blue.

We are done with blue. To make the graph easier to look at, we remove all of the blue vertices and edges.
What is left must be colored with colors other than blue. What is left could be called a subgraph.

In this graph, the vertex with highest degree is I, so we color I and the edges incident to I red.

Among the vertices not incident to any red, B, E, F , and J all have degree 2. Among these, we randomly
select B to color red.

Among the vertices not incident to any red, E and J all have degree 2. Among these, we randomly select E
to color red.

At this point all of the remaining vertices are incident to something red. We delete the red and see what is
left.

88

The graph is simple enough at this point that we could figure out the coloring without an algorithm, but we
persist with the algorithm. The vertices with highest degree are J and K. We arbitrarily choose to color J
green.

The vertices not incident to green are all tied with degrees of 0, so we color them all green.

There is one vertex, K, not colored. We color it purple. Our coloring, then, is Blue: A, C, G, L; Red: B,
E, I; Green: D, F , H, J ; Purple: K. The colored map is below.

Definition 20.7. Since we used this word in our coloring exercise, we will define it. A graph H is a subgraph
of a graph G if the vertices of H form a subset of the vertices of G and the edges of H form a subset of the
edges of G.

We were able to color this map with just four colors. This is not an accident. The reason lies in a special
property of the graphs derived from state borders.

Definition 20.8. A graph is planar if it can be drawn in the plane with no edges intersecting other than at
vertices.

Every graph derived from state borders is planar, and one of the most famous theorems in graph theory
is:

Theorem 20.9. Four Color Theorem Every planar graph can be colored with four or fewer colors in such
a way that no two adjacent vertices are the same color.

This theorem was the first example of a mathematical theorem which was proven with the assistance of
computers. Incidentally, map makers “knew” this for centuries before there was a mathematical proof. We
will see in the exercises that the method we used above for coloring maps can also be used for scheduling.
One of the strengths of graph theory is that the same tools can be used to solve a variety of problems.

89

Road Maps. Another way to derive a graph from a map is to treat intersections, dead ends, and cul-de-sacs
in the map as vertices. Edges in the map are roads between the vertices. There are variants of this type of
graph where each side of a road is an edge or where each lane on a road is an edge. What we consider edges
depends on what we want to accomplish. A police office may want to travel through the graph and observe
everything. He or she would only need to traverse each road once, so roads are adequate for edges. A mail
carrier may need to travel down each side of the road once, so edges for a mail carrier may be sides of roads
(and some roads without mailboxes may be disregarded). An ice truck may need to travel down each lane
of a road. Representing maps as graphs is important for such tasks as finding the shortest route through a
city or the shortest route that visits several cities once each.

Tournaments. We can draw a graph to represent a set of teams playing each other in a tournament (or in
a season). Vertices are the teams, and there is an edge between two teams if they play each other.

Association Graphs. For any set of people, we can make an association graph. The vertices are the
people, and there is an edge between two vertices if those people are “associates.” Here, associate may
have different meanings depending on our purpose. If we are working in epidemiology, then two people
may have an edge between them if they have any contact (that might spread disease). A question about a
graph like this might relate to vaccination. When a person is vaccinated, remove them (and their incident
edges). How many people need to be removed before we are reasonably sure the graph is disconnected
(so disease cannot be spread). If we are letting nature take its course rather than vaccinating, then the
question is still how many people have to be removed from the graph; however, “removal” means something
different. Association graphs can also be used to model crime rings. Vertices are people, and edges are lines
of communication. Here, the question is how many vertices must be removed before we are reasonably sure
the lines of communication are broken. We could also build a graph like this from social media. Vertices are
people, and edges are connections through social media. Here, applications may have to do with advertising.
How many people in a community must I advertise to to be reasonably sure that the entire community will
be exposed through social media?

Niche Graph. In biology, we can draw niche overlap graphs. Vertices are species. Two vertices are adjacent
if those species compete (for the same food resources, for example).

Summing Degrees. Each edge in a graph contributes 1 to the degree of each endpoint of that edge (or
2 in the case of loops). Therefore, if we add the degrees of all of the vertices in a graph, then edge will be
represented in that sum twice. That is, the sum of the degrees is twice the number of edges.

90

Theorem 20.10. Handshaking Theorem The sum of the degrees in a graph is equal to twice the number
of edges in the graph.

A consequence of this theorem is that the sum of the degrees of a graph must be even. This forces the
number of vertices in the graph with odd degrees to be even, since a sum of an odd number of odd numbers
is an odd number.

Lemma 20.11. Any graph has an even number of vertices of odd degree.

Complete Graphs. The complete graph on n vertices is a simple graph with n vertices so that there is
exactly one edge between every pair of distinct vertices. We denote the complete graph on n vertices as Kn.
K1, K2, K3, K4, and K5 are shown below.

Cycles. The cycle on n vertices for n ≥ 3 is a graph with n vertices v0, v1, . . . , vn−1 with an edge between
vi and v(i+1)%n for each i. The cycle on n vertices is denoted Cn. C3, C4 and C5 are shown below.

Wheels. If we add a “center” vertex to Cn which is adjacent to every original vertex, we get the wheel Wn.
W3, W4, and W5 are shown below.

n-Cubes. The n-dimensional hypercube or n-cube is a graph Qn whose vertices are the 2n bitstrings of
length n. Two vertices are adjacent if the corresponding bitstrings differ at exactly one place. Q1, Q2, and
Q3 are shown below.

Q4 is a bit more challenging to draw. We have included colors to show the structure. Q4 contains two copies
of Q3, here in red and blue. (Actually, there are four copies, but we have shown two.) The blue copy includes
those strings ending in 0. The red includes those ending in 1. There are green edges connecting the blue Q3

to the corresponding vertices in the red Q3.

91

Planar Graphs. A graph is planar if it can be drawn in the plane in such a way that none of its edges
cross each other except at vertices. That K4 is planar can be seen in the picture below on the left. However,
if we draw K4 as in the middle picture, planarity is not obvious. The graph K5 on the right is not planar.

3-Colorable Graphs. A simple graph is 3-colorable if 3 or fewer colors can be assigned to its vertices in
such a way that no two adjacent vertices are assigned the same color. The graph K3 is 3-colorable. The
graph K4 is not.

Determining if an arbitrary graph is 3-colorable is, in general, computationally complex.

Bipartite Graphs. A simple graph is bipartite if its vertices can be partitioned into two disjoint sets V1

and V2 so that every edge in the graph connects a vertex from V1 and a vertex in V2. This implies there is
no edge connecting two vertices in V1 or two vertices in V2. The graph C3 is not bipartite. The graph C4 is
bipartite, as is seen in the picture below.

A graph is bipartite if and only if it is 2-colorable – two colors can be assigned to the vertices in such a way
that no two adjacent vertices are the same color.

Homomorphisms and Isomorphisms. Graph colorability can be described using the notion of homo-
morphism.

Definition 20.12. A homomorphism from a graph G to a graph H is a function f : GV → HV from the
vertext set of G to the vertex set of H so that if there is an edge between vertices i and j in G then there is
an edge between vertices f(i) and f(j) in H.

92

In the picture below, there is a homomorphism f from C4 to K2 that maps f(v0) = f(v2) = 0 and
f(v1) = f(v3) = 1. However, there is no homomorphism from K4 to K2. Any function f from K4 to K2

would have to identify two vertices i and j. Since there is an edge between i and j, this means that there
would be an edge between f(i) and f(j). However, if f(i) = f(j), then this would be a loop, and there are
no loops in K2. There is however, a homomorphism from K4 to the graph of H below.

The relationship between coloring and homomorphisms is this:

Theorem 20.13. A graph G is 2-colorable if and only if there is a homomorphism from G to K2. A graph
G is 3-colorable if and only if there is a homomorphism from G to K3.

Definition 20.14. As isomorphism from a graph G to a graph H is a bijective function f : GV → HV from
the vertex set of G to the vertex set of H so that there is an edge between vertices i and j in G if and only
if there is an edge between vertices f(i) and f(j) in H. If there is an isomorphism between G and H, then
we say that G and H are isomorphic.

Example 20.15. The graphs graphs K2 and Q1 are isomorphic. The graphs Q2 and C4 are isomorphic.

Isomorphic graphs are identical except for the names of the elements.

Adjacency Matrices. For a graph without multiple edges between the same vertices, we can make an
adjacency matrix. Number the vertices of a graph G as 1, 2, . . . , n. The adjacency matrix of G is an n × n
matrix MG so that the i, j-entry MG

i,j is 1 if and only if there is an edge between i and j in G and is 0

otherwise. Note that since our graphs are undirected, MG is symmetric.

Example 20.16. Find the graph with this adjacency matix:
0 1 1 0 0
1 0 1 0 0
1 1 1 0 0
0 0 0 0 1
0 0 0 1 0

Solution: In this graph, 1 must be adjacent to 2 and 3, 2 is adjacent to 1 and 3, and 3 is adjacent to 1, 2,
and 3. In addition, 4 and 5 are adjacent.

93

Exercises 20.17. Please answer the questions below.

1. Draw a graph with this edge table. Draw your graph with no edges crossing.

Edge Endpoints
e1 {v1, v2}
e2 {v1, v3}
e3 {v2, v5}
e4 {v2, v3}
e5 {v1, v4}
e6 {v4, v5}
e7 {v2}

2. Consider this graph:

(a) Which vertices are adjacent to b?

(b) Which edges are incident to g?

(c) Find the degree of each vertex.

3. Consider this map:

(a) Draw a graph describing the states and borders in this map.

(b) Color the map with four or fewer colors in such a way that no two adjacent states have the same
color.

4. Final exam times need to be selected for Math 1, Math 2, Math 3, Math 4, Math 5, Math 6, and Math
7. The department wants to use as few times as possible. However, the exams cannot all be at the
same time because some of the classes share students. Below is a graph with the classes as vertices.
An edge between two classes means there is a student in both classes.

94

Color the graph with as few colors as possible. How can this coloring be helpful in scheduling the
exams?

5. Ten people are at a party: Alice, Bob, Cal, Doug, Eunice, Fran, Grace, Hank, Ian, and Jack. They do
not all know each other. Here is a table of who knows whom.

