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4.8 l’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . 108

5 Integration 111
5.1 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 The Fundamental Theorems and Why They are Obvious 116
5.5 Partitions and Sums . . . . . . . . . . . . . . . . . . . . 117
5.6 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.7 Conditions for Integrability . . . . . . . . . . . . . . . . 127
5.8 Algebraic Properties of the Integral . . . . . . . . . . . . 137
5.9 The Fundamental Theorem of Calculus . . . . . . . . . . 142

6 Series 151
6.1 Definitions and Basic Properties . . . . . . . . . . . . . 151
6.2 Tests for Convergence . . . . . . . . . . . . . . . . . . . 164
6.3 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.4 Properties of Power Series . . . . . . . . . . . . . . . . . 184
6.5 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 205

ii



Chapter 1

The Real Numbers

1.1 Preliminaries

The purpose of these notes is to begin with minimal assumptions and
to build enough of the machinery for calculus to prove the Fundamental
Theorem of Calculus. We assume that the reader is familiar with basic
logic, set theory, and proof techniques including:

• logical operators

• logical equivalences

• rules of inference

• quantifiers

• set operations

• set builder notation

• functions

• inverse functions

• injectivity, surjectivity, bi-
jectivity

• relations

• reflexivity, symmetry, tran-
sitivity

• equivalence relations

• cardinality

• proof

• direct proof

• proof of biconditionals

• cases

• proof of disjunctions

• proof by contrapositive

• proof by contradiction

• proofs about subsets

• proofs about set equality

• proofs about cardinality

• Mathematical Induction

1
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We use this notation for number systems:

• Natural Numbers: N = {1, 2, 3, . . .}

• Integers: Z = {0, 1,−1, 2,−2, 3,−3, . . .}

• Rational Numbers: Q =
{a
b

: a, b ∈ Z and b 6= 0
}

• Real Numbers: R

• Irrational Numbers: R−Q

This first chapter lays the foundation on which we will build through-
out the rest of the notes. We treat the real numbers as a set with two
operations (addition and multiplication) and an order relation satis-
fying a handful of nice properties. These nice properties declare that
R is an ordered field. Most of the results in this chapter should be
well-known to anyone studying this material. Theorems and proofs in
this chapter are included both as a warm-up and to demonstrate that
we can accomplish our goals beginning from a small set of assumptions.
(The motivated student might want to begin with the Peano Axioms
for N, define Z, Q, and R from N and derive these properties.)

The bare minimum which is essential to take away from this chapter
aside from the usual arithmetic in R is: the Triangle Inequality 1.3.3
and Corollary 1.3.4; Theorem 1.3.5; the concepts of bounds, infima,
and suprema; The Completeness Axiom 1.4.27; and the density of Q
and R−Q in R.

1.2 Ordered Field Axioms

We assume that the real numbers are a set R along with two binary
operations, addition + and multiplication ·, and a binary relation, less
than <, which satisfy these properties.

Axiom 1.2.1. (Ordered Field Axioms)

A1. For all x, y, z ∈ R, x+ (y + z) = (x+ y) + z.

A2. For all x, y ∈ R, x+ y = y + x.

A3. There is a unique element 0 ∈ R so that 0 + x = x for all x ∈ R.
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A4. For each x ∈ R there is an element −x ∈ R so that x+(−x) = 0.

M1. For all x, y, z ∈ R, x · (y · z) = (x · y) · z.

M2. For all x, y ∈ R, x · y = y · x.

M3. There is a unique element 1 ∈ R so that 1 · x = x for all x ∈ R.

M4. For each x 6= 0 in R there is an x−1 ∈ R so that x · x−1 = 1.

DL. For all x, y, z ∈ R, x · (y + z) = (x · y) + (x · z).

O1. For all x, y ∈ R, exactly one of these three relations holds:

x < y or y < x or x = y.

O2. For all x, y, z ∈ R, if x < y and y < z then x < z.

O3. For all x, y, z ∈ R, if x < y then x+ z < y + z.

O4. For all x, y, z ∈ R, if x < y and 0 < z then x · z < y · z.

We will call −x the additive inverse or the opposite of x. We call
x−1 the multiplicative inverse or reciprocal or x. Before defining these
notions, we should really have this lemma.

Lemma 1.2.2. (Uniqueness of Inverses) Additive and multiplica-
tive inverses are unique.

Proof. We prove additive inverses are unique. Suppose that x, y, z ∈ R
so that x+ y = 0 and x+ z = 0. By A2, we also know that y + x = 0.
Then

z = 0 + z A3

= (y + x) + z Assumption

= y + (x+ z) A1

= y + 0 Assumption

= 0 + y A2

= y A3
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Note that a consequence of this lemma is that the inverse of the
inverse of x is x. That is, x is the unique element that can be added to
−x to get 0. This unique element is also called −(−x), so x = −(−x).
A similar comment holds for multiplication.

The notations x−y and
x

y
are abbreviations for x+(−y) and x·y−1.

We typically use juxtaposition xy to indicate the multiplication x · y,
and we agree that multiplication takes precedence over addition to
decrease the number of parentheses we must write. We use x ≤ y to
abbreviate “x < y or x = y.” Note that O2, O3, and O4 also hold for
≤.

Lemma 1.2.3. (Cancellation) For all x, y, z ∈ R
1. If x+ z = y + z then x = y.

2. If xz = yz and z 6= 0 then x = y.

Proof. We prove (1). Suppose that x + z = y + z. Adding −z gives
(x+z)−z = (y+z)−z. A1 gives x+(z−z) = y+(z−z), which implies
by A4 that x+ 0 = y + 0. By A3, this now implies that x = y.

Lemma 1.2.4. (Multiplication by Zero) For all x ∈ R, x · 0 = 0.

Proof. Note that

x · 0 + 0 = x · 0 = x · (0 + 0) = x · 0 + x · 0

by A3 (twice) and then DL. Now x ·0+0 = x ·0+x ·0. By cancellation,
x · 0 = 0.

Lemma 1.2.5. (Additive Inverses and Multiplication) For all
x, y ∈ R

1. (−x)y = −(xy) = x(−y).

2. (−x)(−y) = xy.

Proof. We will prove the second equality in (1). The first equality is
proven similarly, and (2) follows from two applications of (1) along with
the uniqueness of inverses. To prove that x(−y) is −(xy), we just need
to show that xy + x(−y) = 0. Observe:

xy + x(−y) = x(y + (−y)) DL

= x · 0 A4

= 0. Lemma 1.2.4
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A consequence of this lemma is that −x = −(1 · x) = (−1) · x.

Lemma 1.2.6. (Divisors of Zero) For all x, y ∈ R, if xy = 0 then
either x = 0 or y = 0

Proof. Suppose that xy = 0 and x 6= 0. Since x 6= 0, x has a multi-
plicative inverse x−1. Multiplying xy = 0 on both sides by x−1 and
applying M4 and Lemma 1.2.4 gives y = 0. Thus, if x 6= 0, then y = 0.
This is equivalent to either x = 0 or y = 0.

Lemma 1.2.7. (Multiplication and Order) For all x, y, z ∈ R

1. If x < y and z < 0 then yz < xz.

2. If 0 < x and 0 < y then 0 < xy.

3. If x < 0 and y < 0 then 0 < xy.

4. If x < 0 and 0 < y then xy < 0.

5. If x 6= 0, then 0 < x2.

6. 0 < 1.

Proof. We first prove (1). If z < 0, then by O3 we know that

z + (−z) < 0 + (−z).

Then 0 < −z. Now by O4 we can multiply both sides of x < y to
get x(−z) < y(−z). By Lemma 1.2.5, this is the same as −xz < −yz.
Applying O3 and adding xz + yz to both sides of this inequality gives
−xz + (xz + yz) < −yz + (xz + yz). This now reduces (via A1 − 4)
to yz < xz. Assertion (2) follows directly from O4. For (3), suppose
that x < 0 and y < 0. By adding −x and −y to these inequalities,
we get 0 < −x and 0 < −y. Now (2) and Lemma 1.2.5 give 0 < xy.
Statement (4) can be proven similarly.

If x 6= 0, then by O1 either x < 0 or 0 < x. If 0 < x then (5)
is a direct application of (2). If x < 0 then adding −x by O3 gives
0 < −x. Now applying (2) gives 0 < (−x)(−x), but (−x)(−x) = x2 by
Lemma 1.2.5. In either case, 0 < x2 when x 6= 0. Part (6) now follows
immediately from (5).
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Lemma 1.2.8. (Inverses and Order) For all x, y, z ∈ R

1. If x < y then −y < −x.

2. If 0 < x then 0 < x−1.

3. If 0 < x < y then 0 < y−1 < x−1.

Proof. A proof of (1) is embedded in the proof of Lemm 1.2.7 (twice).
For part (2), suppose by way of contradiction that 0 < x but x−1 < 0
(note that it cannot be that x−1 = 0). By O4 we have x−1x < 0 · x.
But then 1 < 0, which contradicts Lemma 1.2.7. Assertion (4) can now
be proven by multiplying the two inequalities 0 < x < y by x−1y−1

(which we know by (2) must be greater than 0).

1.3 Absolute Values

Definition 1.3.1. If x ∈ R, then the absolute value of x is

|x| =

{
−x x < 0

x x ≥ 0
.

If x, y ∈ R then the distance between x and y is |x− y|.

Figure 1.1: The absolute value of a number is the distance between
that number and 0.

Lemma 1.3.2. For all x, y ∈ R

1. 0 ≤ |x|.

2. −|x| ≤ x ≤ |x|.

3. |xy| = |x| · |y|.

4. If 0 < y then |x| < y if and only if −y < x and x < y.
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Proof. Statements (1) and (2) follow quickly from the definition of
absolute values, Lemma 1.2.8, and O1. We prove (3) by cases. There
are technically nine cases as to whether each of x and y is less than,
greater than, or equal to zero. The cases are similar enough that we
only have to address four. If either of x or y (or both) is 0, then

|xy| = 0 = |x| · |y|.

If both x and y are greater than 0, then so is xy so

|x| · |y| = xy = |xy|.

If both x and y are less than 0 then 0 < xy so

|x| · |y| = (−x)(−y) = xy = |xy|.

We only have the cases left when one number is greater than 0 and
one is less than 0. Without loss of generality, assume that x < 0 and
y > 0. Then xy < 0 so

|x| · |y| = (−x)y = −(xy) = |xy|.

In all cases, |x| · |y| = |xy|.
For (4), suppose first that −y < x and x < y. By Lemma 1.2.8, we

know that −x < y. Since |x| is either x or −x, and since x < y and
−x < y, then |x| < y. Suppose now that |x| < y. Then −y < −|x|, so

−y < −|x| ≤ x ≤ |x| < y.

Thus −y < x and x < y.

The following result is one of our most fundamental tools for work-
ing with inequalities. Its use will be pervasive throughout the rest of
these notes.

Theorem 1.3.3. (Triangle Inequality) For all x, y ∈ R

|x+ y| ≤ |x|+ |y|.

Proof. By Lemma 1.3.2 we know that

−|x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y|.

Adding these inequalities (using O3 multiple times) gives

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|.

By Lemma 1.3.2, this implies that |x+ y| ≤ |x|+ |y|.
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Figure 1.2: If x and y are opposite signs, then |x + y| < |x| + |y|.
Otherwise, these two quantities are equal.

We note that this ineqality can also be applied when there is a
subtraction within the abusolute values:

|x− y| = |x+ (−y)| ≤ |x|+ | − y| = |x|+ |y|.

The Triangle Inequality has the following corollary which will be
useful later when we are proving limit theorems about the absolute
value function.

Corollary 1.3.4. For all x, y ∈ R, ||x| − |y|| ≤ |x− y|.

Proof. By the Triangle Inequality

|x| = |x− y + y| ≤ |x− y|+ |y|

so |x| − |y| ≤ |x− y|. Exchanging x and y will give |y| − |x| ≤ |x− y|,
so −|x− y| ≤ |x|− |y|. Now Lemma 1.3.2 gives ||x|− |y|| ≤ |x− y|.

We close this section by giving the standard method we will use to
show that a real number is 0. We will most often use this result to
prove that two real numbers are equal. To show that two real numbers
a and b are equal, we will prove that |a − b| < ε for all ε > 0. It will
follow that a − b = 0 or a = b. This method of proof will become
pervasive as we continue.

Theorem 1.3.5. If x ∈ R, then x = 0 if and only if |x| < ε for every
real ε > 0.

Proof. If x = 0, then clearly |x| < ε for all ε > 0. For the converse, we
will use the contrapositive. Suppose that x 6= 0. This implies 0 < |x|.
Let ε = |x|. Then ε > 0 but |x| 6< ε. Thus we have proven that if
x 6= 0, then there is an ε > 0 with |x| 6< ε. The contrapositive of this
is that if |x| < ε for all ε > 0 then |x| = 0.
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1.4 The Completeness Axiom

Definition 1.4.1. Suppose that A ⊆ R. If there is an element x ∈ A
so that a ≤ x for all a ∈ A, then x is the maximum of A. If x ∈ A and
x ≤ a for all a ∈ A, then x is the minimum of A. The maximum of A
is also called the greatest element of A, and the minimum is also called
the least element.

Example 1.4.2. If A = {1, 2, 3}, then the maximum of A is 3, and
the minimum is 1.

Example 1.4.3. The set A = {1/n : n ∈ N} has a greatest element 1
but no least element. That this set has no least element may appear
obvious, but it follows from the Archimedean Property, Theorem 1.5.3.

Example 1.4.4. The open interval (0, 1) = {x ∈ R : 0 < x < 1} has
no maximum and no minimum.

Example 1.4.5. The number 1 is the minimum of N ⊆ R, but N has
no maximum.

Example 1.4.6. The set Z ⊆ R has no maximum and no minimum.

In our definition of maximum and minimum we should really re-
fer to “a maximum” rather than “the maximum” until after we have
proven the following theorem.

Theorem 1.4.7. If a set A ⊆ R has a maximum (or a minimum),
then that maximum (minimum) is unique.

Proof. Suppose that a and b are both maximum elements of A ⊆ R.
Then a and b are both elements of A. Since a ∈ A and since b is a
maximum element of A, then a ≤ b. On the other hand, since b ∈ A
and since a is a maximum element of A, then b ≤ a. Since a ≤ b and
b ≤ a, then a = b.

Notation 1.4.8. We denote the maximum element of a set A (when
it exists) as maxA. The minimum is denoted minA. If the ele-
ments of A can be listed such as A = {a1, a2, . . . , an}, we may use
max(a1, a2, . . . , an) and min(a1, a2, . . . , an) to denote the maximum
and minimum. In particular, max(a, b) is the larger of two numbers a
and b, and min(a, b) is the smaller.
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Definition 1.4.9. Suppose that A ⊆ R. A number x is an upper bound
of A if a ≤ x for all a ∈ A. On the other hand, x is a lower bound of A if
x ≤ a for all a ∈ A. If A has an upper bound, then A is bounded above.
If A has a lower bound, then A is bounded below. If A is bounded above
and below, then A is bounded.

Example 1.4.10. If A = {1, 2, 3}, then A is bounded above and below.
Some upper bounds are 3, π, and 89. Some lower bounds are 1, 0, and
−π.

Example 1.4.11. The set A = {1/n : n ∈ N} is also bounded above
and below. Some upper bounds are 1, 2, 3, and 987. Some lower
bounds are 0, −1, and −203.

Example 1.4.12. The open interval (0, 1) = {x ∈ R : 0 < x < 1} is
also bounded above and below. Some upper bounds are 1, 93, and 409.
Some lower bounds are 0, −12, and −4π.

Example 1.4.13. The set N ⊆ R, is not bounded above. This is
proven in Theorem 1.5.1. The set N is bounded below. Some lower
bounds are 1, 0, and −1.

Example 1.4.14. The set Z ⊆ R is not bounded above or below.

Example 1.4.15. The set A = {x ∈ R : x2 < 2} is bounded above
(by 2) and below (by −2).

Lemma 1.4.16. A set A ⊆ R is bounded if and only if there is a
number M ∈ R so that |a| ≤M for all a ∈ A.

Figure 1.3: This set is bounded in absolute value by M . The numbers
l and u from the proof of Lemma 1.4.16 are also shown.

Proof. Suppose first that A is bounded. In particular, suppose that
l is a lower bound of A ⊆ R and that u is an upper bound of A.
Let M = max(|l|, |u|). Then |l|, |u| ≤ M , so −M ≤ l ≤ M and
−M ≤ u ≤M . If a ∈ A then −M ≤ l ≤ a ≤ u ≤M so |a| ≤M .
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Definition 1.4.17. If A ⊆ R is bounded above, and if A has a least
(or minimum) upper bound, then we call it the supremum of A. If A
is bounded below and has a greatest (or maximum) lower bound, then
we call it the infimum of A.

Figure 1.4: Some possible relationships between maxima and suprema
and between minima and infima.

Example 1.4.18. If A = {1, 2, 3}, then A is bounded above and below.
The infimum of A is 1 (which is also the minimum), and the supremum
is 3 (which is also the maximum).

Example 1.4.19. The set A = {1/n : n ∈ N} is also bounded above
and below. The infimum of A is 0, and the supremum is 1. Notice that
the supremum is the same as the maximum, but the infimum is not
the minimum of A – because A has no minimum.

Example 1.4.20. The infimum of the open interval

(0, 1) = {x ∈ R : 0 < x < 1}

is 0. The supremum is 1. Notice that these are not the minimum and
maximum.
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Example 1.4.21. The set N ⊆ R, is not bounded above, so N has no
supremum. However, 1 is the infimum of N.

Example 1.4.22. The set Z ⊆ R is not bounded above or below and
so has no infimum or supremum.

Example 1.4.23. The set A = {x ∈ R : x2 < 2} is bounded above (by
2) and below (by −2). The supremum of A is

√
2, and the infimum is

−
√

2.

Notation 1.4.24. When a set A has a supremum, we denote it as
supA. When A has an infimum, we denote it as inf A. Sometimes
lubA is used for the least upper bound of A and glbA is used for the
greatest lower bound.

As with the maximum and minimum of a set, we should really
first define “a supremum” and “an infimum” and then prove the next
theorem before we use the word “the.”

Theorem 1.4.25. If A ⊆ R and supA (or inf A) exists, then it is
unique. �

Theorem 1.4.26. If A ⊆ R has a maximum, then supA = maxA. If
A ⊆ R has a minimum, then inf A = minA.

Proof. Suppose that m is the maximum of A ⊆ R. We will prove that
m is the supremum of A. To do so, we need to prove that m is an upper
bound of A and that m is less than or equal to every upper bound of
A. That m is an upper bound of A follows directly from the definition
of maximum. Suppose now that u is any upper bound of A. Then
u is greater than or equal to every element of A. In particular, since
m ∈ A, m ≤ u. Thus, m is an upper bound of A which is less than or
equal to every upper bound of A. This makes m the least upper bound
or supremum of A.

We have seen examples of sets which are bounded and which are
unbounded. We have also seen examples of sets which have suprema
and which do not. One of the unique features of R is the following
assertion as to which sets have suprema. We take this as an axiom. A
proper derivation of R from the Peano Axioms for N can actually prove
this result. In that case, we would call it the Completeness Property.

Axiom 1.4.27. (Completeness Axiom) Every nonempty subset of
R which is bounded above has a least upper bound.
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The Completeness Axiom is stated in terms of upper bounds, but
it holds also for lower bounds.

Corollary 1.4.28. Every nonempty subset of R which is bounded below
has a greatest lower bound.

Figure 1.5: If l is a lower bound of A, then −l is an upper bound of
−A. If u is an upper bound of −A, then −u is a lower bound of A.

Proof. Suppose that A ⊆ R is bounded below. Let −A = {−a : a ∈ A}.
Let l be any lower bound of A. We will show that −l is an upper bound
of −A. Suppose that x ∈ −A. Then there is some a ∈ A with x = −a.
Since l is a lower bound of A, l ≤ a. This implies that x = −a ≤ −l.
Thus x ≤ −l for all x ∈ −A, and −l is an upper bound of −A.

Since −A is bounded above, the Completeness Axiom tells us that
−A has a least upper bound. Let u = sup(−A). We will prove that
−u is the greatest lower bound of A. First, we show that −u is a lower
bound of A. Let a ∈ A. Then −a ∈ −A, so −a ≤ u. But then −u ≤ a.
Hence, −u is a lower bound of A. Now we must show that −u is greater
than or equal to every lower bound of A. Suppose that l is any lower
bound of A. Then (as before) −l is an upper bound of −A, so u ≤ −l.
This implies that l ≤ −u as desired. Thus −u is a lower bound of A,
and −u is greater than or equal to every lower bound of A. It follows
that inf A exists and is equal to −u.

1.5 Density of Q and R−Q

In this section we prove some results about the relationship between N,
Q, and R. These results may appear to be obvious because they are so
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familiar to us. However, these are results that require the Completeness
Axiom. There are environments (number systems) which contain N and
Q which do not satisfy the Completeness Axiom in which these results
do not hold. For example, there are number systems which contain N
and which contain “numbers” that are strictly larger than every natural
number and numbers which are strictly between 0 and 1/n for every
n ∈ N. The Completeness Axiom prevents such anomalies.

Theorem 1.5.1. N is not bounded above in R.

Proof. Suppose by way of contradiction that N is bounded above in R.
By the Completeness Axiom supN exists (in R). Let z = supN. Then
z − 1 is not an upper bound of N (since it is smaller than the least
upper bound), so there is a natural number n with z− 1 < n ≤ z. But
then z < n + 1 and n + 1 ∈ N. This contradicts the fact that z is an
upper bound of N. Hence, the assumption must be false. N cannot be
bounded above in R.

One consequence of this theorem sounds almost obvious: Every
subset of N which is bounded above in R is finite. Suppose that A ⊆ N
and that x ∈ R is an upper bound of A. Since x cannot be an upper
bound of all of N, then there is an n ∈ N with x < n. This implies that
A has fewer than n elements. Thus:

Corollary 1.5.2. Every subset of N which is bounded in R is finite.
�

The next property of R is the mathematical equivalent of saying
that you can empty the entire sea with the smallest spoon (though I
am not sure where you would put all of the water).

Theorem 1.5.3. (Archimedean Property) If x, y ∈ R are greater
than 0, then there is some n ∈ N so that nx > y.

Proof. Suppose that x, y > 0. By Theorem 1.5.1 there is a natural
number n with n > y/x. Multiplying by x now gives nx > y.

Taking y = 1 in the Archimedean Property implies that for x > 0
there is an n ∈ N so that x > 1/n.

Lemma 1.5.4. Suppose that 0 < x < y in R and that y−x > 1. There
is an m ∈ N so that x < m < y.
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Proof. Suppose that 0 < x < y in R and that y−x > 1. Then x+1 < y.
Let A = {n ∈ N : n ≤ x}. If A is empty, then x < 1 < x + 1 < y
so m = 1 will satisfy the theorem. Suppose then that A is not empty.
Then A is a bounded set of natural numbers, so A is finite. Let k be
the greatest element of A, and let m = k + 1. Since m is greater than
k, then m 6∈ A. Then we know that x < m. Now, since k ≤ x, then
m = k + 1 ≤ x+ 1 < y. We now have x < m < y as desired.

Theorem 1.5.5. (Density of Q) If x < y in R, then there is some
r ∈ Q so that x < r < y.

Proof. We address the case where 0 < x < y. The Archimedean Prop-
erty guarantees some n ∈ N with n(y − x) > 1. So ny − nx > 1.
By Lemma 1.5.4, there is a natural number m so that nx < m < ny.
Dividing by n now gives

x <
m

n
< y.

Thus r =
m

n
is a rational number strictly between x and y.

To prove that every interval contains an irrational number, we first
need an irrational number to work with. This is given by the next
theorem (which you should already be familiar with).

Theorem 1.5.6. There are no integers m and n so that
(m
n

)2
= 2.

Proof. Suppose by way of contradiction that there are such integers m
and n. We can suppose that m and n are positive and have no common
factors (otherwise, we can reduce the fraction m/n). Multiplying in the

equation
(m
n

)2
= 2 gives us m2 = 2n2. This implies that m is even, so

there is a positive integer k with m = 2k. The equation m2 = 2n2 can
now be written (2k)2 = 2n2 or 4k2 = 2n2. Canceling gives 2k2 = n2,
so n is also even, but then n and m are both even – contradicting the
fact that m and n have no common factors. Thus our assumption must

be false. There can be no integers m and n so that
(m
n

)2
= 2.

Theorem 1.5.7. (Density of the Irrationals) If x < y in R, then
there is some irrational number s with x < s < y.

Proof. By Theorem 1.5.5 there is a rational number r with

x
√

2 < r < y
√

2.
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We can assume that r 6= 0. (If r = 0, then there is another rational

number between 0 and y
√

2 that we can use.) Then s =
r√
2

is irrational

(you should prove this) and x < s < y.

Theorems 1.5.5 and 1.5.7 imply the next Theorem.

Theorem 1.5.8. There are infinitely many irrational numbers and
rational numbers in any interval of R. �

1.6 Chapter 1 Exercises

1.6.1 Which of the ordered field axioms fail in N?

1.6.2 Which of the ordered field axioms fail in Z?

1.6.3 If x < y, prove from the ordered field axioms that x <
x+ y

2
< y.

1.6.4 If x ≥ 0 and y ≥ 0, prove that
√
xy ≤ x+ y

2
. Hint: Use the fact

that (
√
x−√y)2 ≥ 0.

1.6.5 If 0 < x < y, prove that 0 < x2 < y2 and 0 <
√
x <
√
y.

1.6.6 Prove that if a, b ∈ R then max(a, b) =
a+ b

2
+
|a− b|

2
.

1.6.7 Prove that if a, b ∈ R then min(a, b) =
a+ b

2
− |a− b|

2
.

1.6.8 For each set below, list three upper bounds or declare that the
set is not bounded.

a. [2, 3]

b. (2, 3)

c. {2, 3}

d.

{
n+

1

n
: n ∈ N

}

e. {r ∈ Q : r2 < 4}

f.

{
1

n
: n ∈ N and n is prime

}

g. {x2 : x ∈ Q}

1.6.9 For each set in Exercise 1.6.8 either give the supremum or declare
the set has no supremum.

1.6.10 Repeat Exercise 1.6.8 for lower bounds.

1.6.11 Repeat Exercise 1.6.9 for infima.

1.6.12 Prove that if A ⊆ R has a supremum and supA ∈ A, then
supA = maxA.



17

1.6.13 Suppose that A and B are nonempty bounded subsets of R and
that A ⊆ B. Prove that

inf B ≤ inf A ≤ supA ≤ supB.

1.6.14 Suppose that A,B ⊆ R are bounded and let

A+B = {a+ b : a ∈ A and b ∈ B}.

a. Prove that sup(A+B) = supA+ supB.

b. Prove that inf(A+B) = inf A+ inf B.

1.6.15 Suppose that A,B ⊆ R are bounded and that x ≥ 0 for all
x ∈ A ∪B. Let

AB = {ab : a ∈ A and b ∈ B}.

a. Prove that sup(AB) = supA · supB.

b. Prove that inf(AB) = inf A · inf B.

1.6.16 Suppose that A ⊆ R is bounded and that k ∈ R. Let

kA = {kx : x ∈ A}.

a. Prove that if k ≥ 0 then sup(kA) = k supA.

b. Prove that if k ≥ 0 then inf(kA) = k inf A.

c. Prove that if k < 0 then sup(kA) = k inf A.

d. Prove that if k < 0 then inf(kA) = k supA.