Person Knows
A B, D, E, H
B A, C, F, H, I
C B, D, E, F, G
D A, C, E
E A, C, D
F B, C, G, I
G C, F, H
H A, B, G
I B, F, J
J I

Draw a graph in which the vertices are the people at the party. An edge between two vertices means
they know each other.

6. In the niche graph in this section, what is the degree of the vertex labeled squirrel? What is the
meaning of this number?

7. Draw a planar representation of the graph Q3.

8. Consider this 3× 3 chess board.

A knight on the chess board can legally move in an L-shape. It can move two steps forward (in any
direction) followed by one step to either side. For example, if the knight is at D, it can move two steps

95

right followed by a step up to reach C, or it can move two steps right followed by a step down to I.
Draw a graph whose vertices are the squares of the chess board. Draw an edge between two vertices if
a knight can move from one vertex to the other. Draw a planar version of this graph (that is possible).
Is the graph connected?

9. The graph Q3 is 2-colorable. Color it with 2 colors.

10. The graph Q4 is 2-colorable. Color it with 2 colors.

11. Draw the graph represented by this adjacency matrix.
1 0 1 1 1 0
0 0 0 1 0 1
1 0 0 0 1 0
1 1 0 1 0 1
1 0 1 0 0 0
0 1 0 1 0 0

96

21 Euler Paths

Graph theory was invented in 1736 by Leonard Euler to solve the Konigsberg Bridge Problem. In eighteenth
century Konigsberg, there were seven bridges. Apparently, the good folk of Konigsberg spent their spare
time walking around town attempting to walk across every bridge exactly once while starting and stopping
on the same land mass.

Euler abstracted the problem by creating a graph whose vertices represented the land masses of town and
whose edges were the bridges.

Based on this use of graph theory (and on many modern applications) we introduce terminology to describe
walking around a graph. We follow the terminology of Rosen because it is as simple of terminology as we can
use and still be considered somewhat standard. However, be aware that this terminology varies dramatically,
especially across different fields of mathematics and computer science.

Definition 21.1. A path of length n in a graph G is an ordered list of n edges, e1e2 . . . en so that there are
vertices x0, x1, . . . , xn with ei = {xi−1, xi} for i = 1, 2, . . . , n. That is e1 = {x0, x1}, e2 = {x1, x2}, all the
way to en = {xn−1, xn}. We say that such a path is a path from x0 to xn. If x0 = xn, the we say that
the path is a circuit. A path or circuit which does not contain the same edge more than once is simple. If
G has no multiple edges, then we describe the path here as x0, x1, . . . , xn since each pair xi−1, xi uniquely
determines each edge ei.

Example 21.2. Consider this graph:

In this graph, a, g, c, h is a simple path of length 3 from a to h. Also, a, g, c, h, d, c, h, e is a path of length 7
from a to e which is not simple. The list a, g, f, e is not a path because there are not edges between g and
f or between f and e. Finally, a, b, c, d, e, h, c, g, a is a simple circuit.

Rotating Circuits. Consider the circuit a, b, c, d, e, h, c, g, a in the last example, if we start at b rather than
a but follow the same steps, we get b, c, d, e, h, c, g, a, b, which is also a circuit. We can rotate circuits in this
manner to start at different vertices.

Definition 21.3. If there is a path between every pair of distinct vertices in a graph G, then G is connected.
If v is a vertex in a graph G, then the connected component containing v consists of v along with of all
vertices u for which there is a path from v to u.

97

Example 21.4. Consider the graph below. This graph is not connected because, for example, there is no
path from a to c.

The connected component containing a is {a, b, g, f}. The connected component containing c is {c, d, e}.

Definition 21.5. If e is an edge in a connected graph G, and if G becomes disconnected if e is removed,
then e is called a bridge or cut edge. If v is a vertex in a connected graph G, and if G becomes disconnected
if v is removed, then v is a cut vertex.

Example 21.6. In this graph e5 is a cut edge. The vertices v2 and v7 are cut vertices.

The Konigsberg Bridges problem asks for a simple circuit in a graph which uses every edge. We call such
circuits Euler circuits.

Definition 21.7. A path in a graph which uses every edge of the graph exactly once is an Euler path. A
circuit in a graph which uses every edge of the graph exactly once is an Euler circuit.

Note. An Euler path is by necessity simple. If a path is not simple, then it uses an edge more than once.
This would make it not an Euler circuit.

Street Sweepers. Suppose we want to find a route for street sweepers to follow in a small town. The street
sweepers must travel down both sides of each street in town and should start and stop at the same location.
Let the intersections of the town be the vertices of a graph, and let the sides of the roads be edges. The
most efficient route for the mail carrier to follow is an Euler circuit.

Salt Trucks. Suppose that we need to find an efficient route for salt trucks to travel to salt all of the
bridges in town. Let the land masses (or regions of town connected by bridges) be the vertices of a graph,
and let the bridges be the edges in the graph. The trucks need to cross every bridge exactly once, starting
and stoping in the same location. The most efficient route for them to follow is an Euler circuit.

Tour Guides. Suppose that you are giving an outdoor tour of campus. Let the sidewalks on campus be
edges in a graph whose vertices are the intersections of sidewalks. An efficient route through campus would
be an Euler path. If you want to start and stop at the same location, then you would want an Euler circuit.

Security. Suppose that a security guard wants to patrol a neighborhood. He or she wants to follow a path
that patrols every road in the neighborhood exactly once. In a graph where the vertices are intersections (or
dead ends and cul-de-sacs) and the edges are roads, the most efficient patrol route is an Euler path. If the
security guard wants to start and stop at the same location, the an Euler circuit would be ideal.

Ins and Outs. Suppose that we are walking along an Euler circuit of a graph G beginning at a vertex v.
We begin by leaving v. Since we must begin and end at v (this being circuit), we must return to v at some
point. Therefore, the initial edge we use to leave v is paired with the final edge that we use to return to

98

v. At some point during the circuit, we might return to v prior to the end of the circuit. If this happens,
then we must also leave v again. Therefore, every edge coming into v must be paired with an edge to leave
v along. If this is the case, then the degree of v must be even. Since we can follow a circuit by beginning at
any vertex, the degree of every vertex must be even. Now, if we are following an Euler path which is not an
Euler circuit, then we will not return to v at the end. This means that the initial outward edge at v is not
paired with a return edge. Since v is missing an edge, its degree is odd. Similarly, wherever we end up with
at the end of the path must be missing an edge to leave by and must have odd degree. This should make
the next theorem (due to Euler) seem like it might be reasonable.

Theorem 21.8. A connected graph has an Euler circuit if and only if the degree of every vertex in the graph
is even. A connected graph has an Euler path but not an Euler circuit if the graph has exactly two vertices
of odd degree.

Example 21.9. Which of the graphs below have Euler circuits? Which have Euler paths which are not
circuits?

Solution: In graph A, vertices a and b have odd degree, but all other vertices have even degree. Therefore,
A has an Euler path which is not a circuit. In graph B, vertices a, d, i, and f have odd degree. Since there
are more than two odd vertices, B has no Euler circuit and no Euler path. In graph C, every vertex has
even degree, so C has an Euler circuit. In graph D, every vertex has even degree, so D has an Euler circuit.
In graph E, every vertex has even degree, so E has an Euler circuit.

Fleury’s Algorithm. Finding Euler paths and circuits is oddly easy to do and requires almost no fore-
thought. The technique we use is called Fleury’s Algorithm. The algorithm selects a starting vertex and
progressively follows edges from that vertext to other vertices. After an edge is followed, it is removed from
the graph. The only restriction is that we should not follow a cut edge (bridge) until necessary. Here is
the algorithm for finding an Euler path or circuit in a graph G. The algorithm builds an ordered list P of
vertices which describes the path through G. Along the way, the graph G is dismantled.

1. If G has no odd degree vertices, then select a random vertex v0 to begin at. This is your current vertex.
If G has exactly two odd degree vertices, select one of them as the starting vertex v0. This is your
current vertex. Let P = (v0) (an ordered list of one vertex).

2. While G still contains edges, do the following:

(a) Let v be the current vertex.

(b) If there are one or more edges incident to v which are not cut edges, randomly select one of them.
If the only edge incident to v is a cut edge, select that edge. Let e be the selectd edge. Let w be
the other endpoint of e.

99

(c) Add the vertex w onto the end of P .

(d) Delete the edge e from G. If this isolates v, delete v from G.

At the end of these steps, P will be an ordered list of vertices which describes the path through the original
G.

Example 21.10. Use Fleury’s Algorithm to find an Euler path in this graph.

Solution: Since the vertices a and b have odd degree, we must begin at one of them. We choose to begin at
a. Most of the steps in building that Euler path are illustrated below.

We begin with P = (a) in step 1. From a, we can move to b, c, or d without following a cut edge. We
randomly select d and then remove the edge from a to d in step 2. Now P = (a, d), and the current vertex
is d. From d we can go to b, c, or e without following a cut edge. We choose c and delete the edge from d to
c in step 3. Now P = (a, d, c), and c is the current vertex. From c, we can go to a, b, or e without following
a cut edge. We choose e and delete the edge from c to e in step 4. Now P = (a, d, c, e), and e is the current
vertex. The only edge from e is a cut edge to d, so we must follow it. From d, the only edge is a cut edge
to b, so we must follow it. After following these two edges and deleting them, we also delete e and d. Now
P = (a, d, c, e, d, b), and the current vertex is b. From b we can go to a or to c. We go to c, and then the rest
of the path is completely determined, so our Euler path is P = (a, d, c, e, d, b, c, a, b).

Example 21.11. Use Fleury’s algorithm to find an Euler circuit in this graph.

Solution: Since all of the vertices have even degree, we can begin at any vertex. We start at a with P = (a).
From a we can go to b or f without following a cut edge, so we move to b and delete the edge from a to b in
step 2. Now P = (a, b), and b is the current vertex.

100

From b we can go to c, e, or f without following a cut edge. We choose f and delete the edge from b to f
in step 3. Now P = (a, b, f), and f is the current vertex. There at three edges incident to f . We cannot
follow the one to a because it is a cut edge and we have edges which are not cut edges to choose from. We
can move to c or e without following a cut edge. We choose to move to c and delete the edge from f to c in
step 4. Now P = (a, b, f, c), and c is the current vertex.