1.6.17 Suppose that A ⊆ R is bounded. Let |A| = {|x| : x ∈ A}.
Prove that sup |A| − inf |A| ≤ supA− inf A.

1.6.18 Suppose that A ⊆ R is a bounded set of non-negative real
numbers. Let A2 = {a2 : a ∈ A}. Prove that sup(A2) = (supA)2.
Give an example to show that we must assume that A does not contain
negative numbers.

1.6.19 Suppose that a, b ∈ R and that a ≤ b+
1

n
for all n ∈ N. Prove

that a ≤ b.
1.6.20 If S ⊆ R and x = supS, show that for every ε > 0 there is an
a ∈ S so that x− ε < a ≤ x.
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1.6.21 If S ⊆ R and x = inf S, show that for every ε > 0 there is an
a ∈ S so that x ≤ a < x+ ε.
1.6.22 Prove part (2) of Lemma 1.2.3.
1.6.23 Prove part (2) of Lemma 1.2.5
1.6.24 Prove part (2) of Lemma 1.2.7.
1.6.25 Prove part (4) of Lemma 1.2.7.
1.6.26 Prove part (1) of Lemma 1.2.8.
1.6.27 Prove Theorem 1.4.25.
1.6.28 There are two cases not addressed in the proof of Theorem
1.5.5. State and prove these cases. You should be able to refer to what
has already been proven.
1.6.29 Prove that if x is a positive real number then there is a positive
real number y with y2 = x. That is, the exercises is to prove that
square roots of positive real numbers exist.

1.6.30 Suppose that r is rational. Prove that
r√
2

is not rational. Hint:

Use contradiction.
1.6.31 Prove Theorem 1.5.8.



Chapter 2

Sequences

Definition 2.0.1. A sequence is a function whose domain is of the
form

{n ∈ Z : n ≥ m}
(where m is usually 0 or 1). If s is a sequence, we will usually write sn
for the value s(n). The values sn will be called terms of the sequence
s.

Figure 2.1: The standard graph of a sequence 〈sn〉 will look something
like this. Notice that the function is only defined at integer values of n.

We may denote a sequence s with domain N, in any of these ways:

〈s1, s2, s3, . . .〉 or 〈sn : n ∈ N〉 or 〈sn〉∞n=1 or simply 〈sn〉 .

19
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The manner in which we will usually depict the graph of a sequence
is shown in Figure 2.1. We will most often be interested in sequences
whose codomains are R. These are called sequences of real numbers
Henceforth, when we say sequence, we will mean sequence of real num-
bers.

2.1 Limits of Sequences

Definition 2.1.1. A sequence 〈sn〉 of real numbers converges to a real
number L if for every real number ε > 0 there is a real number N so
that for all integers n, if n > N then |sn −L| < ε. In this case, we call
L a limit of the sequence 〈sn〉. A sequence which does not converge is
said to diverge.

Figure 2.2: This figure depicts a “tube” of radius ε centered at L. If
n > N , then sn is in this tube. We might say that the sequence 〈sn〉 is
eventually in the ε-tube around L.

The situation described in the definition of a convergent sequence
is depicted in Figure 2.2

Example 2.1.2. We prove that the sequence

〈
1

n

〉
converges to 0. Let

ε > 0. Let N = 1/ε and suppose that n ∈ N with n > N . Then∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
<

1

N
= ε.
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The value of N here comes from considering the inequality

∣∣∣∣ 1n − 0

∣∣∣∣ < ε,

solving for n, and then selecting a value of N which is “big enough.”
Any N which is at least 1/ε would do.

Example 2.1.3. We prove that the sequence

〈
n

2n+ 3

〉
converges to

1

2
. Let ε > 0. Let N =

3

4ε
and suppose that n ∈ N with n > N . Then∣∣∣∣ n

2n+ 3
− 1

2

∣∣∣∣ =

∣∣∣∣2n− (2n+ 3)

(2n+ 3)2

∣∣∣∣
=

3

4n+ 6

<
3

4N + 6

<
3

4N

=
3

4 3
4ε

= ε

A nicer choice for N here would be 1/ε. Then this string of inequalities
could finish this way:

3

4N
<

4

4N
=

1

N
= ε.

A much less nice but more obvious choice for N can be had by solving

3

4N + 6
= ε

for N . This would give

N =

(
3

ε
− 6

)
1

4
.

Here we would have to pay attention to the fact that
3

ε
− 6 could be

negative.

Example 2.1.4. We prove that the sequence

〈sn〉 = 〈(−1)n〉 = 〈−1, 1,−1, 1,−1, 1, . . .〉

does not converge. This proof is illustrated in Figure 2.3. We first
consider the negation of the definition of convergence:
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For any L, there is an ε > 0 so that for all N ∈ R there is
an n ∈ N with n > N and |sn − L| ≥ ε.

Suppose that L ∈ R. We prove that 〈sn〉 does not converge to L. Let
ε = 1. Suppose that N ∈ R. If L ≥ 0, then let n be any odd natural
number greater than N . If L < 0, let n be any even natural number
greater than N . Then |sn − L| ≥ |sn − 0| = 1 ≥ ε. Thus there is an
ε so that for all N there is an n > N with |sn − L| ≥ ε. Hence, 〈sn〉
cannot converge to L.

Figure 2.3: If L > 0 and n is odd, then sn is closer to 0 than to L, but
|sn − 0| = 1 = ε.

Example 2.1.5. We prove that the sequence 〈sn〉 = 〈n〉 does not
converge. This proof is pictured in Figure 2.4. Let L ∈ R. Let ε be
1. Let N ∈ R. Let n be any natural number which is greater than
max(L,N) + 1. Then |sn − L| ≥ 1 = ε. We have shown that there is
an ε > 0 so that for all N ∈ R there is an n ∈ N with n > N but
|sn − L| ≥ ε. Thus 〈sn〉 cannot converge to L.

We would like to be able to speak about “the limit” of a sequence
rather than “a limit.” We would also like notation for “the limit” of
a sequence. Before we can do so, we need to know that a sequence
cannot have more than one limit. This may sound obvious, and the
proof is not too difficult. However, the proof will demonstrate a couple
of standard techniques that we will use frequently later. First, we
illustrate a common method of showing that two numbers are equal.
Second, we see the triangle inequality in action. Finally, this is an
example of a standard ε/2 proof.
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Figure 2.4: If n > L+ 1, then sn is above the tube of radius 1 around
L.

Theorem 2.1.6. Limits of sequences are unique.

Proof. Suppose that 〈sn〉 is a sequence which converges to L and to M .
We will prove that L = M . We do so by proving that the difference
|L−M | is less than every positive real number. Let ε > 0. Since 〈sn〉
converges to L, there is an NL ∈ R so that if n ∈ N and n > NL, then
|sn−L| < ε/2. Since 〈sn〉 converges to M , there is an NM ∈ R so that
if n ∈ N and n > NM , then |sn −M | < ε/2. Let N = max(NL, NM ).
Suppose that n ∈ N and n > N . Then

|L−M | = |L− sn + sn −M |
≤ |L− sn|+ |sn −M |
= |sn − L|+ |sn −M |

<
ε

2
+
ε

2
= ε.

Thus for all ε > 0, |L −M | < ε. It follows from Theorem 1.3.5 that
L = M .

Since a sequence may have at most one limit, we are now allowed
to give notation for this limit.

Notation 2.1.7. If a sequence 〈sn〉 converges to number L, then we
will write lim sn = L or sn → L. If 〈sn〉 converges, we say that the
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limit lim sn exists. If 〈sn〉 does not converge, then we will say that the
limit lim sn does not exist.

Frequently later we will be lazy and say something along the lines
of, “Suppose lim sn = L” to mean, “Suppose that 〈sn〉 is a convergent
sequence and lim sn = L.”

The notation sn → L depicts convergence as a relation from se-
quences to real numbers. The theorems in the next section establish
that we can do certain algebraic manipulations “to both sides of an
→” just like we might to both sides of an equality or inequality.

Exercises 2.1
2.1.1 Use the definition to prove that each of the following sequences
converges:

a.

〈
5 +

1

n

〉
b.

〈
2− 2n

n

〉
c.
〈
2−n

〉
d.

〈
3n

2n+ 1

〉
e.

〈
(−1)n

n

〉

f.

〈
2n− 1

3n+ 2

〉

g.

〈
4n+ 3

7n− 5

〉
h.
〈√

n2 + 1− n
〉

i.
〈√

n2 + n− n
〉

j.
〈√

4n2 + n− 2n
〉

2.1.2 Use the definition to prove that each of these sequences diverges:

a. 〈(−1)nn〉

b. 〈sin(nπ/3)〉

2.1.3 Prove that the sequence 〈an〉 converges to L if and only if the
sequence 〈an − L〉 converges to 0.

2.1.4 Prove or disprove that if 〈|an|〉 converges, then 〈an〉 converges.

2.1.5 Give an example of a sequence of rational numbers that converges
to an irrational number.

2.1.6 Give an example of a sequence of irrational numbers that con-
verges to a rational number.
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2.1.7 Suppose that 〈sn〉 is a sequence of positive terms that converges
to 0. Prove that 〈

√
sn〉 also converges to 0.

2.1.8 Suppose that 〈an〉 and 〈bn〉 are sequences so that |an| ≤ bn for
all n and so that lim bn = 0. Prove that 〈an〉 converges to 0.

2.2 Algebraic Properties of Limits of Sequences

In this section, we prove several results related to algebraic operations
and sequences. These results will allow us to calculate and manipulate
limits more easily than we could with just the definition. We prove the
results here as a list of lemmas and then gather all of the results to-
gether at the end of the section as one large theorem for easy reference.

The point of this first proof is that the differences |cn − k| are
always 0 and, so, less than any positive ε. We give the proof as another
example of a proof outline using the definition.

Lemma 2.2.1. (Limits of Constant Sequences) If k ∈ R and
cn = k is the sequence which is constantly k, then 〈cn〉 converges to k
(or lim k = k).

Proof. Let ε > 0. Let N = 0. If n ∈ N and n > N then

|cn − k| = |k − k| = 0 < ε.

Thus lim cn = k.

This next proof illustrates both applying the definition of a conver-
gent sequence and satisfying the definition.

Lemma 2.2.2. (Constant Multiples of Sequences) Suppose that
〈an〉 is a sequence so that lim an = L. If k ∈ R, then 〈kan〉 converges
to kL.

Proof. If k = 0, then kan = 0 and the result follows from Lemma 2.2.1.
Suppose then that k 6= 0. Let ε > 0. There is an N ∈ R so that if
n ∈ N and n > N then |an − L| < ε/|k|. Suppose that n ∈ N and
n > N . Then

|kan − kL| = |k||an − L| < |k|ε/|k| = ε.

Thus lim(kan) = kL.
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We can express this last lemma as if an → L then kan → kL. One
might say we can multiply both sides of → by a constant. We can also
add, subtract, multiply, and divide on both sides of an →. This is the
content of most of the next few lemmas. This first lemma is another
example of an ε/2 proof.

Lemma 2.2.3. (Sums of Sequences) Suppose that 〈an〉 and 〈bn〉
are sequences so that lim an = L and lim bn = M . Then 〈an + bn〉
converges to L+M .

Proof. Let ε > 0. Since lim an = L, there is an Na ∈ R so that if
n ∈ N and n > Na then |an − L| < ε/2. Since lim bn = M , there is
an Nb ∈ R so that if n ∈ N and n > Nb then |bn −M | < ε/2. Let
N = max(Na, Nb). Suppose that n ∈ N and that n > N . Then

|(an + bn)− (L+M)| = |(an − L) + (bn −M)|
≤ |(an − L)|+ |(bn −M)|

<
ε

2
+
ε

2
= ε

Thus lim(an + bn) = L+M .

If we change a few of the +s in this proof to −s, we get a proof of:

Lemma 2.2.4. (Differences of Sequences) Suppose that 〈an〉 and
〈bn〉 are sequences so that lim an = L and lim bn = M . Then 〈an − bn〉
converges to L−M . �

We have to be slightly more sly to make the ε argument work out
for products. First, we need to know that convergent sequences are
bounded. This is a fact which will be needed frequently later.

Definition 2.2.5. A sequence 〈sn : n ∈ N〉 is bounded if the set

{sn : n ∈ N}

is bounded.

Theorem 2.2.6. All convergent sequences are bounded.
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Figure 2.5: There are only finitely many terms of the sequence to the
left of N . To the right of N , the sequence is bounded between L+ 1 and
L− 1.

Proof. Suppose that 〈sn〉 is a sequence that converges to a number
L. We apply the definition of convergence with ε = 1. There is an
N0 ∈ R so that if n ∈ N and n > N0 then |sn − L| < 1. Let N be
the least natural number greater than N0. Then, if n > N we have
L − 1 < sn < L + 1. Now, let A = min(s1, s2, . . . , sN , L − 1) and let
B = max(s1, s2, . . . , sN , L+ 1). It follows that A ≤ sn ≤ B for all n so
〈sn〉 is bounded.

In the following proof, from lim an = L, we will want to know that
if n is large enough then |M ||an − L| < ε/2. We could arrive at this

by selecting n large enough so that |an − L| <
ε

2|M |
. This works if

M 6= 0. If M = 0, then |M ||an−L| = 0 < ε/2 for all n. In either case,
we can make n large enough to insure that |M ||an − L| < ε/2.

Lemma 2.2.7. (Products of Sequences) Suppose that 〈an〉 and
〈bn〉 are sequences so that lim an = L and lim bn = M . Then 〈anbn〉
converges to LM .

Proof. Since 〈an〉 is convergent, 〈an〉 is bounded. Let B ∈ R so that
|an| < B for all n. Let ε > 0. Since lim an = L, there is an Na ∈ R so

that if n ∈ N and n > Na then |M ||an − L| <
ε

2
(as in our discussion

before the lemma). Since lim bn = M , there is an Nb ∈ R so that



28

if n ∈ N and n > Nb then |bn −M | <
ε

2B
. Let N = max(Na, Nb).