From c, we can move to b, d, or e without following a cut edge. We choose to move to e and delete the
corresponding edge in step 5. Now P = (a, b, f, c, e), and e is the current vertex. From e, we cannot yet
follow the edge to f since this is a cut edge and we have edges which are not cut edges to choose from. We
can move to b or d without using a cut edge. We choose to move to b and delete the corrsponding edge in
step 6. Now P = (a, b, f, c, e, b). From this point, the rest of the circuit is uniquely determined. The final
circuit is P = (a, b, f, c, e, b, c, d, e, f, a).

Exercises 21.12. Answer the questions below.

1. This is a circuit in some graph: acbdfehgjia. Rewrite the circuit beginning at f .

2. Find the connected component of g in this graph.

3. Find all cut edges (bridges) and cut vertices in this graph.

101

4. Use Fleury’s Algorithm to find an Euler circuit in this graph.

5. Use Fleury’s Algorithm to find an Euler circuit in this graph.

6. For which n does Qn have an Euler circuit?

7. The graph below represents a neighborhood. Edges are roads, and vertices are intersections.

A security guard wants to enter the neighborhood at the red arrow (E), drive every street in the
neighborhood once, and exit again at the red arrow. What is a path he could follow?

102

8. The graph below represents a neighborhood. Edges are roads, and vertices are intersections.

This graph has no Euler circuit. Find a circuit through the neighborhood that reuses as few edges as
possible.

103

22 Hamilton Paths

It is not the case that every time we want to travel through a graph we want to use every edge. For example,
a mail carrier may not need to visit every road in a town because there may be some roads without mailboxes.
If the mailboxes are vertices, then what the mail carrier wants to do is visit every vertex exactly once.

Definition 22.1. Suppose that G is a graph. A Hamilton path in G is a path in G which passes through
every vertex exactly once. A Hamilton circuit in G is a circuit in G which passes through every vertex
exactly once (except that the first and last vertices are the same).

Note. A Hamilton path is necessarily simple. If a path uses any edge more than once, it would use the
endpoints of that edge more than once.

Icosian Puzzle. The concept of Hamilton path comes from a game, the Icosian Puzzle, invented by Irish
mathematician Sir William Rowan Hamilton in 1857. The game consisted of a dodecahedron (a polyhedron
with 12 pentagonal sides) with a peg at each of its 20 vertices. The object of the game was to find a path
beginning at one vertex, following edges, visiting every vertex once, and returning to the initial vertex – to
find a Hamilton circuit treating the vertices and edges of the polyhedron as a graph.

Security Guards. Suppose that a security guard on a college campus must walk a route that visits every
building on campus. Let the vertices of a graph be the buildings on campus, and let the edges be the
sidewalks between them. An efficient route for the security guard is a Hamilton path in the graph. If the
guard wants to start and stop at the same location, a Hamilton circuit would be appropriate.

Example 22.2. Which of the graphs below have Hamilton circuits? Which have Hamilton paths but not
circuits?

Solution: Graph A has a Hamilton circuit: a, b, d, e, c, a. Graph B cannot have a Hamilton circuit because
such a circuit would have to use the edge from d to e (and hence the vertices d and e) twice. However,
B does have a Hamilton path: a, b, c, d, e. Graph C cannot have a Hamilton circuit because such a circuit
would have to use the edges from d to f and from c to e twice. However, C does have a Hamilton path:
e, c, a, b, d, f . Graph D cannot have a Hamilton circuit because such a circuit would have to use the edges
from e to c, from f to d, and from d to g twice. This graph also cannot have a Hamilton path because such a
path would have to use one of these edges twice (while it could begin and end with the other two). Graph E
cannot have a Hamilton circuit. Any such circuit would have to use the center vertex twice. This graph does
have a Hamilton path: a, c, e, d, b (where e is the center vertex). Graph F has many Hamilton circuits. In
fact, every rearrangement of the vertices of F gives a Hamilton circuit. This is because F is a complete graph
and has edges between every pair of vertices. Graph G has no Hamilton circuit because it has no simple
circuits! This graph also has no Hamilton path. Any Hamilton path would have to use at least one of the
edges incident to a, b, c, or d twice. Graph H has a Hamilton cycle: 000, 001, 011, 111, 101, 100, 110, 010, 000

104

Conditions. There is no easy test to determine if a graph has a Hamilton circuit like there is for Euler
circuits. There are some theorems that guarantee the existence of a Hamilton circuit in some cases. These
theorems essentially state, “If a simple graph has enough edges, then it has a Hamilton circuit.” Here are
two examples.

Theorem 22.3. Dirac’s Theorem If G is a simple graph with n ≥ 3 vertices such that the degree of every
vertex is at least n/2, then G has a Hamilton circuit.

Theorem 22.4. Ore’s Theorem If G is a simple graph with n ≥ 3 vertices such that deg(a) + deg(b) ≥ n
for every pair of nonadjacent vertices a and b, then G has a Hamilton circuit.

Weighted Graphs. Graphs which model certain situations in the real world (maps and computer networks,
for instance) have natural ways to assign distances or costs to each edge.

Definition 22.5. A weighted graph is a graph with numbers called weights on each edge. The weight of a
path in a weighted graph is the sum of the weights of the edges in that path. The shortest path between two
vertices is the path with the least weight among all paths between the vertices.

Example 22.6. Find the weight of the circuit a, c, d, b, f, e, a in this graph.

Solution: The weights of the edges in this circuit are 4, 3, 2, 3, 3, and 1, so the weight is 4+3+2+3+3+1 = 16.

Dijkstra’s Algorithm. Dijkstra’s Algorithm is an algorithm for finding the length of the shortest path
from a specified vertex to any other vertex in a connected weighted graph G. The algorithm operates on
these values at each step:

� w(u, v) is the weight of the edge from u to v.

� D(v) is the (potential) minimum distance from the initial vertex to a vertex v. This value is initially
set to ∞ and is modified at each step of the algorithm.

� V is the set of vertices that have already been visited. These are the vertices for which a minimum
value of D(v) has already been determined.

� A(v) is a vertex in V adjacent to v which is in the path from the initial vertex to v.

� H is a graph which is built during the process from which the minimal path from the inital vertex to
any other vertex can be derived.

Dijkstra’s Algorithm beginning at a vertex a follows these steps:

� Let the vertices of H be the vertices of G, and let the edge set of H be HE = {}.

� Let D(a) = 0 and let D(v) =∞ for all vertices v ̸= a.

� Initialize V = {}.

� While there are vertices outside of V

– Let v be a vertex not in V for which D(v) is minimal. (On the first pass, this will result in v = a
since D(a) = 0 <∞.)

105

– Add v to V .

– If v ̸= a, add the edge {v,A(v)} to H.

– For each vertex u adjacent to v, if D(v)+w(v, u) < D(u), let D(u) = D(v)+w(v, u) and A(u) = v.
(If the path through v to u is shorter than the previously known path, log the shorter distance
and remember which vertex A(u) gave that distance.)

Example 22.7. Apply Dijkstra’s Algorithm in this graph beginning at a.

Solution: We will do this pictorially on the graph. Values of D will be drawn in blue. Values of A will be
drawn in green. Vertices in V will be circled in red, and edges in H will be colored red.

First we initialize the distances. D(a) = 0, and
the other distances are ∞.

When we enter the loop, we place a in V and up-
date the distances to e and c. We set both A(c)
and A(e) equal to a since they are adjacent to a.

On the next pass through the loop, e has the min-
imum distance from a, so we put e in V and add
the edge from a to e to H. We then update dis-
tances and adjacency for c, d, and f .

Next, the vertex with the minimum distance is c,
so we add c to V and draw the edge from c to e.
The distance to d through c is not shorter than
the current value of D(d), so we leave distances
and adjacencies unchanged.

The next minimum value of D is at f , so we add
f to V and put the edge from e to f in H. The
distance to d through f is less than the current
distance, so we update the distance and adjacency
for d along with b.

106

The next shortest distance is to d, so we add d to
V and add the edge from f to d to H. We also
update the distance and adjacency for b.

There is one vertex, b, left, so we add it to V and
we add the edge to H.

We now have calculated the minimum distance from a to every vertex of G. The function A (or the graph
H) can be used to actually retreive the paths. For example, if we want the path from a to b, we calculate:

A(b) = d and A(d) = f and A(f) = e and A(e) = a.

The path, then, is a, e, f, d, b.

Complete Graphs and Traveling Salespersons. Every complete graph has many Hamilton circuits. In
fact, a complete graph on n vertices has (n− 1)! Hamilton circuits since every rearrangement of the vertices
gives a Hamilton circuit (we will discuss this number in detail in the counting sections). For a weighted
complete graph, the challenge is to find the Hamilton circuit with the lowest weight. This is known as the
Traveling Salesperson Problem (TSP). The idea is that a salesperson must travel to visit every town in a
region, visiting every town exactly once, and returning to the first location at the end.

Brute Force. One way to solve the TSP is by brute force. Simply list every Hamilton circuit, find all of
their weights, and select the lowest weight.

Example 22.8. Use brute force to find the minimum weight Hamilton circuit in this graph.

Solution: Since we can rotate a circuit without changing its weight, we arbitrarily choose to begin at A.
There are 4! = 24 different Hamilton circuits beginning at the vertex A. The circuits and their weights are
in the table below.

Circuit Weight Circuit Weight Circuit Weight Circuit Weight
ABCDEA 11 AEDCBA 11 ACBDEA 16 AEDBCA 16
ABCEDA 14 ADECBA 14 ACBEDA 16 ADEBCA 16
ABDCEA 13 AECDBA 13 ADBCEA 17 AECBDA 17
ABDECA 15 ACEDBA 15 ADBECA 18 ACEBDA 18
ABECDA 13 ADCEBA 13 AEBCDA 14 ADCBEA 14
ABEDCA 12 ACDEBA 12 AEBDCA 15 ACDBEA 15

The minimum weight is 11. This weight actually shows up twice in the circuits A,B,C,D,E,A and
A,E,D,C,B,A. Note that these are actually the same circuit followed in reverse order. Actually, all of the
weights in the table come in pairs for the same circuit followed forwards and backwards.

107

The brute force approach is unreasonable even for small sets. Below is a table showing how long it would
take to solve the TSP problem using brute force for 11 to 20 vertices assuming we can check one million
paths every second.

Vertices Time required
11 3.62 seconds
12 39.91 seconds
13 7.98 minutes
14 1.73 hours
15 1.01 days
16 15.14 days
17 242.16 days
18 11.28 years
19 203.02 years
20 3857.34 years

Nearest Neighbor. Since brute force is not a viable approach to solving the TSP, a variety of simpler
algorithms have been developed which find good, but possibly not optimum, solutions. The simplest of these
is the Nearest Neighbor Algorithm:

� Select an initial vertex v and set the path P equal to (v) (an ordered list of one vertex) and set the
current vertex equal to v.

� While there are still vertices not in P :

– Among the edges incident to the current vertex which connect to vertices not in P , select one
with minimum weight. Let u be the endpoint of this edge other than the current vertex.

– Add u to the end of P .

– Set the current vertex to u.

� Add the original vertex v to the end of P .

Example 22.9. Use the Nearest Neighbor algorithm to find a short Hamilton circuit starting at A in this
graph.

Solution: The minimum weight edge incident to A is the edge to B with weight 1, so we follow that edge to
B. The minimum weight edge incident to B which does not lead to A is the one to E with weight 2, so we
follow that edge to E. The minimum weight edge incident to E that does not lead to A or B is the one to
D with weight 2, so we move to D. At this point, the only edge we have not visited is C, so we follow the
edge of weight 2 to C. We have visited all of the edges at this point, so we follow the edge of weight 5 back
to A. Our path is A,B,E,D,C,A with weight 12. This is the same graph as in Exercise 22.8. Notice that
the Nearest Neighbor algorithm found a good circuit but not the best circuit.

108

Exercises 22.10. Answer the questions below.

1. Solve Hamilton’s Icosian Puzzle by finding a Hamilton circuit in this graph which is equivalent to a
dodecahedron.

2. Find a Hamilton path in this graph which consists of two copies of Q3 glued together.

Explain why the graph has no Hamilton circuit.

3. Does Q4 have a Hamilton circuit?

109

4. Use brute force to find a TSP solution for this graph.

5. Use the nearest neighbor algorithm to find a short Hamilton circuit in this complete graph starting at
vertex A.

6. Use the nearest neighbor algorithm to find a short Hamilton circuit in this complete graph starting at
vertex B.

110

7. Use Dijkstra’s Algorithm to find the minimum distance from A to every other vertex in this graph.

111

23 Trees

Definition 23.1. A connected graph with no simple circuits is called a tree.

Example 23.2. Each of these five graphs is a tree.

Neither of these graphs is a tree. The graph on the left has a circuit. The graph on the right is not connected.
One might call the graph on the right a “forest” since it is a collection of trees.

Minimal Connectedness. Trees are graphs with the absolute minimum amount of connectedness.

Theorem 23.3. A connected graph with n vertices is a tree if and only if it has exactly n− 1 edges.

Theorem 23.4. A graph is a tree if and only if there is a unique simple path between any two of its vertices.

Definition 23.5. A rooted tree is a tree with a single vertex designated as a root. In a rooted tree, the
vertices of degree 1 are called leaves. The vertices which are not leaves are internal vertices.

If v is a vertex other than the root in a rooted tree G, then there is a unique vertex u in the path from the
root of G which is adjacent to v. The vertex u is the parent of v, and v is a child of u. Vertices with the
same parent are called siblings. Any vertex in the unique path from the root of G to v is an ancestor of v.
The descendents of v are those vertices which have v as an ancestor.

112

Genealogies. Family trees are actual trees for a few generations.

Are family trees actual trees? You have two biological parents. Each of them had two biological parents, and
each of them had two biological parents. As we proceed backwards like this through your family, if everyone
is distinct, then each generation doubles in size. Let us suppose that a generation takes twenty years. If we
go back in time 1000 years, that is 50 generations. If all of your ancestors were distinct, this would require
1.13 × 1015 people to be alive around the year 1024. This is more than four million times the estimated
population of the Earth in the year 1000. This implies that your family tree actually is not a tree.

Saturated Hydrocarbons. Graphs can be used to represent molecules. Vertices represent atoms, and
edges represent bonds betweent he atoms. A compound of the form CnH2n+2 is a saturated hydrocarbon.
Each carbon atom C is a vertex of degree four. Each hydrogen atom H is a vertex of degree one. The
nonisomorphic trees with n vertices of degree 4 and 2n + 2 vertices of degree 1 represent the isomers of
CnH2n+2. Here is a representation of an isomer of C4H10.

Minimum Path Trees. The subgraph H constructed in Dijkstra’s Algorithm is a rooted tree so that the
path from the root to any vertex has minimal weight. Since every vertex of the original graph G is in H, H
is called a spanning tree of G.

113

Organizational Chart. Large organizations usually have a chain of command that forms a rooted tree.
For example, here is an organizational chart for the Department of Justice (taken from their website).

The DOJ often uses such charts to model criminal organizations.

File Systems. File systems can be modeled after trees. Here is a depiction of the standard Linux file
system.

There have been some files systems proposed that are not based on trees, and you can link folders in some
file systems to more than one location to mimic such a structure. However, tree-based files systems have
benefits for searching for and storing data.

Decision Trees. Trees can be used to model the decision making process. In the game 20 Questions, one
player thinks of an object - an animal, vegetable, or mineral. The other player then can ask up to 20 yes/no
questions to determine what the object is. Treating the questions as vertices, we can draw a rooted tree to
guide someone in asking the questions.

114

This type of tree could theoretically guide a player to 220 = 1, 048, 576 different guesses. In this tree, each
internal vertex has two children. We give such a tree a name.

Definition 23.6. A binary tree is a rooted tree in which each internal vertex has at most two children. A
full binary tree is a rooted tree in which each internal vertex has exactly two children.

Of course, there is not much special about two here. We can also have ternary trees or 4-ary trees. Or
184-ary trees.

Derivation Trees. A parse tree or derivation tree for an expression is a tree that describes how an expression
in a language is derived from the grammar of that language. As an example, we show a derivation tree for
an algebraic expression. Consider the algebraic expression

(3× (a + b)) + ((a× b) + (a + b))

If we were to compute this expression, the last thing we would do is the sum in the middle, so we start our
derivation tree off with a + and space for two children.

The left child will represent the expression in the left set of parentheses. This is a product, so we put a
product as the left child. This product should have two children.

The left side of the product is just a 3, and the right side is a sum.

The children of the sum are a and b.

Now we work on the other branch of this tree. This operation at the top branch is the main operation in
the right set of parentheses. This is a sum.

115

The arguments of the sum are a product and a sum.

The arguments to the product and the sum are a and b.

This is finally a derivation tree for our initial expression.
One reason we may want to draw a derivation tree for an expression is to demonstrate in a more complex

language that an expression is grammatically correct or well-formed. For more complicated computations, a
derivation tree could also help with scheduling for parallel processing. The tree we just drew has 6 operations.
If we could perform the three additions near the bottom of the tree in parallel, and then the multiplication
and addition in the middle in parallel, and then the addition at the top, then we could perform the operation
in only 3 steps rather than 6, cutting the time to compute in half.

Polish Notation. There are at least three ways to convert the derivation tree for an expression back
into an expression. These approaches input the tree for an expression and output a string representing the
expression. All three approaches are recursive. To describe them, we will assume that all of our operations
are binary.

Infix Notation: The first approach reads the left side of a tree, then the right side of the tree, and
returns a string which has the left side followed by an operation symbol, followed by the right side. Since the
operation is written between the operands, this is called infix notation. The function accepts as an argument
a vertex of the derivation tree. If the vertex is a leaf, then the variable or number represented by that leaf is
returned. Otherwise, the vertex represents an operation ∗ and has has a left child and a right child. A string
left is constructed to represent the left child. A string right is constructed to represent the right child.
Then the string (left) ∗ (right) is returned. In the code below, if v is a leaf, then v.value is the number or
variable that v represents. If v is an internal vertex, then v.op is the operation that v represents, v.left is
the left child of v, and v.right is the right child of v.

function infix(v) {
If v is a leaf

return(v.value);
else

return(“(”+infix(v.left)+“)”+v.op+“(”+infix(v.right)+“)”);
}

We illustrate running this function on the derivation tree below. The labels of our vertices have been
subscripted to make it clear which vertex we are looking at.

116

We want to calculate the string f(+1). Since this vertex is not a leaf, we first calculate f(×2) and then
f(+3). For f(×2), this vertex is not a leaf, so we need to calculate f(a4) and f(b5). Since a4 and b5 are
leaves, f(a4) returns “a” and f(b5) returns “b”. The call f(×2) now returns “(a) × (b)”. (Note that the
function adds the extra parentheses.) Now we go back to f(+3). Since +3 is not a leaf, we nave to call f on
the children f(a6) and f(b7). Since a6 and b7 are leaves, f(a6) returns “a” and f(b7) returns “b”. The call
f(+3) now returns “(a) + (b)”. Now that f(×2) and f(+3) have returned, f(+1) can combine their return
values to return “((a)× (b)) + ((a) + (b))”. We would usually write this as, (a× b) + (a + b).