Suppose that n ∈ N and n > N . Then

|anbn − LM | = |anbn − anM + anM − LM |
≤ |anbn − anM |+ |anM − LM |
= |an||bn −M |+ |M ||an − L|

< B
ε

2B
+
ε

2
= ε.

Thus lim(anbn) = LM .

Example 2.2.8. Suppose that lim an = 4. We will show using the lem-
mas above that lim(a2

n + 2an + 3) exists and is equal to 27. First, since
lim an = 4, Lemma 2.2.7 tells us that

〈
a2
n

〉
converges to 16. Lemma

2.2.2 tells us that 〈2an〉 converges to 8, and Lemma 2.2.1 tells us that
〈3〉 converges to 3. Since lim(a2

n) = 16 and lim(2an) = 8 and lim 3 = 3,
Lemma 2.2.3 tells us that

〈
a2
n + 2an + 3

〉
converges to 16 + 8 + 3 = 27.

This chain of thought is expressed much more concisely in the following
string of equalities.

27 = 16 + 8 + 3

= 4 · 4 + 2 · 4 + 3

= (lim an) · (lim an) + 2 · (lim an) + lim 3 2.2.1

= lim(an · an) + 2 · (lim an) + lim 3 2.2.7

= lim(a2
n) + lim(2an) + lim 3 2.2.2

= lim(a2
n + 2an + 3). 2.2.3

Notice that in this string of equalities at each step we replace an ex-
pression with another expression known to be equal (and existent) by
one of our lemmas. These equalities are frequently written backwards
in a calculus class such as

lim(a2
n + 2an + 3) = lim(a2

n) + lim(2an) + lim 3

= lim(an · an) + 2 · (lim an) + lim 3

= (lim an) · (lim an) + 2 · (lim an) + lim 3

= 4 · 4 + 2 · 4 + 3

= 16 + 8 + 3

= 27.
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This work is awkward at best since it is not until the end that we know
that all of the limits exist and the equalities are valid. While this might
be an abuse of notation, it is common practice. We will likely be guilty
of this practice (frequently) later.

It should be clear that we could mimic the process in this example
for any polynomial function. Thus:

Lemma 2.2.9. Suppose that 〈an〉 is a convergent sequence with limit
L. If p(x) is any polynomial, then lim p(an) = p(L). �

Now we move on to absolute values.

Lemma 2.2.10. Suppose that 〈an〉 is a convergent sequence with limit
L. Then 〈|an|〉 converges to |L|.

Proof. Let ε > 0. Since lim an = L, there is an N ∈ R so that if n ∈ N
and n > N then |an − L| < ε. Suppose that n ∈ N and n > N . Then
by 1.3.4

||an| − |L|| ≤ |an − L| < ε.

Thus lim |an| = |L|.

We will address order theorems about limits of sequences a bit more
later; however, we need this lemma now in order to prove a result about
square roots.

Lemma 2.2.11. Suppose that 〈an〉 is a sequence converging to a num-
ber L. If k ∈ R so that an ≥ k for all n, then L ≥ k. (A similar result
holds for the case when k ≥ an for all n.)

Proof. Suppose that 〈an〉 converges to L and that L < k. Let ε =
(k − L)/2 (which is positive). Note that L + ε < k. By the definition
of convergence, there is an N ∈ R so that if n ∈ N and n > N then
|an − L| < ε. This implies that an < L + ε < k. Thus, if L < k
then there is an n so that an < k. This is the contrapositive of the
lemma.

By this lemma, if 〈an〉 is a convergent sequence of non-negative
terms, then the limit of an is also non-negative. It makes sense then
to consider the square root of the sequence and whether or not this
converges to the square root of lim an. Notice in this proof the use of
the high-school algebra trick of multiplying by the conjugate.
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Figure 2.6: If 〈an〉 converges to L and if L < k, then 〈an〉 is eventually

within
k − L

2
of L. At this point, 〈an〉 is strictly below k.

Lemma 2.2.12. Suppose that 〈an〉 is a convergent sequence of non-
negative terms with limit L. Then lim

√
an =

√
L.

Proof. As noted before the lemma, by Lemma 2.2.11 we know that
L ≥ 0, so it is legal to discuss

√
L. We will consider two cases – L 6= 0

and L = 0. First, suppose that L 6= 0. Let ε > 0. Since lim an = L,
there is an N ∈ R so that if n ∈ N and n > N then |an − L| < ε

√
L.

Suppose that n ∈ N and n > N . Then

|
√
an −

√
L| = |

√
an −

√
L|
|√an +

√
L|

|√an +
√
L|

=
|an − L|
|√an +

√
L|

≤ |an − L|√
L

<
ε
√
L√
L

= ε.

Thus, if L 6= 0 then lim
√
an =

√
L.

Suppose now that L = 0. Let ε > 0. Since lim an = L = 0, there is
an N ∈ R so that if n ∈ N and n > N then an = |an−0| < ε2. Suppose
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that n ∈ N and n > N . Since an < ε2, then
√
an <

√
ε2 = ε. Then

|
√
an −

√
L| =

√
an < ε. Thus lim

√
an =

√
L in this case also.

At this point, we can perform most algebraic operations on se-
quences. We have only to deal with division. In addressing division,
we will need to know that if the limit of a sequence is not 0, then if n
is large enough sn cannot be 0. This is the next lemma.

Lemma 2.2.13. Suppose that 〈bn〉 is a convergent sequence and that
lim bn 6= 0. There is a positive real number B and a real number N so
that if n > N then |bn| > B.

Figure 2.7: If 〈bn〉 converges to M > 0, then 〈bn〉 is eventually greater
than B = M/2.

Proof. Suppose that 〈bn〉 converges to a limit M 6= 0. By Lemma
2.2.10 we know that 〈|bn|〉 converges to |M |. Let B = |M |/2. Applying
the definition of convergence with ε = |M |/2 gives us an N ∈ R so that
if n ∈ N and n > N then ||bn|− |M || < |M |/2. Then, if n > N we have

−|M |
2

< |bn| − |M | <
|M |

2
.

Adding |M | gives
|M |

2
< |bn| < |M |+

|M |
2
.

In particular, if n > N , then |bn| > |M |/2 = B.
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We will approach quotients 〈an/bn〉 as products of sequences 〈an〉
and 〈1/bn〉. Since we already know how to deal with products, we need
only consider reciprocals at this point.

Lemma 2.2.14. Suppose that 〈bn〉 is a sequence of nonzero terms
which converges to a number M 6= 0. The sequence 〈1/bn〉 converges
to 1/M .

Proof. Since lim bn = M 6= 0, by Lemma 2.2.13 there is an N0 ∈ R
and a real number B > 0 so that if n ∈ N and n > N then |bn| > B.

Then, if n > N0,
1

|bn|
<

1

B
. Let ε > 0. Since lim bn = M , there is

an Nb ∈ R so that if n ∈ N and n > Nb then |bn −M | < εB|M |. Let
N = max(N0, Nb). Suppose that n ∈ N and n > N . Then∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ =
|M − bn|
|bn| · |M |

=
|bn −M |
|bn| · |M |

<
εB|M |
|bn| · |M |

<
εB|M |
B|M |

= ε.

Thus lim
1

bn
=

1

m
.

We are finally ready to deal with quotients. We have done enough
work now that the proof of the next lemma is quick. Under the hypoth-
esis of the lemma, by Lemma 2.2.14 we know that since lim bn = M ,

then lim
1

bn
=

1

M
. By Lemma 2.2.3 since 〈an〉 converges to L and〈

1

bn

〉
converges to

1

M
, then

〈
an
bn

〉
=

〈
an

1

bn

〉
converges to L

1

M
or

L

M
. Thus we have:

Lemma 2.2.15. (Quotients of Sequences) Suppose that 〈an〉 and
〈bn〉 are sequences so that lim an = L and lim bn = M . If bn 6= 0 for
all n and if M 6= 0, then lim(an/bn) = L/M . �
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We now summarize the results of this section into one big theorem
about algebraic properties of limits of sequences.

Theorem 2.2.16. (Algebraic Properties of Limits of Sequences)
Suppose that 〈an〉 and 〈bn〉 are sequences so that lim an = L and
lim bn = M . Suppose that k ∈ R and that p is a polynomial.

1. lim k = k.

2. lim(kan) = kL.

3. lim(an + bn) = L+M .

4. lim(an − bn) = L−M .

5. lim p(an) = p(L).

6. lim(anbn) = LM .

7. lim |an| = |L|.

8. If an ≥ 0 for all n, then lim
√
an =

√
L.

9. If bn 6= 0 for all n and if M 6= 0, then lim(an/bn) = L/M . �

We close this section with two order theorems about limits of se-
quences. The first is an extension of Lemma 2.2.11.

Theorem 2.2.17. (Order Theorem for Limits of Sequences)
Suppose that 〈an〉 and 〈bn〉 are sequences so that lim an = L and
lim bn = M . If an ≤ bn for all n then L ≤M .

Proof. Consider the sequence 〈sn〉 given by sn = an− bn. By Theorem
2.2.16 we know that lim sn = L−M . For each n, since an ≤ bn, then
sn ≤ 0. By Lemma 2.2.11

L−M = lim sn ≤ 0.

Thus L ≤M .

The next result, the Squeeze Theorem, will be essential frequently
to argue that sequences we construct converge to the desired limits.
A faulty approach to the proof of the Squeeze Theorem is to simply
apply Theorem 2.2.17 twice – once to an ≤ bn and once to bn ≤ cn. The
reason this approach does not work is that we do not know initially if
〈bn〉 even converges.

Theorem 2.2.18. (Squeeze Theorem) Suppose that 〈an〉, 〈bn〉, and
〈cn〉 are sequences so that

an ≤ bn ≤ cn for all n and lim an = lim cn = L.

Then 〈bn〉 also converges to L.
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Figure 2.8: If an ≤ bn ≤ cn and if 〈an〉 and 〈cn〉 both converge to L,
then 〈bn〉 is also forced to converge to L.

Proof. Let ε > 0. Since lim an = L, there is an Na ∈ R so that if n ∈ N
and n > Na, then |an − L| < ε. Since lim cn = L, there is an Nc ∈ R
so that if n ∈ N and n > Nc, then |cn−L| < ε. Let N = max(Na, Nb).
Suppose that n ∈ N and n > N . Then |an − L| < ε, so L − ε < an.
Also, |cn − L| < ε, so cn < L+ ε. It follows that

L− ε < an ≤ bn ≤ cn < L+ ε

so |bn − L| < ε. Thus 〈bn〉 converges to L.

Example 2.2.19. Suppose that A ⊆ R is bounded. As an example
application of the Squeeze Theorem, we prove that there is a a sequence
〈an〉 of elements of A so that lim an = supA. Let L = supA. For each

n ∈ N, the number L− 1

n
is not an upper bound of A, so there is some

element an ∈ A so that

L− 1

n
< an ≤ L.

Now, lim

(
L− 1

n

)
= L and limL = L, so by the Squeeze Theorem,

〈an〉 converges to L.
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Exercises 2.2
2.2.1 Suppose that 〈an〉 and 〈bn〉 are sequences so that 〈an〉 and 〈an + bn〉
converge. Prove that 〈bn〉 converges.
2.2.2 Give examples of divergent sequences 〈an〉 and 〈bn〉 for which
〈an + bn〉 converges.
2.2.3 Find the limits of these sequences. Use theorems from this chap-
ter to prove you have the correct limit.

a.

〈
n2 + 4n

n2 − 5

〉
b.
〈cosn

n

〉
c.

〈
sin(n2)

n

〉

d.

〈
n

n2 − 3

〉

e.

〈(√
4− 1

n
− 2

)
n

〉

f.

〈
(−1)n

√
n

n+ 7

〉
2.2.4 Define a sequence 〈sn〉 recursively by s1 = 1 and sn+1 =

√
sn + 1

for n ∈ N.

a. List the first several terms of 〈sn〉.

b. The sequence 〈sn〉 converges. Find the limit.

2.2.5 Define a sequence 〈sn〉 recursively by s1 = 1 and sn+1 =
s2
n + 2

2sn
for n ∈ N.

a. List the first several terms of 〈sn〉.

b. Assume that the sequence 〈sn〉 converges. Find the limit.

2.2.6 Define a sequence 〈sn〉 recursively by s1 = 1 and sn+1 = 3s2
n for

n ∈ N.

a. List the first several terms of 〈sn〉.
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b. Assume that the sequence 〈sn〉 converges. Find the limit.

c. Does lim 〈sn〉 actually exist?

d. What is the moral?

2.2.7 Suppose that 〈sn〉 is a sequence so that sn 6= 0 for all n ∈ N.

Suppose also that lim

∣∣∣∣sn+1

sn

∣∣∣∣ exists. Call this limit L.

a. Prove that if L < 1 then 〈sn〉 converges to 0.

b. Prove that if L > 1 then 〈sn〉 is unbounded.

2.2.8 Prove that lim
an

n!
= 0 for all a ∈ R.

2.2.9 Prove this generalization of the Squeeze Theorem 2.2.18: Sup-
pose that 〈an〉, 〈bn〉, and 〈cn〉 are sequences so that bn is between an
and cn for all n and so that lim an = lim cn = L. Then 〈bn〉 also
converges to L.

2.3 Accumulation Points

Definition 2.3.1. A number a ∈ R is an accumulation point of A ⊆ R
if every open interval containing a contains a point in A other than a.

Example 2.3.2. Perhaps the simplest examples of accumulation points
are endpoints of intervals. The numbers a and b are accumulation
points of the intervals [a, b], (a, b), (a, b], and [a, b). Every number x
with a < x < b is also an accumulation point of these intervals. See
Figure 2.9.

Figure 2.9: Any open interval around b must include points in the
interval (a, b).