Prefix Notation: The second approach reads the left side of a tree and the right side of the tree, and
returns a string which has the operation symbol followed by the left side of the tree followed by the right
side of the tree. Since the operation is written before the operands, this is called prefix notation (or Polish
notation since it was championed by the Polish mathematician Lukasiewicz). The function accepts as an
argument a vertex of the derivation tree. If the vertex is a leaf, then the variable or number represented by
that leaf is returned. Otherwise, the vertex represents an operation ∗ and has has a left child and a right
child. A string left is constructed to represent the left child. A string right is constructed to represent the
right child. Then the string ∗ left right is returned.

function prefix(v) {
If v is a leaf

return(v.value);
else

return(v.op+prefix(v.left)+prefix(v.right));
}

We illustrate running this function on the derivation tree above. We want to calculate the string f(+1).
Since this vertex is not a leaf, we first calculate f(×2) and then f(+3). For f(×2), this vertex is not a leaf,
so we need to calculate f(a4) and f(b5). Since a4 and b5 are leaves, f(a4) returns “a” and f(b5) returns
“b”. The call f(×2) now returns “×ab”. Now we go back to f(+3). Since +3 is not a leaf, we nave to call
f on the children f(a6) and f(b7). Since a6 and b7 are leaves, f(a6) returns “a” and f(b7) returns “b”. The
call f(+3) now returns “+ab”. Now that f(×2) and f(+3) have returned, f(+1) can combine their return
values to return “+× ab + ab”. Notice how this notation does not need parentheses!

Postfix Notation: The third approach reads the left side of a tree and the right side of the tree,
and returns a string which has the left side of the tree followed by the right side of the tree followed by
the operation symbol. Since the operation is written after the operands, this is called postfix notation (or
reverse Polish notation). The function accepts as an argument a vertex of the derivation tree. If the vertex
is a leaf, then the variable or number represented by that leaf is returned. Otherwise, the vertex represents
an operation ∗ and has has a left child and a right child. A string left is constructed to represent the left
child. A string right is constructed to represent the right child. Then the string left right ∗ is returned.

function postfix(v) {
If v is a leaf

return(v.value);
else

return(postfix(v.left)+postfix(v.right) + v.op);
}

We illustrate running this function on the derivation tree above. We want to calculate the string f(+1).
Since this vertex is not a leaf, we first calculate f(×2) and then f(+3). For f(×2), this vertex is not a leaf,
so we need to calculate f(a4) and f(b5). Since a4 and b5 are leaves, f(a4) returns “a” and f(b5) returns
“b”. The call f(×2) now returns “ab×”. Now we go back to f(+3). Since +3 is not a leaf, we nave to call

117

f on the children f(a6) and f(b7). Since a6 and b7 are leaves, f(a6) returns “a” and f(b7) returns “b”. The
call f(+3) now returns “ab+”. Now that f(×2) and f(+3) have returned, f(+1) can combine their return
values to return “ab× ab + +”.

Advantages of (reverse) Polish Notation: Polish notation and reverse Polish notation have some
advantages over infix notation.

� First, not all operations are binary. In the presence of unary or ternary operations, infix notation must
be mixed with either prefix or postfix notation, so infix notation cannot usually be used exclusively.

� Prefix and postfix notation need not parentheses!

� It is easier to write code to parse prefix and postfix notation than infix notation using a stack.

� Prefix and postfix notation are more convenient for writing proofs about the language of algebraic
expressions.

Spanning Trees.

Definition 23.7. A spanning tree of a graph G is a subgraph of G which contains all the vertices of G and
which is a tree.

All connected graphs have spanning trees. Most have many. Below in red are highlighted multiple
spanning trees of the same graph.

Dijkstra’s Algorithm. The subgraph H built in Dijkstra’s Algorithm is a spanning tree of the original
graph G.

Kruskal’s Algorithm. In a weighted graph, the objective is often to find a spanning tree which has the
minimum total weight. The process for doing this is surprisingly simple. Essentially, we simply add vertices
in the order of weight (from least to greatest) until we have connected all of the vertices. The one thing
to avoid is adding an edge that creates a circuit. The algorithm below, known as Kruskal’s Algorithm
accomplishes this task.

� Let G be the input graph.

� Initialize U to be the empty set. This will be the set of used or discarded edges

� Initialize H as a subgraph of G. Let each vertex of G be a vertex of H. H initially has no edges.

� While H is not connected

– Find a minimum weight edge e of G which is not in U .

– If adding e to H will not create a circuit in H, add e to H.

– Add e to U .

Example 23.8. Use Kruskal’s Algorithm to find a minimum weight spanning tree of this graph.

118

Solution: We illustrate this process below. As we construct the subgraph H, we highlight the edges of H on
the graph in red. The steps are numbered in the center of the graph in purple. First, there is one edge of
weight 1, so we add that to H in step 1. Next, there is one edge of length 2, so we add that to H in step 2.
Next, there is one edge of length 3, so we add that in step 3. The same continues for weights 4, 5, and 6, so
we add those in step 4.

After adding the edge of weight 6, there is one edge of weight 7, the one between I and K. Adding this edge
to H would create a circuit, so we skip that edge and add the one edge of weight 8 in step 5. We cross out
the edge from I to K to remind ourselves that we have skipped that edge. There are three edges of weight
9. Adding them does not create any circuits, so we add all three in step 6. Then we add the one edge of
weight 10 in step 7. There are two edges of weight 11. Adding the one from S to L does not create a circuit,
so we add it. However, the one between Q and R would create a circuit, so we do not add it.

There is one edge of weight 12, so we add it without creating a circuit in step 9. Finally, there are two edges
of weight 13. The one between U and T would create a circuit, so we cannot use it. The one between L and
P is safe to add.

At this point, the subgraph H (with red edges) is connected, so we can stop.

Exercises 23.9. Answer the quetions below, please.

1. Draw two different polymers of C6H14.

2. Consider this rooted tree.

119

(a) What is the root?

(b) What are the leaves?

(c) What are the ancestors of J?

(d) What are the descendents of J?

3. Draw a derivation tree for the expression (2× a) + b

4. Draw a derivation tree for the expression b + (a× ((a + b)× (b + c)))

5. Write this expression in prefix notation: (2× a) + b

6. Write this expression in postfix notation: (2× a) + b

7. Write this expression in prefix notation: (2× a) + (3× b)

8. Write this expression in postfix notation: (2× a) + (3× b)

9. Write this postfix expression in infix notation: 2ab +×3ab××+

10. Write this prefix expression in infix notation: +3 +×aa× 2a

11. Find a spanning tree for Q3. Shade your answer in the graph.

12. Find a spanning tree for Q4. Shade your answer in the graph.

13. The graph below depicts several small towns as vertices. Edges are roads between the towns. Weights
on the edges are costs in millions of dollars to pave the raods. Which roads should be paved so that
all of the towns are connected by pavement, but the least money is spent? Shade your answer in the
graph.

120

14. Find a minimum weight spanning tree in this graph. Shade your answer in the graph.

15. Consider the shapes below. In a game, the first player selects a shape and keeps it secret. The second
player can then ask the first player yes/no questions to determine which shape was selected. Draw a
decision tree to help the second player determine the shape in as few questions as possible. This will
be a binary tree. Each vertex should be a question. Follow the left branch on answers of yes and the
right on answers of no.

121

24 Basic Counting

Multiplication Rule:. Suppose that one procedure can end in m outcomes and that for each of these
outcomes a second procedure can end in n outcomes. The two procedures combined can end in a total of
mn outcomes.

Example 24.1. The chairs in a stadium are labeled with capital letter followed by a positive integer less
than 100. How many such labels are there?

Solution: We can treat this as two procedures – first picking the letter, and then picking the integer. There
are 26 letters to choose from, and there are 99 positive integers less than 100. According to the Multiplication
Rule, there are 26 · 99 = 2574 possible chair labels.

The multiplication rule can be extended to more than two procedures.

Example 24.2. Suppose that license plates in a certain state consist of two nonzero digits followed by four
letters. If all letter cominations are allowed (rather than disallowing offensive four-letter words like MATH),
then how many such license plates are there?

Solution: There are nine nonzero digits - 1, 2, 3, 4, 5, 6, 7, 8, 9 - so there are 9 ways of choosing each digit.
There are 26 letters, so there are 26 ways of choosing each letter. The total number of license plates is

9 · 9 · 26 · 26 · 26 · 26 = 37015056.

Example 24.3. How many bitstrings are there of length 5?

Solution: There are two choices (0 or 1) for each bit in the bitstring. According to the Multiplication Rule,
there are 25 = 32 length 5 bitstrings.

Example 24.4. How many functions are there from a set of 4 elements into a set of 8 elements?

Solution: Suppose that A = {1, 2, 3, 4} and that |B| = 8. We want to count the functions f : A→ B. There
are 8 possible values for f(1). There are 8 possible values for f(2). There are 8 possible values for f(3).
There are 8 possible values for f(4). By the multiplication rule, there are 84 = 4096 possibilities for f .

Example 24.5. How many injective functions are there from a set of 4 elements into a set of 8 elements?

Solution: Suppose that A = {1, 2, 3, 4} and that |B| = 8. We want to count the injective functions f : A→ B.
There are 8 possible values for f(1). Suppose that f(1) is selected. Since f is supposed to be injective, the
value of f(1) cannot be equal to any other values of f . Therefore, there are only 7 possible values for f(2).
Now that we have already used two values from B, to keep f injective, we have only 6 possible values for
f(3). Finally, there are only 5 values left over for f(4). By the multiplication rule, there are 8 ·7 ·6 ·5 = 1680
injective functions from A to B.

Example 24.6. How many subsets does an n element set have?

Solution: For each of the n elements, there are two options - either the element is in the subset, or it is not.
Therefore, the Multiplication Rule says that there should be 2 · 2 · · · 2 = 2n possible subsets.

The Sum Rule:. If A and B are finite sets, then |A ∪ B| = |A| + |B| − |A ∩ B|. If A ∩ B = ∅ then
|A ∪B| = |A|+ |B|.

Note. You might think here that |A ∪ B| should be |A| + |B|. However, if we just add the sizes of A and
B together, then we are counting the elements of A ∩ B twice - once when we count A and once when we
count B. Many books call this the inclusion-exclusion principle.

Example 24.7. Suppose that a certain code consists of at most two characters. The characters must either
be digits or uppercase letters. The first character must be a letter. How many such codes are there?

122

Solution: Any code which is at most two characters must be either one character or two characters. We apply
the Sum Rule by counting the one-character codes and the two-character codes and then adding. Since every
code must begin with a letter, a one-character code is just a letter. There are 26 of these. For two-character
codes, the first character must be a letter (of which there are 26), but the second can be a letter or a digit
(of which there are 26 + 10 = 36 – which is another application of the Sum Rule). Therefore, there are
26 · 36 = 936 two-character codes. Since there are 26 one-character codes and 936 two-character codes, there
are a total of 26 + 936 = 962 codes.

Example 24.8. Suppose that a password must be exactly 8 characters long, that each character must be
either an uppercase letter, a lowercase letter, or a digit, and that at least one character must be a digit. How
many such passwords are there?

Solution: Counting problems involving “at least one” are usually difficult to count directly. Instead, we
usually use a trick. We will count all of the strings involved in the problem, and we will count all of the
strings that contain no digits. Then, we will subtract. The key is that each string either contains at least
one digit or it contains no digits. Let A be the set of all 8-character strings consisting of uppercase letters,
lowercase letters, and digits. Let B be the set of all such strings which contain at least one digit. Let C
be the set of all such strings which contain no digits. Then A = B ∪ C and B ∩ C = 0. By the Sum Rule,
|A| = |B| + |C|. We are interested in |B|, so solving gives |B| = |A| − |C|. To count the elements of A,
we can select one digit at a time. There are 26 lowercase letters, 26 uppercase letters, and 10 digits, for a
total of 62 possibilities for each character. That gives |A| = 628 = 218340105584896. To count elements of
C, we also select one character at a time. However, since elements of C contain no digits, there are only
26 + 26 = 52 possibilities for each character. This gives |A| = 528 = 53459728531456. Now

|B| = |A| − |C| = 628 − 528 = 164880377053440.

Example 24.9. How many length 10 bitstrings are there that begin with 1 or end with 1?

Solution: Let A be the set of all length 10 bitstrings that begin with 1. Let B be the set of all length 10
bitstrings that end with 1. We want |A∪B|. By the Sum Rule, this is |A|+ |B| − |A∩B|. The set A∩B is
the set of length 10 bitstrings which begin with 1 and end with 1.

Any bitstring in A begins with 1 and is followed by 9 bits. For each of these 9 bits, there are only two
options – 0 or 1 – so there are 29 = 512 bitstrings in A.

Any bitstring in B is a 1 preceded by 9 bits. For each of these 9 bits, there are two options – 0 or 1 – so
there are 29 = 512 bitstrings in B.

Any bitstring in A∩B consists of two 1s with 8 bits in between. There are 28 = 256 of these. Therefore

|A ∪B| = |A|+ |B| − |A ∩B| = 512 + 512− 256 = 768.

Example 24.10. Among 25 students, 15 took calculus, 19 took discrete, and 2 took neither. How many
took calculus and discrete?

Solution: Let C be the set of students who took calculus, and let D be the set of students who took Discrete.
We want |C ∩D|. We know that |C ∪D| = 25− 2 = 23. We also know from the Sum Rule that

|C ∪D| = |C|+ |D| − |C ∩D|.

Plugging in the numbers we know gives

23 = 15 + 19− |C ∩D|.

We can now solve for |C ∩D| to get

|C ∩D| = 15 + 19− 23 = 11.

Eleven students took both classes.

Example 24.11. Among 20 students, 16 took discrete, and 8 took knitting. What are the largest and
smallest that the number of students who took both classes might be?

123

Solution: Let D be the set of students who took discrete. Let K be the set of students who took knitting.
We want to know the largest and smallest that D ∩K can be. The reason that D ∩K is unknown in this
example (compared to the last) is that we do not have a way to determing D ∪K. D ∩K is at its largest if
one of the sets is actually a subset of the other. If K ⊆ D, then |D ∩K| = |K| = 8. in this case, among the
20 students, 16 took discrete, and 8 of those 16 took knitting. That leaves 4 students who took neither. To
discover the smallest that D ∩K can be, consider the sum rule

|D ∪K| = |D|+ |K| − |D ∩K|.

If we solve for |D ∩K|, we get
|D ∩K| = |D|+ |K| − |D ∪K|.

To make |D∩K| as small as possible, we make |D∪K| as large as possible. Since there are only 20 students,
the largest |D ∪K| might be is 20, so the smallest value of |D ∩K| is

|D ∩K| = 16 + 8− 20 = 4.

The number of students who took both classes is somewhere between 4 and 8, inclusive.

Inclusion-Exclusion with Three Sets. The Sum Rule can be extended to three sets.

|A ∪B ∪ C| = |A ∪ (B ∪ C)|
= |A|+ |B ∪ C| − |A ∩ (B ∪ C)|
= |A|+ |B ∪ C| − |(A ∩B) ∪ (A ∩ C)|
= |A|+ |B ∪ C| − (|(A ∩B)|+ |(A ∩ C)| − |(A ∩B) ∩ (A ∩ C)|)
= |A|+ |B ∪ C| − (|(A ∩B)|+ |(A ∩ C)| − |A ∩B ∩ C|)
= |A|+ |B ∪ C| − |(A ∩B)| − |(A ∩ C)|+ |A ∩B ∩ C|
= |A|+ |B|+ |C| − |B ∩ C| − |(A ∩B)| − |(A ∩ C)|+ |A ∩B ∩ C|
= |A|+ |B|+ |C| − |(A ∩B)| − |(A ∩ C)| − |B ∩ C|+ |A ∩B ∩ C|

The way to think of this is that we should add |A| + |B| + |C|, but this counts the intersections too many
times, so we subtract off the pairwise intersections. However, |A|+ |B|+ |C| counts |A∩B ∩C| three times,
and subtracting off the pairwise intersections subtracts |A ∩B ∩ C| three times. Therefore, we have to add
it back at the end.

Example 24.12. Among 40 students, 16 took calculus, 19 took discrete, and 16 took Greek. Seven students
took both calculus and discrete. Five took both calculus and Greek, and 6 took both discrete and Greek.
Five students took none of the classes. How many took all three?

Solution: Let C be the set of students who took calculus, D the set of students who took discrete, and G
the number of students that took Greek. We want |C ∩D ∩G|. We know:

|C| = 16 |C ∩D| = 7
|D| = 19 |C ∩G| = 5
|G| = 16 |D ∩G| = 6

Additionally, we know that |C ∪D ∪G| = 40− 5 = 35. Plugging into the Sum Rule equation for three sets
gives:

35 = 16 + 19 + 16− 7− 5− 6 + |C ∩D ∩G|.
Solving for |C ∩D ∩G| gives

|C ∩D ∩G| = 35− (16 + 19 + 16− 7− 5− 6) = 2.

Two students took all three classes.

We can sometimes draw trees to help with counting.

Example 24.13. Suppose that two teams, A and B, are playing in a three game series. The first team to
win two games wins the series. How many different ways could the series play out?

124

Solution: First, we draw a vertex (representing Game 1) which is the root of our tree. This vertex has two
edges branching off of it – one representing a win by A and one representing a win by B.

The children of the first vertex represent possible Game 2s. Each of these might be won by A or by B, so
we add branches to each.

Now, the left-most branch indicates a situation in which team A has won two games. In this case, A wins
the series. Similarly, the right-most branch indicates a situation in which team B has won two games. In
this case, B wins the series. These two branches are done growing. However, in the middle two branches,
we still do not have a winner, so the two middle vertices represent possible Game 3s. We add branches to
these to indicate the possible winners.

At this point, a team has one two games along any branch, and the series is over. The number of possible
series is the number of leaves - 6. Then number of ways that A can with is 3. The number of ways that B
can win is 3. The number of series that end after two games is 2. The number of series that end after three
games is 4. Notice that the team to win the last game is the team that wins the series.

The Pigeonhole Principle. If k + 1 objects are placed into k boxes, then at least one box contains at
least two objects.

The Generalized Pigeonhole Principle. If n objects are placed into k boxes, then at least one box
contains at least ⌈n/k⌉ objects.

Example 24.14. Among 100 people, at least how many were born in the same month?

125

Solution: We are placing the 100 people in 12 “boxes” or months. By the Generalized Pigeonhole Principle,
at least one box contains ⌈100/12⌉ = ⌈10.166 ⌉ = 11 people. So at least 11 people were born in the same
month.

Example 24.15. What is the least number of students necessary in a class to guarantee that at least 4 of
them have the same grade from A, B, C, D, F?

Solution: Let n be the number of students in a class. Since there are five grade categories, we need for
⌈n/5⌉ = 4. Consider multiples of 5. Note that ⌈15/5⌉ = ⌈3⌉ = 3 and ⌈20/5⌉ = ⌈4⌉ = 4, so 15 students is too
few, but 20 is (probably more than) enough. We raise 15 by 1 and try 16 to see that ⌈16/5⌉ = ⌈3.2⌉ = 4.
Therefore, among 16 students at least 5 have the same grade.

Exercises 24.16. Please solve the following problems.

1. A code consists of two distinct digits followed by two distinct capital letters followed by four characters
that can each be any digit or any capital letter. How many such codes are there?

2. How many length five strings are there over the alphabet {a, b, c, d, e, f}?

3. How many length five strings are there over the alphabet {a, b, c, d, e, f} which have no repeated
characters?

4. How many length five strings are there over the alphabet {a, b, c, d, e, f} which have at least one
repeated character?

5. How many length five strings are there over the alphabet {a, b, c, d, e, f} which do not contain a?

6. How many length five strings are there over the alphabet {a, b, c, d, e, f} which do contain a?

7. How many length 10 bitstrings are there which begin with 11 or end with 00?

8. Among 20 students, 10 took calculus, 10 took discrete, and 10 took algebra. Five took calculus and
discrete. Five took calculus and algebra, and five took algebra and discrete. If 3 students took none
of the classes, how many students took all three classes?

9. Among 20 students, 15 took calculus and 12 took discrete. What is the largest number that might
have taken both classes?

10. Among 20 students, 15 took calculus and 12 took discrete. What is the smallest number that might
have taken both classes?

11. Draw a tree showing the possible outcomes of a best of 5 games series.

12. Among a class of 30 students, at least how many were born on the same day of the week?

13. A certain type of beetle can be red, purple, or green. How many beetles have to be caught to guarantee
you have at least 10 of the same color?

14. How many four-digit pin numbers are there which have at least one repeated digit?

126

25 Permutations and Combinations

Definition 25.1. An ordered arrangement of the elements of a set is a permutation of the elements. An
ordered arrangement of r elements from a set is an r-permutation. The symbols P (n, r) and nPr represent
the number of r-permutations of an n element set.