37

Example 2.3.3. Suppose that A is a bounded set, that u = supA,
and that u 6∈ A. Then u is an accumulation point of A. To see this,
suppose that (a, b) is any open interval containing u, Then a < u, so a
is not an upper bound of A. This means that there is an element x ∈ A
so that a < x. Since u = supA, x ≤ u. Since u 6∈ A, x < u. Then x is
an element of A distinct from u which is in the interval (a, b).

Example 2.3.4. If A is a bounded set and supA ∈ A, then supA
might not be an accumulation point of A. For example, if A = {1, 2},
then supA = 2, but 2 is not an accumulation point of A because the

open interval

(
3

2
,
5

2

)
contains 2 but does not contain any other element

of A.

Example 2.3.5. If A = {1/n : n ∈ N}, then 0 is an accumulation
point of A. Suppose that (a, b) is any open interval containing 0. Then
there is an n ∈ N so that 0 < 1/n < b. Thus, 1/n is an element of A
other than 0 which is in (a, b).

Example 2.3.6. It is not always the case that if a sequence 〈an〉
converges to L and if A = {an : n ∈ N} then L is an accumulation
point of A. For example, if 〈an〉 is given by an = 1 then in this case A
has no accumulation points.

Theorem 2.3.7. The number z ∈ R is an accumulation point of A ⊆ R
if and only if every open interval containing z contains infinitely many
points of A.

Proof. If every open interval around z contains infinitely many points
of A, then every open interval around z contains a point of A other
than z, and z is an accumulation point of A. Suppose now that z is an
accumulation point ofA, and let (a, b) be an open interval around z. We
will recursively construct a sequence 〈an〉 of distinct elements of A in
(a, b)−{z}. First, since z is an accumulation point of A, there is a point
x1 of A which is in (a, b)−{z}. Suppose that distinct points x1, . . . , xk
in A have been chosen in (a, b)−{z}. Let ε = min(|z−x1|, . . . , |z−xk|).
The open interval (z − ε, z + ε) must contain an element xk+1 of A
different from z. Since xk+1 is within ε of z, then xk+1 is also different
from x1, . . . , xk. (The point xk+1 is too close to z to be one of these.
See Figure 2.10.) Thus, we have a sequence 〈xn〉 of distinct elements
of A which are all in (a, b)− {z}. This sequence gives infinitely many
elements of A in (a, b). Hence, every open interval containing z contains
infinitely many points in A.
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Figure 2.10: If ε is chosen to be the minimum of the distances |z−x1|,
|z−x2|, and |z−x3|, then none of x1, x2, or x3 is in the interval (z−ε, z+ε).

Example 2.3.8. A quick consequence of Theorem 2.3.7 is that no
finite set can have a limit point.

We can refine the proof technique of Theorem 2.3.7 to construct not
only infinitely many points in A but actually a sequence in A converging
to the accumulation point z.

Theorem 2.3.9. A number z ∈ R is an accumulation point of the set
A ⊆ R if and only if there is a sequence 〈an〉 in A− {z} converging to
z.

Proof. Suppose first that z is an accumulation point of A. For each
n ∈ N there is an element of A different from z in the open interval
(z − 1/n, z + 1/n). Call this element an. This gives a sequence 〈an〉 in
A− {z} so that z − 1/n < an < z + 1/n for all n. Since 〈z − 1/n〉 and
〈z + 1/n〉 both converge to z, the sequence 〈an〉 converges to z by the
Squeeze Theorem.

Suppose now that there is a sequence 〈an〉 in A − {z} converging
to z. We will prove that z is an accumulation point of A. Suppose
that (a, b) is any open interval containing z. There is some ε > 0
so that (z − ε, z + ε) ⊆ (a, b). Since 〈an〉 converges to z, there is an
N ∈ R so that if n ∈ N and n > N then |an − z| < ε. If n > N ,
then an ∈ (z − ε, z + ε) ⊆ (a, b). Since an ∈ A − {z}, then we see
that (a, b) contains an element of A other than z. Since every open
interval containing z contains an element of A other than z, z is an
accumulation point of A.

Since every open interval contains infinitely many rational numbers
and infinitely many irrational numbers, this theorem is not hard to
prove:
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Theorem 2.3.10. Every rational number is an accumulation point of
R, of Q, and R−Q. Every irrational number is an accumulation point
of R, of Q, and R−Q. �

Now, Theorem 2.3.9 immediately gives:

Theorem 2.3.11. If x is any real number, then there is a sequence
of irrational numbers which converges to x and there is a sequence of
rational numbers which converges to x. �

Exercises 2.3
2.3.1 Give an example of a set with exactly two accumulation points.
2.3.2 Give an example of a set with countably many accumulation
points.
2.3.3 Give an example of a countable set with uncountably many ac-
cumulation points.
2.3.4 Give an example of a set that contains all of its accumulation
points.
2.3.5 Give an example of a set that contains none of its accumulation
points.
2.3.6 If x 6= y, prove that there are open intervals P and Q with x ∈ P ,
y ∈ Q, but P ∩Q = ∅. A hint for how to proceed is in Figure 2.11.

Figure 2.11: Suppose that x < y. There are open intervals containing
x and y.

2.3.7 Suppose that I is an open interval and that x ∈ I. Prove that
there is a δ > 0 so that (x − δ, x + δ) ⊆ I. A hint for how to proceed
is in Figure 2.12.
2.3.8 Let S ⊆ R be a bounded non-empty set and let x = supS. Prove
that either x ∈ S or x is an accumulation point of S. Hint: To prove
a statement of the form P ∨Q, prove ¬P → Q.
2.3.9 Suppose that 〈an〉 converges to L and that {an : n ∈ N} is
infinite. Prove that L is an accumulation point of {an : n ∈ N}. A hint
for how to proceed is in Figure 2.13.
2.3.10 Give an example of a sequence 〈an〉 that converges to a number
L so that L is not an accumulation point of {an : n ∈ N}.
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Figure 2.12: If x is in the open interval I, then there is an open interval
around x which is contained entirely in I.

Figure 2.13: If a < L < b, then there is an ε > 0 so that a < L− ε <
L+ε < b. If xn → L, then 〈xn〉 is eventually in the interval (L−ε, L+ε).
If 〈xn〉 is infinite, then this interval must contain an xn which is distinct
from L.

2.4 Monotonic Sequences

In this section we introduce monotonic sequences. These are sequences
which are always “going up” or “going down” as in Figure 2.14. These
sequences are nice for us because we will always know exactly how a
monotonic function behaves (as far as convergence). For example, if
a sequence is increasing and bounded then the sequence must increase
toward (and converge to) its least upper bound as in figure 2.15. Just
knowing the existence of certain monotonic sequences will be good
enough later to conclude some remarkable results such as the Bolzano
Weierstrass Theorem.

Definition 2.4.1. A sequence 〈sn〉 is increasing if sn ≤ sn+1 for all
n. If sn < sn+1 for all n, then 〈sn〉 is strictly increasing. If sn+1 ≤ sn
for all n, then 〈sn〉 is decreasing. If sn+1 < sn for all n, then 〈sn〉 is
strictly decreasing. A sequence which is either increasing or decreasing
is monotonic or monotone.

Example 2.4.2. Define a sequence 〈sn〉 recursively by s1 = 2 and

sn+1 =
sn + 1

2
for n ∈ N. Then 〈sn〉 is decreasing. To prove this,

we use induction to prove that sn ≥ sn+1 for all n ∈ N. First, note
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Figure 2.14: The sequence on the left is increasing. The sequence on
the right is decreasing.

Figure 2.15: A sequence increasing toward its supremum.

that s1 = 2 and s2 = 3/2, so s1 ≥ s2. Next, suppose that k ∈ N and
that sk ≥ sk+1. We will prove sk+1 ≥ sk+2. Since sk ≥ sk+1, then

sk + 1 ≥ sk+1 + 1. But then
sk + 1

2
≥ sk+1 + 1

2
. This last inequality is

exactly sk+1 ≥ sk+2. By induction, sn ≥ sn+1 for all n ∈ N.

Theorem 2.4.3. Suppose that A ⊆ R is bounded above. There is an
increasing sequence of elements of A which converges to supA.

Proof. This proof is pictured in Figure 2.16. Let u = supA. If u ∈ A,
then the constant sequence 〈u〉 is a sequence of elements ofA converging
to u. Suppose then that u 6∈ A. We will recursively construct a strictly

increasing sequence 〈xn〉 of elements of A so that u− 1

n
< xn < u for all
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Figure 2.16: Once x1 < x2 < x3 have been selected, x4 must be
selected to be greter than x3 and greater than u− 1/4.

n. The Squeeze Theorem will then guarantee that 〈xn〉 converges to u.
First, note that u−1 is not an upper bound of A, so there is an element
x1 ∈ A with u − 1 < x1 < u (the second less than follows from the
fact that u 6∈ A). Suppose that strictly increasing elements x1, . . . , xk

of A have been selected so that u − 1

n
< xn < u for n = 1, . . . , k. Let

m = max(u− 1

k + 1
, xk). Then m < u, so m is not an upper bound of

A. This means that there is an element xk+1 of A with m < xk+1 < u.

This forces xk < xk+1 < u and u − 1

k + 1
< xk+1 < u as desired. We

now have a strictly increasing sequence 〈xn〉 of elements of A so that

u− 1

n
< xn < u for all n. By the Squeeze Theorem, limxn = u.

Of course, we could adjust this proof to show:

Theorem 2.4.4. Suppose that A ⊆ R is bounded below. There is a
decreasing sequence of elements of A which converges to inf A. �

Theorem 2.4.5. Suppose that 〈sn〉 is a monotonic sequence. Then
〈sn〉 converges if and only if 〈sn〉 is bounded.

Proof. This proof is pictured in Figure 2.17. If 〈sn〉 converges, then
the sequence is bounded by Theorem 2.2.6. Suppose then that 〈sn〉 is
increasing and monotonic. Let S = {sn : n ∈ N} and let L = supS.
We will prove that 〈sn〉 converges to L. Let ε > 0. The number L− ε
is not an upper bound of S. Therefore there is some N ∈ R so that
L − ε < sN ≤ L. Suppose now that n ∈ N and that n > N . Then
L − ε < sN ≤ sn ≤ L so |sn − L| < ε. Thus 〈sn〉 converges to L. A
similar argument shows that if 〈sn〉 is decreasing and bounded then
〈sn〉 converges to inf{sn : n ∈ N}.
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Figure 2.17: Once xn is within ε of L, then xn is between xN and L
for all n > N .

Example 2.4.6. Consider the sequence 〈sn〉 recursively defined by

s1 = 2 and sn+1 =
sn + 1

2
for n ∈ N. We proved in Example 2.4.2 that

〈sn〉 is decreasing. Since 〈sn〉 is decreasing, we know that sn ≤ s1 = 2
for all n. Also, since we only ever add 1 or divide by 2 in computing
the terms of 〈sn〉, it follows that sn ≥ 0 for all n. Thus the sequence
〈sn〉 is bounded and monotonic. By Theorem 2.4.5 〈sn〉 converges.

To find the limit of this sequence, we will use a trick which is
sometimes useful for recursively defined sequences. Let L = lim sn.

Consider the equality sn+1 =
sn + 1

2
. Taking the limit of the left hand

side of this equation gives L. Taking the limit of the right hand side

of this equation gives
L+ 1

2
. Hence it must be that

L =
L+ 1

2
.

Solving this equality for L gives L = 1.

We can use the fact that bounded monotonic sequences converge
to prove the following essential theorem. We will have two theorems
that hold the name Bolzano-Weierstrass. We will use this first version
to prove later that Cauchy Sequences are convergent (Theorem 2.2.6).
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We can also use this first version to prove the second (Theorem 2.6.11);
however, we will offer a more direct proof of that theorem (again em-
ploying Theorem 2.2.6). The proof of this first Bolzano-Weierstrass
Theorem constructs two sequences 〈an〉 and 〈bn〉. The sequence 〈an〉
will be increasing, and the sequence 〈bn〉 will be decreasing. The two
sequences will converge toward each other, squeezing down on an ac-
cumulation point of A.

Theorem 2.4.7. (Bolzano-Weierstrass Theorem Version 1) Any
bounded infinite set has an accumulation point.

Figure 2.18: The process of bisecting intervals in the proof of Theorem
2.4.7.

Proof. This proof is pictured in Figure 2.18. Suppose that A is a
bounded infinite set. This means that there is an interval [a, b] so that
A ⊆ [a, b]. We recursively define two sequences 〈an〉 and 〈bn〉 so that
an < bn for every n and so that there are infinitely many elements of
A in [an, bn] for all n. First, let a1 = a and b1 = b. Note that a1 < b1
and that there are infinitely many elements of A in [a1, b1]. Assuming
that ak and bk have been defined so that ak < bk and so that there are
infinitely many elements of A in [ak, bk], we show how to define ak+1

and bk+1. Let m =
ak + bk

2
. Note that ak < m < bk. Since there

are infinitely many elements of A in [ak, bk], then there are infinitely
many elements of A in [ak,m] or in [m, bk] (or both). If there are
infinitely many elements of A in [ak,m], let ak+1 = ak and bk+1 = m.
Otherwise, let ak+1 = m and bk+1 = bk. Then ak+1 < bk+1 and there
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are infinitely many elements of A in [ak+1, bk+1]. This gives the desired
two sequences 〈an〉 and 〈bn〉. We get a number of results as byproducts
of how we defined our sequences.

1. At each step in the recursive construction, either ak = ak+1 or
ak < ak+1. Thus, 〈an〉 is increasing.

2. Similarly, 〈bn〉 is decreasing.

3. It was built into the design of our sequences that an < bn for
every n.

4. It was also built into the design that the interval [an, bn] contains
infinitely many elements of A for every n.

5. Notice from the definition of our sequences that |bk+1 − ak+1| =
1

2
|bk − ak| for each k. It follows that |bn − an| =

1

2n−1
|b− a| for

all n.

Notice that for all n we have a ≤ an < bn ≤ b, so both 〈an〉 and 〈bn〉
are bounded. Since both sequences are also monotonic (1 and 2 above),
Theorem 2.4.5 tells us that both sequences converge. Let L = lim an
and R = lim bn. It follows from 5 above that the sequence 〈bn − an〉
converges to 0. Therefore

L−R = lim bn − lim an = lim(bn − an) = 0

and L = R.
We now have only to argue that L is an accumulation point of A.

Let (c, d) be any open interval containing L. Since lim(bn − an) = 0,
there is an n so that [an, bn] ⊆ (c, d). Since [an, bn] contains infinitely
many elements of A, so does (c, d). Hence, L is an accumulation point
of A.

Exercises 2.4
2.4.1 Find upper and lower bounds of the sequence

〈
3n+ 7

n

〉
.

2.4.2 Give an example of a sequence which is bounded but not con-
vergent.
2.4.3 Which of the following sequences are increasing? decreasing?
bounded?
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a.

〈
1

n

〉
b.
〈
n5
〉

c. 〈(−2)n〉

d.

〈
(−1)n

n2

〉
e. 〈sin(nπ/7)〉

f.
〈 n

3n

〉
2.4.4 Prove that if 〈an〉 is decreasing and bounded, then 〈an〉 con-
verges.
2.4.5 Prove that if A ⊆ R is a bounded set then there is a decreasing
sequence of elements of A which converges to inf A.
2.4.6 Simplify the proof from Exercise 2.4.5 to prove that if A ⊆ R is a
bounded set then there is a sequence of elements of A which converges
to inf A. (We have left out “decreasing.”)

2.4.7 Define a sequence 〈sn〉 recursively by s1 = 1 and sn+1 =
n

n+ 1
s2
n

for n ∈ N.

a. List the first several terms of 〈sn〉.

b. Prove that 〈sn〉 is monotonic.

c. Prove that 〈sn〉 is bounded.

d. Prove that 〈sn〉 converges and find the limit.

2.4.8 Define a sequence 〈sn〉 recursively by s1 = 1 and sn+1 =
1

3
(sn+1)

for n ∈ N.

a. List the first several terms of 〈sn〉.

b. Prove that 〈sn〉 is monotonic.

c. Prove that 〈sn〉 is bounded.

d. Prove that 〈sn〉 converges and find the limit.

2.4.9 Define a sequence 〈sn〉 recursively by s1 = 1 and

sn+1 =

(
1− 1

4n2

)
sn

for n ∈ N.

a. List the first several terms of 〈sn〉.
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b. Prove that 〈sn〉 converges.

2.4.10 Define a sequence 〈sn〉 recursively by s1 = 1 and

sn+1 =

(
1− 1

(n+ 1)2

)
sn

for n ∈ N.

a. List the first several terms of 〈sn〉.

b. Prove that 〈sn〉 converges.

c. Use induction to prove that sn =
n+ 1

2n
for all n ∈ N.

2.5 Cauchy Sequences

To use the definition of convergence to prove that a sequence converges,
we need a potential limit. It will occasionally be useful to be able to
prove that a sequence converges without knowing the limit (since the
limit might be difficult or impossible to find). A Cauchy sequence is
a sequence which “looks like” it should converge because the terms of
the sequence get close together. This definition focuses on the distance
between terms of the sequence rather than the distance between terms
and a limit.

Definition 2.5.1. A sequence 〈sn〉 of real numbers is a Cauchy se-
quence if for every real number ε > 0 there is a real number N so that
for all integers m,n, if m,n > N then |sm − sn| < ε.

Example 2.5.2. The sequence 〈sn〉 given by sn =
1

n
is a Cauchy

sequence. Let ε > 0. Let N = 1/ε. Suppose that m,n ∈ N with
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m,n > N . Without loss of generality, assume that m < n. Then

|sm − sn| =
∣∣∣∣ 1

m
− 1

n

∣∣∣∣
=

∣∣∣∣n−mmn

∣∣∣∣
=
n−m
mn

<
n

mn

=
1

m

<
1

N
= ε.

Thus 〈sn〉 is Cauchy.

Theorem 2.5.3. Every convergent sequence is a Cauchy sequence.

Figure 2.19: If the distance from sn to L is less than ε/2 and the
distance from sm to L is less than ε/2, then the distance from sn to sm
must be less than ε.

Proof. This proof is illustrated in Figure 2.19. Suppose that 〈sn〉 is a
sequence converging to a limit L. We will prove that 〈sn〉 is Cauchy.
Let ε > 0. Since lim sn = L, there is an N ∈ R so that if n ∈ N and
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n > N then |sn − L| < ε/2. Suppose that m,n ∈ N and m,n > N .
Then

|sm − sn| = |sm − L+ L− sn|
≤ |sm − L|+ |L− sn|

<
ε

2
+
ε

2
= ε.

Thus 〈sn〉 is a Cauchy sequence.

Every Cauchy sequence is also convergent. We will prove this with
the help of our first Bolzano-Weierstrass Theorem 2.4.7. To do so, we
need to know that Cauchy sequences are bounded.

Theorem 2.5.4. Every Cauchy sequence is bounded.

Figure 2.20: There are finitely many terms to the left of sm. These are
bounded. To the right of sm, all terms are between sm − 1 and sm + 1.

Proof. This proof is illustrated in Figure 2.20. Suppose that 〈sn〉 is a
Cauchy sequence. We will prove that 〈sn〉 is bounded. Applying the
definition of Cauchy sequence with ε = 1, We can find an N ∈ R so that
if m,n ∈ N and m,n > N then |sm−sn| < 1. Let m be the least natural
number greater than N . Let M = max(|s1|, |s2|, . . . , |sm|, |sm| + 1).
We claim that M is a bound on |sn|. If n ≤ m, then |sn| ≤ |M |
simply by definition. Suppose that n > m. Then |sm − sn| < 1 so
sm − 1 ≤ sn ≤ sm + 1. But then

−|sm| − 1 ≤ sm − 1 ≤ sn ≤ sm + 1 ≤ |sm|+ 1.

This implies |sn| ≤ |sm|+ 1 ≤M . Thus |sn| ≤M for all n.
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We are now almost ready to prove that every Cauchy sequence is
convergent. Our approach will be divided into two cases. Recall that
a sequence s = 〈sn〉 is really a function s : N → R. As such, s has a
range {sn : n ∈ N}. Our cases will be as to whether or not this range
is infinite. If the range is infinite, then we can apply Theorem 2.4.7.
If the range is finite, we see in the next lemma that s is eventually
constant.

Lemma 2.5.5. If 〈sn〉 is a Cauchy sequence with a finite range, then
there is an N ∈ R so that if m,n ∈ N and m,n > N then sm = sn.

Proof. Suppose that 〈sn〉 is a Cauchy sequence with finite range. Let
R be the range of 〈sn〉. Let M be the minimum difference |a − b| for
a 6= b in R (Note that such a minimum exists because R is finite). Let
ε = M/2. Now applying the definition of a Cauchy sequence gives an
N ∈ R so that if m,n ∈ N and m,n > N then |sm− sn| < ε. Since ε is
less than the minimum difference between any two terms, this implies
that sm = sn for m,n > N .

Finally we can prove that every Cauchy sequence converges.

Theorem 2.5.6. Every Cauchy sequence converges.

Proof. Suppose that 〈sn〉 is a Cauchy sequence. Let R be the range of
〈sn〉. If R is finite, then the sequence is eventually constant by Lemma
2.5.5. In this case, the sequence converges. Assume then that R is
infinite. By Theorem 2.5.4, R is bounded. Since R is bounded and
infinite, by the Bolzano-Weierstrass Theorem 2.4.7, R has an accumu-
lation point L. We prove that 〈sn〉 converges to L. Let ε > 0. Since
〈sn〉 is Cauchy, there is an N0 ∈ R so that if m,n ∈ N and m,n > N0

then |sm− sn| < ε/2. Since L is an accumulation point of R, there are
infinitely many points in R which are in the interval (L− ε/2, L+ ε/2).
Select N ∈ N so that N > N0 and sN ∈ (L − ε/2, L + ε/2). Suppose
that n ∈ N and n > N . Note that |sN −L| < ε/2 and |sn − sN | < ε/2.
Then

|sn − L| = |sn − sN + sN − L|
≤ |sn − sN |+ |sN − L|

<
ε

2
+
ε

2
= ε.

Thus 〈sn〉 converges to L.
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Exercises 2.5
2.5.1 Use the definition to prove that the sequence

〈
2n+ 1

n

〉
is Cauchy.

2.5.2 Suppose that a1 < a2 and define 〈an〉 recursively by an+2 =
an + an+1

2
. Prove that 〈an〉 is Cauchy.

2.5.3 Find the limit of the sequence in Exercise 2.5.2 if a1 = 0 and
a2 = 3.

2.6 Subsequences

Somewhat later (in the Extreme Value Theorem) we will be seeking
the maximum value of a function f with domain D. That is, we will
want a number u in D so that f(x) ≤ f(u) for all x ∈ D. At that point,
we will know that the set f(D) = {f(x) : x ∈ D} is bounded and has
a supremum. By Theorem 2.4.3, we can find a sequence 〈yn〉 in f(D)
converging to the supremum of f(D). We can then find a sequence 〈xn〉
in D so that f(xn) = yn for all n. The natural desire at that point
will be to let u = limxn. However, we will have no guarantee that the
sequence 〈xn〉 will converge. This is but one example of an instance
when we have a sequence which we would like to converge but which
may not converge. The solution is to “throw out” some of the terms of
the sequence in the hope that what remains will converge. The terms
that remain will form a subsequence of the original sequence.

Definition 2.6.1. Suppose that 〈sn〉 is any sequence and that

〈nk〉 = 〈n1, n2, . . .〉

is a strictly increasing sequence of natural numbers. The sequence
〈sn1 , sn2 , sn3 , . . .〉 is a subsequence of 〈sn〉.

Remark 2.6.2. Note that if 〈n1, n2, . . .〉 is a strictly increasing se-
quence then it has to be that n1 ≥ 1. Also, n2 > n1 ≥ 1, so n2 ≥ 2.
Similarly n3 > n2 ≥ 2, so n3 ≥ 3. An induction argument can show
that nk ≥ k for all k.

Example 2.6.3. Consider the sequence〈
(−1)n +

1

n

〉
=

〈
0,

3

2
,−2

3
,
5

4
,−4

5
,
7

6
,−6

7
, . . .

〉
.

Taking
〈n1, n2, n3, n4, . . .〉 = 〈1, 3, 5, 7, . . .〉
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gives the subsequence

〈snk
〉 = 〈s1, s3, s5, s7, . . .〉 =

〈
0,−2

3
,−4

5
,−6

7
, . . .

〉
.

Taking

〈n1, n2, n3, n4, . . .〉 = 〈2, 4, 6, 8 . . .〉

gives the subsequence

〈snk
〉 = 〈s2, s4, s6, s8, . . .〉 =

〈
3

2
,
5

4
,
7

6
,
9

8
. . .

〉
.

Notice that the original sequence 〈sn〉 does not converge because its
terms bounce back and forth between numbers close to −1 and numbers
close to 1. However, these two subsequences both converge. The first
converges to −1 and the second to 1.

Suppose that 〈sn〉 is a sequence with a subsequence 〈snk
〉. If 〈sn〉

converges to a number L, then all of the term of 〈sn〉 are eventually
close to L. It would make sense then that some of the terms (such
as 〈snk

〉) eventually get close to L. Thus the subsequence should also
converge to L.

Theorem 2.6.4. If a sequence 〈sn〉 converges to a number L, then
every subsequence of 〈sn〉 converges to L.

Proof. Suppose that 〈snk
〉 is a subsequence of 〈sn〉. We will prove that

〈snk
〉 converges to L. To do so, we must show that for all ε > 0 there

is an N ∈ R so that if k ∈ N and k > N then |snk
− L| < ε. Let ε > 0.

Since lim sn = L, there is an N ∈ R so that if n ∈ N and n > N then
|sn − L| < ε. Suppose that k ∈ N and k > N . Then nk ≥ k > N so
|snk
− L| < ε as desired. Thus 〈snk

〉 converges to L.

Definition 2.6.5. A term sN is a dominant term of the sequence 〈sn〉
if sN ≥ sn for all n > N .

Example 2.6.6. If 〈sn〉 is decreasing, then every term of 〈sn〉 is dom-
inant. If 〈sn〉 is increasing, then no term is dominant.

Example 2.6.7. No terms of 〈sn〉 = 〈(−1)nn〉 are dominant. See
Figure 2.22.
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Figure 2.21: The indicated terms look as if they are higher than all
the terms to the right of them. These are dominant.

Figure 2.22: For every term of this sequence, there is a higher term to
the right. No terms are dominant.

Example 2.6.8. Suppose that

〈sn〉 =

〈
(−1)n

n

〉
= 〈−1, 1/2,−1/3, 1/4,−1/5, 1/6, . . .〉 .

The dominant terms of 〈sn〉 are 〈1/2, 1/4, 1/6, 1/8, . . .〉. Notice how
the dominant terms form a decreasing sequence. See Figure 2.23.

Example 2.6.9. Suppose that 〈sn〉 =

〈
(n− 3)(n− 6)

n2

〉
. Then

s1 = 10, s2 = 1, s3 = 0, and s4 = −1/8.
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Figure 2.23: The terms above 0 are dominant. The terms below 0
cannot be dominant because of all of the positive terms. Note how the
dominant terms form a decreasing subsequence.

After that point the terms increase toward 1. The only dominant terms
of 〈sn〉 are s1 and s2.

Lemma 2.6.10. Every sequence has a monotonic subsequence.