Example 25.2. How many 3-permutations are there of the letters A, B, C, D, E, F, G?

Solution: We will use the Multiplication Rule to answer this. We have three procedures here – selecting the
first, second, and third letters. There are seven choices for the first letter. Once that letter has been chosen,
there are six choices for the second letter. After two have been chosen, there are five choices left for the third
letter. Therefore, the number of 3-permutations is 7 · 6 · 5 = 210.

Note. The product 7 · 6 · 5 looks like the beginning of 7!. In fact, it happens to be that

7 · 6 · 5 =
7 · 6 · 5 · 4 · 3 · 2 · 1

4 · 3 · 2 · 1
=

7!

4!
=

7!

(7− 3)!
.

Example 25.3. How many permutations are there of the letters A, B, C, D, E, F, G?

Solution: We can proceed here just like we did in the last example. However, this time we need to select 7
numbers. The count is 7 · 6 · 5 · 4 · 3 · 2 · 1 = 7! or 5040.

The process we used to solve the previous examples hints at this theorem.

Theorem 25.4. There are P (n, n) = n! permutations of n objects and P (n, r) =
n!

(n− r)!
r-permutations

of n objects.

Example 25.5. How many permutations of A, B, C, D, E, F contain the string AB?

Solution: The trick to this problem is to treat AB as a single character. Therefore, we are looking at
permutations of AB, C, D, E, F – which is five characters. There are 5! = 120 such permutations.

Example 25.6. How many permutations of A, B, C, D, E, F contain the string AB or the string BA?

Solution: Here, we use the Sum Rule. No permutation can contain both AB and BA, so we merely count
those that contain AB (there are 120 of these by the last example) and those that contain BA (there are 120
these by mimicing the last example). There should be a total of 120 + 120 = 240 permutations containing
AB or BA.

Example 25.7. How many permutations of A, B, C, D, E, F contain the string AB or the string CD?

Solution: This problem is different from the last because a permutation might contain both AB and CD. Let
X be the set of all permutations containing AB, and let Y be the set of all permutations containing CD.
We want |X ∪ Y | = |X|+ |Y | − |X ∩ Y |. We know that |X| = 120 from the previous examples. It is also the
case that |Y | = 120 for similar reasons. We need only calculate |X ∩Y |. This is the number of permutations
which contain both AB and CD. For this, we treat AB and CD as characters, so that we are looking for
permuations of AB, CD, E, F. There are 4! = 24 of these. Therefore, the number of permutation containing
AB or CD is 120 + 120− 24 = 216.

Definition 25.8. An r-combination of a set of n elements is an r-element subset of the n element set.
This can be thought of an an unordered selection of elements from the set. The number of r-combinations

of an n element set is denoted C(n, r) or nCr or

(
n
r

)
. This is read as “n choose r.”

Example 25.9. How many 3-element subsets are there of the 5-element set {A,B,C,D,E}? (That is, find
C(5, 3).)

127

Solution: We first try to work this problem like we did the permutation problems. We can select the first

character, then the second, and then the third. There are P (5, 3) =
5!

2!
ways to do this. However, this counts

some subsets too many times. The selections ABC, ACB, BAC, BCA, CAB, CBA all give the same set.
We must divide our count by 3! to avoid counting every rearrangement of our set separately. Therefore,

C(5, 3) = P (5, 3)÷ 3! =
5!

2!
÷ 3! =

5!

3!2!
= 10.

This example hints at the following theorem.

Theorem 25.10. The number of r-combinations of an n element set is C(n, r) =
n!

r!(n− r)!
.

Example 25.11. How many committees of three people can be formed in a department of ten people?

Solution: We simply need to select 3 people from the ten. The order we select them does not matter, just
the group of three. Therefore, the number of committees is

C(10, 3) =
10!

3!7!
=

10 · 9 · 8 · 7!

3!7!
=

10 · 9 · 8
3 · 2 · 1

= 120.

Example 25.12. How many ways can we select a president, a secretary, and a treasurer from ten people?

Solution: We select the people one at a time – president, secretary, treasurer. What makes this different
from the last question is that the order we select them matters. Therefore, we want P (10, 3) = 720.

Example 25.13. How many bitstrings of length 10 contain exactly 3 1s?

Solution: To form a bitstring of length 10 with exactly 3 1s, we simply need to select the three places to put
the 1s and put 0s everywhere else. Therefore, the number of length 10 bitstrings with exactly 3 1s is

C(10, 3) =
10!

3!7!
=

10 · 9 · 8 · 7!

3!7!
=

10 · 9 · 8
3 · 2 · 1

= 120.

Example 25.14. A math department with 6 members and a computer science department with 4 members
are going to create a committee of 4 to design a new class. If the committee must contain 2 people from
each department, then how many such committees are there?

Solution: We select the 2 math people and then the two computer science people and apply the Multiplication
Rule.

#committees = (#ways to select the math)× (#ways to select the CS)

= C(6, 2)× C(4, 2)

= 15× 6

= 90.

There are 90 ways to form the committee.

Example 25.15. How many ways can we rearrange the letters in MISSISSIPPI?

Solution: What makes this problem different from earlier problems is that some of the letters are repeated
– we have some indistinguishable objects. We will solve this problem twice to see two different philosophical
approaches. We are arranging letters into 11 places. All we have to do is

1. Select 4 places of the 11 for the Ss.

2. Select 4 places of the remaining 7 for the Is.

3. Select 2 places of the remaining 3 for the Ps.

128

4. Select 1 place of the remaining 1 for the M.

The number of ways to do this is:

C(11, 4)× C(7, 4)× C(3, 2)× C(1, 1) =
11!

4!7!
× 7!

4!3!
× 3!

2!1!
× 1

=
11!

4!4!2!
= 34650.

Our second approach will give more meaning to the fraction in our last step. Thee are 11! ways to rearrange
11 letters. However, since we have 4 Ss, we divide by 4! so that we do not count all of the rearrangements
of the Ss separately. Similarly, we divide by 4! to identify the Is with each other, and we divide by 2! to
identify the Ps.

Permutations with Repetition. In Example 24.3 we counted bitstrings of length 5. We would like to
revisit that example. In constructing a bitstring of length 5, we can imagine that we are selecting 5 objects in
order from the set {0, 1}. Some books would call this a 5-permutation with repetitions allowed of a 2-element
set. We use the word permutation here because order matters. Repetition must be allowed because there
are only 2 elements to pick from. In general, then number of r-permutations with repetition allowed selected
from n elements is just nr. These are simply the strings of length r over the alphabet consisting of the n
objects.

Example 25.16. Sam is painting Easter eggs. He has 12 eggs, and he has five colors: red, orange, yellow,
green, and blue. If each egg is painted one color and if all of the eggs are considered identical, in how many
ways can he paint the eggs?

Solution: Sam is going to make 12 choices from the colors red, orange, yellow, green, and blue. The choices
must allow repetition since he has fewer colors than the number of choices. The order of the choices does
not matter since, for example, painting one egg red and then one blue is the same as painting one blue and
then one red. To decide how to do this, we draw a diagram. The categories corresponding to colors below
are separated by vertical bars.

red orange yellow green blue
| | | |

We illustrate a selection of colors for all 12 eggs by placing the eggs in the color categories. We represent
each egg with a ∗. This selection represents 4 red, 4 orange, and 4 yellow.

red orange yellow green blue
∗ ∗ ∗∗ | ∗ ∗ ∗∗ | ∗ ∗ ∗∗ | |

This selection represents 2 red, 2 orange, 2 yellow, 3 green, and 3 blue.

red orange yellow green blue
∗∗ | ∗∗ | ∗∗ | ∗ ∗ ∗ | ∗ ∗ ∗

Every possible selection here is merely a rearrangement of 12 ∗s and 4 |s. There are

(12 + 4)!

12!4!
=

16!

12!4!
= C(16, 12) = 1820.

There are 1820 ways for Sam to paint the eggs.

Stars and Bars. In this last example, we are selecting 12 colors with repetition with no regard for order
from a set of 5 colors. This is called a 12-combination with repetition selected from a 5-element set. Some
books will use the word multiset to describe such a combination. To count combinations with repetition, we
usually use the process above with ∗s and |s. The name of this approach is stars and bars. The number of ∗s

129

is the number of selections being made. The number of |s is one less than the number of categories or bins
or objects from which we are selecting. If we are selecting an r-combination with repetition from n objects,
the number of ∗s is r, and the number of |s is n− 1. The number of rearrangments of these ∗s and |s is

r + (n− 1)

r!(n− 1)!
= C(r + (n− 1), r).

Example 25.17. How many nonnegative integer solutions are there to the equation x1 +x2 +x3 +x4 = 10?

Solution: The secret to questions such as this is to think of the variables x1, x2, x3, and x4 as categories or
bins in which to place 10 ∗s. The four bins will be separated by 3 |s, so we are arranging 10 ∗s and 3 |s. The
number of ways to do this is

(10 + 3)!

10!3!
=

13!

10!3!
= C(13, 3) = 286.

Incidentally, you could call what we are counting here 10-combinations with repetition of 4 objects.

Example 25.18. How many positive integer solutions are there to the equation x1 + x2 + x3 + x4 = 10?

Solution: The difference here is that each of the variables must be at least 1. We can have no empty bins as
might have happened in the last problem. Again, we start with 10 ∗s and 4 bins or 3|s. Since every bin must
contain at least one ∗, we set aside 4 ∗s which will be placed into the bins at the end. Then we distribute
the remaining 6 ∗s in the 4 bins without having to think about whether or not the bins are empty. At the
end, we add one of the 4 ∗s we set aside to each bin. Therefore, we only need to count how to place 6 ∗s in
4 bins separated by 3 |s. The number of ways to do this is

(6 + 4)!

6!4!
=

10!

6!4!
= C(10, 6) = 210.

Example 25.19. How many ways can 11 identical books be distributed among 4 shelves?

Solution: We have 11 objects or ∗s to be placed in 4 bins. The bins would be separated by 3 dividers or |s.
The number of ways to do this is

(11 + 3)!