Proof. Suppose that 〈sn〉 is any sequence. If 〈sn〉 has infinitely many
dominant terms, then the dominant terms of 〈sn〉 form a decreasing
subsequence and we are done. Assume then that 〈sn〉 has only finitely
many dominant terms. Select n1 so that if n ∈ N and n ≥ n1, then sn is
not dominant. Then sn1 is not dominant, so there is a natural number
n2 > n1 so that sn1 < sn2 . Since n2 > n1, sn2 is not dominant, so there
is some n3 > n2 with sn2 < sn3 . Suppose that n1 < n2 < . . . < nk
have been chosen so that sn1 < sn2 < . . . < snk

. Since nk > n1, then
snk

is not dominant, so there is an nk+1 > nk with snk
< snk+1

. We
have a recursively defined subsequence 〈snk

〉 of 〈sn〉 which is strictly
increasing.

Suppose now that 〈sn〉 is any bounded sequence. By Lemma 2.6.10,
〈sn〉 has a monotonic subsequence. Since 〈sn〉 is bounded, so is the sub-
sequence. By Theorem 2.4.5, this subsequence must converge. Hence
we have:

Theorem 2.6.11. (Bolzano-Weierstrass Theorem) Every bounded
sequence has a convergent subsequence. �.
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An alternative method of proving this Bolzano-Weierstrass The-
orem is to use the first version of the Balzano-Weierstrass Theorem
2.4.7. If the range of a bounded sequence 〈sn〉 is infinite then the range
has a limit point L. Each interval of the form (L− 1/n, L+ 1/n) must
contain infinitely many terms of 〈sn〉. This fact can be used to recur-
sively construct a subsequence of 〈sn〉 converging to L. On the other
hand, if the range of 〈sn〉 is finite, then there have to be infinitely many
terms of 〈sn〉 which are equal. These equal terms form a convergent
(constant) subsequence of 〈sn〉.

We close this section with a result that is useful for proving that
some bounded sequences converge. We will employ this trick in the
proof of Theorem 3.7.3.

Theorem 2.6.12. If every convergent subsequence of a bounded se-
quence 〈sn〉 converges to the same number L, then 〈sn〉 converges to
L.

Proof. Suppose that 〈sn〉 does not converge to L. Then there is an ε > 0
so that for all N ∈ R there is an n ∈ N with n > N but |sn − L| ≥ ε.
We apply this fact repeatedly. First, if we take N = 1, then there is
an n1 > 1 so that |sn1 − L| ≥ ε. Next, if we take N = n1, then there
is an n2 > n1 with |sn2 − L| ≥ ε. Similarly, there is an n3 > n2 with
|sn3 − L| ≥ ε. Continuing in this way gives n1 < n2 < n3 < . . . so
that |snk

− L| ≥ ε for all k. Thus we have a subsequence 〈snk
〉 whose

terms are never closer than ε to L. This subsequence is bounded, so
by the Bolzano-Weierstrass Theorem 2.6.11, 〈snk

〉 has a convergent
subsequence. This subsequence is a convergent subsequence of 〈sn〉
which cannot converge to L. We have proven that if 〈sn〉 does not
converge to L, then 〈sn〉 has a convergent subsequence which does not
converge to L. This is the contrapositive of the theorem.

Exercises 2.6
2.6.1 Let sn = 3 + 2(−1)n for n ∈ N.

a. List the first several terms of 〈sn〉.

b. Find a subsequence of 〈sn〉 which is convergent.

2.6.2 Find a convergent subsequence of the sequence

〈
(−1)n

(
1− 1

n

)〉
.
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2.6.3 Suppose that 〈an〉 is a sequence and that x is an accumulation
point of {an : n ∈ N}. Prove that 〈an〉 has a subsequence converging
to x.
2.6.4 Suppose that 〈an〉 and 〈bn〉 are sequences which both converge
to a number L. Define a new sequence 〈cn〉 so that c2n−1 = an and
c2n = bn for each n = 1, 2, . . .. That is,

〈cn〉 = 〈a1, b1, a2, b2, a3, b3, . . .〉 .

Prove that 〈cn〉 converges to L.
2.6.5 Consider these sequences:

an = (−1)n, bn =
1

n
, cn = n2, dn =

6n+ 4

7n− 3
.

a. For each sequence, give an example of a monotonic subsequence.

b. For each sequence find all limits of all subsequences.

c. Which of the sequences are bounded?

2.6.6 Suppose that 〈sn〉 is a strictly increasing sequence of natural
numbers. Prove that n ≤ sn for all n.



Chapter 3

Limits and Continuity

3.1 Limits of Functions

Definition 3.1.1. Suppose that z is an accumulation point of D ⊆ R
and that f : D → R is any function. The number L is a limit of f at z
if for every real number ε > 0 there is a real number δ > 0 so that for
all x ∈ D, if 0 < |x− z| < δ then |f(x)− L| < ε.

Figure 3.1: Consider the function f(x) around z. In the first picture,
we have marked off a distance of ε above and below L and have passed
through the function back to the horizontal axis to an interval (a, b).
(Note that this process can be extremely complicated for some functions.
It is simple in this case.) In the second picture, we have selected a
distance δ so that the interval (z − δ, z + δ) is entirely between a and b.
Finally, the third picture shows that if x is within δ of z, then f(x) is
within ε of L.

Example 3.1.2. Suppose that f : R → R is given by f(x) = x2 − x.
Then 6 is a limit of f at 3. To prove this, we will shortly consider

57
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ε > 0 and have to specify a δ > 0 so that if 0 < |x − 3| < δ then
|f(x)− 6| < ε. To find our delta, we consider the difference |f(x)− 6|
and try to manipulate this until we see |x− 3| like so:

|f(x)− 6| = |x2 − x− 6| = |x− 3| · |x+ 2|.

In this expression, we will assume that |x− 3| < δ. We will choose δ so
that δ|x+ 2| < ε. There is a standard trick for doing so that works in
many cases. We “fix” things so that δ ≤ 1. If δ ≤ 1, and if |x− 3| < δ,
then x is between 2 and 4. This means that |x + 2| < 6. If we want
δ|x+ 2| < ε, it is good enough to have δ · 6 < ε. We are now ready for
the proof.

Suppose that f : R→ R is given by f(x) = x2 − x. We prove that
6 is a limit of f at 3. Let ε > 0. Let δ = min(1, ε/6). Suppose that
0 < |x− 3| < δ. Then

|f(x)− 6| = |x2 − x− 6|
= |x− 3| · |x+ 2|
< δ · 6

≤ ε

6
· 6

= ε.

Thus 6 is a limit of f at 3.

Example 3.1.3. Suppose that f : (0, 1) → R is given by f(x) = 1/x.
Then f has no limit at 0. To prove this, we must demonstrate that for
any L there is an ε > 0 so that for all δ > 0 there is an x ∈ (0, 1) so
that 0 < |x − 0| < δ but |f(x) − L| ≥ ε. Let L ∈ R. Let ε = 1. If
L ≤ 0, then |f(x)− L| ≥ ε for all x in (0, 1), so L cannot be a limit of
f at 0 (or anywhere else). Suppose then that L > 0. Let δ > 0, and let

x be any positive real number less than δ and less than
1

1 + L
. Then

0 < |x− 0| < δ, but since x <
1

1 + L
, then f(x) = 1/x > 1 + L and

f(x)− L > 1 + L− L = 1 = ε.

In this case, f(x)−L is positive, so we have |f(x)−L| > ε even though
|x− 0| < δ. Thus, L cannot be a limit of f at 0.

The terminology, “L is a limit of f at z” is a bit cumbersome. We
would like to be able to refer to, “the limit” and to have notation for
the limit of f at z. To do so, we need this result.
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Theorem 3.1.4. Limits of functions are unique.

Proof. Suppose that z is an accumulation point of D ⊆ R and that
f : D → R is any function. Suppose further that a and b are both
limits of f at z. We will prove that a = b by proving that |a − b| < ε
for every ε > 0. Suppose that ε > 0. There is a δa so that if x ∈ D and
0 < |x− z| < δa then |f(x)−a| < ε/2. Similarly, there is a δb so that if
x ∈ D and 0 < |x− z| < δb then |f(x)− b| < ε/2. Let δ = min(δa, δb).
Suppose that x ∈ D and 0 < |x − z| < δ. (We know such an x exists
because z is an accumulation point of D.) Then

|a− b| = |a− f(x) + f(x)− b|
≤ |a− f(x)|+ |f(x)− b|
= |f(x)− a|+ |f(x)− b|

<
ε

2
+
ε

2
= ε.

Thus |a− b| < ε for all positive ε. It follows that a = b.

Since limits of functions are unique, we can now introduce this
notation.

Notation 3.1.5. We will use lim
x→z

f(x) to denote the limit of f(x) at

z when such a limit exists. If f has a limit at z, then we will say that
lim
x→z

f(x) exists. Otherwise, we will say that lim
x→z

f(x) does not exist.

If we ever say something along the lines of, “Suppose lim
x→z

f(x) = L,”

then implicitly we mean something like, “Suppose that f is a function,
that z is an accumulation point of the domain of f , and that f has a
limit of L at z.”

Example 3.1.6. Suppose f(x) : [0,∞) → R is given by f(x) =
√
x.

Then lim
x→0

f(x) = 0. Let ε > 0 and let δ = ε2. Suppose that x ∈ [0,∞)

and 0 < |x − 0| < δ. Since x ∈ [0,∞), then |x − 0| = |x| = x and
0 < x < δ. Since 0 < x < δ, then 0 <

√
x <
√
δ = ε. Then

|f(x)− 0| =
√
x < ε.

Thus lim
x→0

f(x) = 0.
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Notice in this example that x must approach 0 along the domain
of f . In a first semester calculus course, this might have been called
a “limit from the right” at 0. Our notation here along with Theorem
3.2.1 below will relieve us of the necessity of one sided limits. Of course
this will lead occasionally to apparent conflicts in terminology. For
example, in many first semester calculus classes, it is said that lim

x→0

√
x

does not exist.

Example 3.1.7. Suppose that f : R → R is given by f(x) = x. If
z ∈ R, then lim

x→z
f(x) = z. To see this, suppose that ε > 0. Let δ = ε.

Suppose that x ∈ R with 0 < |x− z| < δ. Then

|f(x)− z| = |x− z| < δ = ε.

Thus lim
x→z

f(x) = z.

Example 3.1.8. Suppose that m, b ∈ R with m 6= 0 and f : R → R
is given by f(x) = mx + b. If z ∈ R, then lim

x→z
f(x) = mz + b. To see

this, suppose that ε > 0. Let δ = ε/|m|. Suppose that x ∈ R with
0 < |x− z| < δ. Then

|f(x)− (mz + b)| = |(mx+ b)− (mz + b)| = |m||x− z| < |m|δ = ε.

Thus lim
x→z

f(x) = mz + b.

Example 3.1.9. Suppose that k ∈ R and that f : R → R is given
by f(x) = k. If z ∈ R, then lim

x→z
f(x) = k. Let ε > 0. Let δ be any

positive real number. Suppose that x ∈ R with 0 < |x− z| < δ. Then
|f(x)− k| = 0 < ε. Thus lim

x→z
f(x) = k.

Example 3.1.10. Suppose that f : R → R is given by f(x) = x3.
Then lim

x→2
f(x) = 8. Let ε > 0. Let δ = min(1, ε/19). Suppose that

x ∈ R with 0 < |x − 2| < δ. Note that since |x − 2| < 1, then x < 3.
Consider

|f(x)− 8| = |x3 − 8|
= |x− 2| · |x2 + 2x+ 4|
≤ |x− 2|(x2 + |2x|+ 4)

< |x− 2|(9 + 6 + 4)

= |x− 2| · 19

< δ · 19

< ε.
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Thus lim
x→2

f(x) = 8.

Example 3.1.11. Suppose f : (0, 1) → R is given by f(x) = 1/x.
If z ∈ (0, 1), then lim

x→z
f(x) = 1/z. Suppose that ε > 0. Let δ =

min

(
z

2
,
εz2

2

)
. Suppose that x ∈ (0, 1) with 0 < |x − z| < δ. Since

|x− z| < z/2, then x > z/2, so 0 < 1/x < 2/z. Now consider∣∣∣∣f(x)− 1

z

∣∣∣∣ =

∣∣∣∣1x − 1

z

∣∣∣∣
=

∣∣∣∣z − xxz

∣∣∣∣
<

2|x− z|
z2

<
2δ

z2

≤ ε.

Thus lim
x→z

f(x) =
1

z
.

Example 3.1.12. Suppose f : (1,∞) → R is given by f(x) = 1/x.
If z ∈ (1,∞), then lim

x→z
f(x) = 1/z. Suppose that ε > 0. Let δ = ε.

Suppose that x ∈ (1,∞) with 0 < |x−z| < δ. Note that since x, z ≥ 1,

then 0 <
1

xz
≤ 1. Now consider∣∣∣∣f(x)− 1

z

∣∣∣∣ =

∣∣∣∣1x − 1

z

∣∣∣∣
=

∣∣∣∣z − xxz

∣∣∣∣
=

1

xz
|x− z|

≤ |x− z|
< δ

= ε.

Thus lim
x→z

f(x) =
1

z
.

There is a fundamental difference between Example 3.1.12 and Ex-
amples 3.1.10 and 3.1.11. Notice that in Examples 3.1.10 and 3.1.11
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our δ depends on the value of z. In Example 3.1.12, the δ is indepen-
dent of z. This will be an important difference later on.

One of the first tricks used in evaluating limits in a first semester
calculus course is to algebraically manipulate a function to find a new
function which agrees with the original almost everywhere. Usually
this involves factoring and canceling. This method is made possible by
the following theorem.

Theorem 3.1.13. Suppose that z is an accumulation point of D ⊆ R
and that f, g : D → R are functions so that f(x) = g(x) for all x ∈
D − {z}. If f has a limit at z then g has a limit at z and

lim
x→z

f(x) = lim
x→z

g(x).