11!3!
=

14!

11!3!
= C(14, 11) = 364.

Example 25.20. How many ways can 11 different books be arranged on 4 shelves?

Solution: We do this through two procedures. First, we decide how to distribute the books on the shelves,
then we decide which order to put the books in. There are 364 ways to select the shelves by the previous
example. There are 11! ways to arrange the books, so the number of ways to arrange the books on the
shelves is 364× 11! = 14, 529, 715, 200.

Exercises 25.21. Please complete the following exercises.

1. How many permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9?

2. How many permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do not contain the pair
12?

3. How many permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that contain the pair 12 or
the pair 23? (Be careful.)

4. How many 5-permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9?

5. How many 5-permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 which contain the digit 1?

130

6. How many 5-permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 which contain the pair 12?

7. How many 5-permutations are there of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 which do not contain the
pair 12?

8. Five friends Alice, Bob, Chuck, Dave, and Eve are going to the movies. How many ways can they sit
on one row if Alice and Bob must sit next to each other (in either order)?

9. Five friends Alice, Bob, Chuck, Dave, and Eve are going to the movies. How many ways can they sit
on one row if Alice and Bob cannot sit next to each other?

10. There are not enough chairs in the classroom for all 20 discrete students, so 3 will have to stand. How
many different ways can we select the 3 who have to stand?

11. There are not enough chairs in the classroom for all 20 discrete students, so 3 will have to stand. How
many different ways can we select the 3 who have to stand if Alice or Bob either have to both be sitting
or both be standing?

12. There are not enough chairs in the classroom for all 20 discrete students, so 3 will have to stand. How
many different ways can we select the 3 who have to stand if exactly one of Alice or Bob must be
standing?

13. How many bitstrings of length 10 contain five 1s and five 0s?

14. How many ways can we rearrange the letters TEXAS?

15. How many ways can we rearrange the letters CONNECTICUT?

16. How many ways can we place 10 students into 3 rooms – Room 1, Room 2, and Room 3 – if it does
not matter who is in each group, just how many are in each group?

17. How many solutions are there to x1 + x2 + x3 = 12 using positive integers?

131

26 Basic Probability

Events. The sample space of a repeatable process, procedure, or experiment is the set of all possible
outcomes of the process. An event is a subset of the sample space. This is just a set of outcomes of the
process. A simple event is composed of a single outcome. A compound event is a union of multiple simple
events.

Example 26.1. Supose that a six-sided die is rolled. The possible outcomes are the numbers 1, 2, 3, 4, 5,
and 6. The sample space is {1, 2, 3, 4, 5, 6}. A compound event is the event that we roll an even number.
This is the event {2, 4, 6}.

Example 26.2. Suppose that two dice are rolled. The possible outcomes are:

Some compound events are:

� The event that the two numbers rolled are equal.

� The event that the two numbers rolled add to 8.

� The event that the first number is less than the second.

Example 26.3. Suppose that a coin is flipped. The possible outcomes are flipping a head (which we denote
H) or flipping a tail (which we denote T). The sample space is {H,T}.

Example 26.4. Suppose that two coins are flipped. The sample space is {HH,HT, TH, TT}. Some
compound events are:

� The event that the flips are the same.

� The event that the flips are different.

� The even that there is at least one H.

Example 26.5. Suppose that the experiment we are doing is that we guess your ATM pin number. There
are two outcomes in the sample space. Either we guess correctly, or we guess incorrectly.

Probability Assumptions. Every event can be assigned a probability. For any event A in a sample space
S, we denote the probability of A as P (A). We make these assumptions about probabilities:

� 0 ≤ P (A) ≤ 1.

� P (∅) = 0.

� P (S) = 1.

132

� If A ∩B = ∅ then P (A or B) = P (A ∪B) = P (A) + P (B).

We associate the word likely with probabilities greater than 1/2 and the word unlikely with probabilities
less than 1/2.

Suppose that S is a sample space with n simple events, S = {A1, A2, . . . , An}, that are all equally likely.
This implies that P (A1) = P (A2) = · · · = P (An). Since the simple events do not overlap,

1 = P (S) = P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An) = n · P (Ai).

It follows that P (Ai) = 1/n for all i. Suppose now that B = {A1, A2, . . . , Ak} is a compound event. Then

P (B) = (A1) + P (A2) + · · ·+ P (Ak) =
1

n
+

1

n
+ · · · 1

n
=

k

n
.

That is, the probability of B is the number of simple events in B divided by the total number of simple
events.

Theorem 26.6. Suppose that B is an event in a finite sample space S and that every simple event in S is
equally likely. Then

P (B) =
|B|
|S|

.

Example 26.7. Suppose that a six-sided die is rolled. What is the probability of rolling an even number?

Solution: The sample space here, {1, 2, 3, 4, 5, 6}, contains six simple events. The event of rolling an even
number, {2, 4, 6} contains three events. Therefore, the probability of rolling an even number is

P (even) =
3

6
=

1

2
.

Example 26.8. Suppose that two dice are rolled. What is the probability that the sum of the dice is 5?

Solution: The sample space for this procedure is pictured above. It contains 36 simple events. If we list
every event as an ordered pair of numbers, then the events in which the sum is 5 are (1, 4), (2, 3), (3, 2), and
(4, 1). There are four of these, so

P (sum = 5) =
4

36
=

1

9
.

Cards. A standard playing deck contains 52 cards divided into two colors (red and black) and four suits -
the red suits (hearts and diamonds) and the black suits (clubs and spades). Each suit consists of 13 cards:
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. The Jacks, Queens, and Kings are called face cards.

Example 26.9. A card is drawn randomly from a shuffled deck of cards. What is the probability that it is
a red face card?

133

Solution: The red face cards are the Jack, Queen, and King of hearts and diamonds. There are six of these,

so the probability is
6

52
=

3

26
.

The addition rule for counting can be extended to probabilities. If A and B are events then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Example 26.10. Suppose that a card is drawn randomly from a shuffled deck. What is the probability
that it is red or a face card?

Solution: There are 52 cards total. There are 12 face cards (three in each suit), and there are six red face
cards. Therefore,

P (red or face card) = P (red) + P (face card)− P (red face card)

=
26

52
+

12

52
− 6

52

=
32

52

=
8

13
.

Definition 26.11. Suppose that A is an event in a sample space S. The complement of A is the event that
A does not occur. This is denoted as Ā.

The event complement of A is precisely the set complement of A in the universe S. Since A ∪ Ā = S,
and since A ∩ Ā = ∅, we have that 1 = P (S) = P (A) + P (Ā). This implies that P (Ā) = 1− P (A).

Example 26.12. Suppose five cards are draw at random from a standard deck. What is the probability
that at least one of the cards is red?

Solution: Let A be the event that at least one of the five cards is red. Then Ā is the event that none of the
cards is red. We will calculate P (Ā) and then P (A) = 1− P (Ā). To calculate P (Ā), we need to know how
many 5-element sets of cards there are, and we need to know how many of them contain no red cards. The
number of 5-element sets of cards is C(52, 5) since there are 52 cards in the deck. The number of black cards
is 26, so the number of 5-element sets of cards that are only black is C(26, 5). Therefore,

P (Ā) =
C(26, 5)

C(52, 5)
=

65780

2598960
≈ 0.0253.

It follows that P (A) = 1 − P (Ā) ≈ 0.9747. It is extremely likely that a set of 5 cards will contain at least
one red.

Conditional Probabilities. The probability of an event A given that an event B has already happened
is denoted P (A|B), which is read, “the probability of A, given B.” Extending the counting rule for simple
events, it should seem reasonable that

P (A|B) =
P (A ∩B)

P (B)
.

Here, the top of the fraction is the “number” of ways that A can happen if B has happened, and the bottom
is the “number” of ways that B can happen. Solving this equation can give a formula for P (A ∩B).

P (A ∩B) = P (B) · P (A|B).

If the occurrence of B does not affect the probability of the occurrence of A, then A and B are independent.
In this case, P (A ∩B) = P (A) · P (B).

Example 26.13. An urn contains 3 red marbles and 2 blue marbles. Two marbles are drawn from the urn
without replacement. What is the probability they are both red?

134

Solution: The probability that the first marble is red is
3

5
. If we remove a red marble, then there are 2 red

and 2 blue marbles in the urn. Therefore the probability that the second marble is red if the first was red

is
2

4
. Then

P (both red) = P (1st red and 2nd red)

= P (1st red) · P (2nd red|1st red)

=
3

5
· 2

4

=
3

10
.

Exercises 26.14. Please answer the questions below.

1. Two dice are rolled.

(a) What is the probability that both dice show even numbers?

(b) What is the probability that the second number is a multiple of the first?

(c) What is the probability that the letter e occurs in the spelling of at least one of the numbers?

2. A card is selected randomly from a standard deck.

(a) What is the probability that the card is a number card? (Not Ace, King, Queen, or Jack.)

(b) What is the probability that the card is a face card or a heart?

(c) What is the probability that the card is not a King?

3. A set of two cards is selected from a standard deck. (Set implies that we do not care about order.)

(a) What is the probability that both cards are red?

(b) What is the probability that at least one card is black?

(c) What is the probability that both cards are face cards?

(d) What is the probability that at least one card is not a face card?

4. A set of five cards is selected from a standard deck.

(a) What is the probability that the set of five cards contains no face cards?

(b) What is the probability that the set of five cards contains a face card?

(c) What is the probability that the set of five cards contains two red cards and three black cards?

5. A set of four cards is selected from a standard deck.

(a) What is the probability that the set of four cards contains one heart, one club, one spade, and
one diamond?

(b) What is the probability that the set of four cards contains two red and two black cards?

6. A bowl contains 5 red marbles and 7 blue marbles. Two marbles are drawn from the bowl without
replacement.

(a) What is the probability that the first is red and the second is blue?

(b) What is the probability that the marbles are the same color?

7. A certain type of cheap battery operated alarm clock works 80% of the time. Bob buys two of these
clocks.

(a) On any given morning, what is the probability that both clocks fail?

(b) On any given morning, what is the probability that at least one clock works?

135