Proof. Let L = lim
x→z

f(x). We will prove that g has a limit at z and

lim
x→z

g(x) = L. Let ε > 0. There is a δ > 0 so that if x ∈ D and

0 < |x − z| < δ then |f(x) − L| < ε. Suppose that x ∈ D and
0 < |x− z| < δ. Then

|g(x)− L| = |f(x)− L| < ε.

Thus the limit of g at z is L.

Example 3.1.14. Let D = R − {0}. Suppose that f, g : D → R are

given by f(x) = 2x + 1 and g(x) =
2x2 + x

x
. Then, for all x ∈ D,

f(x) = g(x). By Example 3.1.8 we know that lim
x→0

f(x) = 1. Therefore,

by Theorem 3.1.13, we know that lim
x→0

g(x) also is 1.

Example 3.1.15. In this example, we consider a limit of a function
whose domain does not contain an interval. Let

D = {1/n : n ∈ N} ∪ {0}.

Define f : D → R by f(x) = x2. Note that 0 is the only accumulation
point of D. We prove that lim

x→0
f(x) = 0. Let ε > 0. Let δ =

√
ε.

Suppose that x ∈ D with |x− 0| < δ. Then |x| < δ, so x2 < δ2 = ε. It
follows that

|f(x)− 0| = x2 < ε.

Thus, lim
x→z

f(x) = 0.
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Exercises 3.1
3.1.1 Define f : (−2, 0) → R by f(x) =

x2 − 4

x+ 2
. Use the definition to

prove that f has a limit at −2 and find it.

3.1.2 Define f : (−2, 0) → R by f(x) =
2x2 + 3x− 2

x+ 2
. Use the defini-

tion to prove that f has a limit at −2 and find it.
3.1.3 Give an example of a function f : (0, 1) → R that has a limit
at every point of (0, 1) except at 1/2. Use the definition to prove your
answer is correct.

3.1.4 Define f : (0, 1) → R by f(x) =
x3 − x2 + x− 1

x− 1
. Prove that f

has a limit at 1.
3.1.5 Define f : R→ R by

f(x) =

{
1 x ≥ 0

−1 x < 0
.

Use the definition to prove that f has no limit at 0.

3.1.6 Define f : (−1, 1) → R by f(x) =
x+ 1

x2 − 1
. Either prove that f

has a limit at 1 or prove that it does not.

3.2 Limits of Sequences and Functions

We would now like to prove several results for limits of functions similar
to those for limits of sequences proven in Section 2.2. This next theorem
is fundamental in simplifying those proofs (and many proofs later). In
a first semester calculus class, when considering lim

x→z
f(x), you may

have considered a limit from the left and a limit from the right at z.
The next theorem allows us to consider limits as we approach z along
any sequence.

Theorem 3.2.1. Suppose that z is an accumulation point of D ⊆ R
and that f : D → R is any function. The number L is the limit of f
at z if and only if for every sequence 〈xn〉 in D − {z} converging to z
the sequence 〈f(xn)〉 converges to L.

Proof. The first half of this proof is depicted in Figure 3.2. Suppose
first that L is a limit of f at z. Let 〈xn〉 be any sequence in D − {z}
converging to z. We will use the definition of convergence of a sequence
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Figure 3.2: Since lim
x→z

f(x) = L, there is a δ so that if x 6= z is within

δ of z, then f(x) is within ε of L. Since limxn = z, 〈xn〉 is eventually
within δ of z. But then 〈f(xn)〉 is eventually within ε of L.

to prove that 〈f(xn)〉 converges to L. Let ε > 0. Since lim
x→z

f(x) = L,

there is a δ > 0 so that if x ∈ D and if 0 < |x−z| < δ then |f(x)−L| < ε.
Since limxn = z, there is an N ∈ R so that if n ∈ N and n > N then
|xn − z| < δ. Suppose now that n ∈ N and n > N . Then |xn − z| < δ.
Since 〈xn〉 is a sequence in D − {z} xn 6= z and 0 < |xn − z| < δ.
By our choice of δ, this implies that |f(xn) − L| < ε. Thus there is
an N ∈ R so that if n ∈ N and n > N then |f(xn) − L| < ε. Hence
〈f(xn)〉 converges to L.

For the converse, we use the contrapositive. Suppose that the num-
ber L is not a limit of f at z. This means that there is an ε > 0 so that
for all δ > 0 there is an x ∈ D so that 0 < |x−z| < δ but |f(x)−L| ≥ ε.
For each n ∈ N, we apply this fact with δ = 1/n. Then for each n ∈ N,
there is an xn ∈ D with 0 < |xn − z| < 1/n but |f(xn)− L| ≥ ε. Since
0 < |xn − z|, then xn ∈ D − {z} for each n. We now have a sequence
〈xn〉 in D−{z}. Since |xn−z| < 1/n for all n, we know that limxn = z.
However, since |f(xn) − L| ≥ ε for all n, the sequence 〈f(xn)〉 cannot
converge to L. Hence, we have proven that if L is not the limit of f at
z then there is a sequence 〈xn〉 in D − {z} converging to z such that
〈f(xn)〉 does not converge to L. This is the contrapositive of what we
are trying to prove.

This theorem can be useful for showing that limits do not exist.
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Example 3.2.2. Let D = R − {0} and let f : D → R be given

by f(x) =
|x|
x

. We show that lim
x→0

f(x) does not exist. Let 〈ln〉 be

any sequence of negative numbers approaching 0, and let 〈rn〉 be any
sequence of positive numbers approaching 0. (If you want actual se-
quences, you can use ln = −1/n and rn = 1/n, but part of the point is
that the actual sequences do not matter.) For any n, since ln < 0, then

f(ln) =
|ln|
ln

= −1. For any n, since rn > 0, then f(rn) =
|rn|
rn

= 1.

Then −1 = lim(−1) = lim f(ln) but 1 = lim(1) = lim f(rn). Since
lim ln = lim rn = 0 but lim f(ln) 6= lim f(rn), then lim

x→0
f(x) cannot

exist.

We can use Theorem 3.2.1 to prove a theorem for limits of functions
parallel to Theorem 2.2.16 for sequences. Each part of the next theorem
can be proven by invoking Theorems 3.2.1 and 2.2.16 on a sequence
approaching z. Note that parts (1) and (2) also follow directly from
Examples 3.1.8 and 3.1.9.

Theorem 3.2.3. (Algebraic Properties of Limits of Functions)
Suppose that z is an accumulation point of D ⊆ R and that f, g : D → R
are functions with lim

x→a
f(x) = L and lim

x→a
g(x) = M . Suppose also that

k ∈ R and that p is a polynomial.

1. lim
x→z

k = k

2. lim
x→z

(kf(x)) = kL.

3. lim
x→z

(f + g)(x) = L+M .

4. lim
x→z

(f − g)(x) = L−M .

5. lim
x→z

p(x) = p(z).

6. lim
x→z

(fg)(x) = LM .

7. lim
x→a
|f |(x) = |L|.

8. If f(x) ≥ 0 for x ∈ D, then lim
x→a

√
f(x) =

√
L.

9. If g(x) 6= 0 for x ∈ D, and if M 6= 0, lim
x→z

(f(x)/g(x)) = L/M .

Proof. We prove part (3) and leave the other parts as exercises. Sup-
pose that 〈xn〉 is a sequence in D − {z} converging to z. To prove
(3), we need only prove that 〈(f + g)(xn)〉 converges to L+M . Since
lim
x→z

f(x) = L and limxn = z, by Theorem 3.2.1 lim f(xn) = L. Also,

since lim
x→z

g(x) = M and limxn = z, we know by Theorem 3.2.1 that
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lim g(xn) = M . Since lim f(xn) = L and lim g(xn) = M , we know by
Theorem 2.2.16 that lim(f(xn) + g(xn)) = L + M . Hence, for any se-
quence 〈xn〉 in D−{z} converging to z, we have lim(f+g)(xn) = L+M .
By Theorem 3.2.1, lim

x→z
(f + g)(x) = L+M .

We can also use Theorem 3.2.1 To extend the order theorems for
limits (Theorems 2.2.17 and 2.2.18) to limits of functions.

Theorem 3.2.4. Suppose z is an accumulation point of D ⊆ R and
that f, g : D → R are functions with lim

x→z
f(x) = L and lim

x→z
g(x) = M .

If f(x) ≤ g(x) for all x ∈ D, then L ≤M .

Proof. Let 〈xn〉 be any sequence in D − {z} converging to z. By The-
orem 3.2.1 we know that lim f(xn) = L and lim g(xn) = M . Since
f(xn) ≤ g(xn) for all n, Theorem 2.2.17 tells us that

L = lim f(xn) ≤ lim g(xn) = M.

Theorem 3.2.5. (Squeeze Theorem) Suppose that z is an accumu-
lation point of D ⊆ R and that f, g, h : D → R are functions with
f(x) ≤ g(x) ≤ h(x) for all x ∈ D. If lim

x→z
f(x) = lim

x→z
h(x) = L, then

lim
x→z

g(x) = L.

Proof. Suppose that 〈xn〉 is any sequence in D − {z} converging to z.
We need only prove that 〈g(xn)〉 converges to L. Since lim

x→z
f(x) = L

and lim
x→z

h(x) = L, then lim f(xn) = lim g(xn) = L. Since

f(xn) ≤ g(xn) ≤ h(xn)

for all n, by the Squeeze Theorem for sequences (Theorem 2.2.18) we
have lim g(xn) = L. Thus lim g(xn) = L for all sequences 〈xn〉 con-
verging to z in D − {z}. By Theorem 3.2.1, lim

x→z
g(x) = L.

Exercises 3.2
3.2.1 Define f : R→ R by

f(x) =

{
1 x ≥ 0

−1 x < 0
.
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Use Theorem 3.2.1 to prove that f has no limit at 0.

3.2.2 Define f : R→ R by

f(x) =

{
x x ∈ Q
−x x 6∈ Q

.

Find where f has a limit and where it does not. Support your answer
with proofs. You may want to use Theorem 3.2.1

3.2.3 Consider the function f : (0,∞) → R given by f(x) = xx. As-
sume that f has a limit at 0 and find it.

3.2.4 Define f : R→ R by

f(x) =

{
8x x ∈ Q
2x2 + 8 x 6∈ Q

.

Determine where f has a limit and where it does not. Support your
answer with proofs.

3.2.5 Suppose that z is an accumulation point of D ⊆ R and that
f : D → R is a function so that for all ε > 0 there is a δ > 0 so that for
all x, y ∈ D− {z}, if x, y ∈ (z − δ, z + δ) then |f(x)− f(y)| < ε. Prove
that f has a limit at z. Hints: Suppose that 〈xn〉 is any sequence in
D−{z} converging to z. Prove that 〈f(xn)〉 is Cauchy so that 〈f(xn)〉
converges. Suppose now that 〈yn〉 is any other such sequence. Then
〈f(yn)〉 will also converge. Prove that lim f(xn) = lim f(yn).

3.2.6 Define f : (0, 1)→ R by f(x) =

√
x+ 1− 1

x
. Prove that f has a

limit at 0 and find it.

3.2.7 Give examples of functions f, g : R→ R which do not have limits
at 0 so that f + g does have a limit at 0.

3.2.8 Give examples of functions f, g : R→ R which do not have limits
at 0 so that fg does have a limit at 0.

3.2.9 Give examples of functions f, g : R→ R which do not have limits
at 0 so that f/g does have a limit at 0.

3.2.10 Suppose that f : R→ R is a function so that

f(x+ y) = f(x)f(y)

for all x, y ∈ R and so that lim
x→0

f(x) exists. Prove that either f(x) = 0

for all x or that lim
x→0

f(x) = 1.
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3.3 The Definition of Continuity

Definition 3.3.1. Suppose that a ∈ D ⊆ R. A function f : D → R is
continuous at a if for every real number ε > 0 there is a real number
δ > 0 so that for all x ∈ D, if |x − a| < δ then |f(x) − f(a)| < ε. If f
is continuous at all x ∈ D, then f is continuous on D.

At this point the reader should compare this definition with the
definition of the limit 3.1.1.

Example 3.3.2. We use the definition to prove that f : R→ R given
by f(x) = x2 is continuous at 3. Let ε > 0. Let δ = min(1, ε/7).
Suppose that |x − 3| < δ. Since |x − 3| < 1 then 2 < x < 4 so
|x+ 3| < 7. Now consider

|f(x)− f(3)| = |x2 − 32|
= |x+ 3| · |x− 3|
< 7δ

≤ ε.

Thus for every ε > 0 there is a δ > 0 so that if |x − 3| < δ, then
|f(x)− f(3)| < ε. Therefore, f is continuous at 3.

Example 3.3.3. The function f : R→ R given by

f(x) =

{
1 x ≥ 0

−1 x < 0

is not continuous at 0. To prove this, we must look at the negation of
the definition of continuity. For f to be not continuous at 0 there must
exist ε > 0 so that for all δ > 0 there is an x ∈ R with |x − 0| < δ
but |f(x) − f(0)| ≥ ε. Since f(0) = 1 but f(x) = −1 if x is negative
(no matter how close x is to 0), it seems as if any ε ≤ 2 will work. Let
ε = 2. Suppose δ > 0. Let x = −δ/2. Then |x− 0| < δ, but

|f(x)− f(0)| = | − 1− 1| = 2 ≥ ε.

Thus f is not continuous at 0.

Example 3.3.4. Let f : R→ R be given by

f(x) =

{
x x ∈ Q
−x x 6∈ Q

.
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We prove that f is continuous at 0. Let ε > 0. Since

|f(x)− f(0)| = |x| = |x− 0|

to make |f(x) − f(0)| less than ε, it is adequate to make |x − 0| < ε.
Let δ = ε. Suppose that |x− 0| < δ. Then

|f(x)− f(0)| = |x| = |x− 0| < δ = ε.

Thus f is continuous at 0. It just so happens that 0 is the only place
where f is continuous. This will be easier to prove in the next section.

Exercises 3.3
3.3.1 Use the definition to prove that the function f : R→ R given by
f(x) = x3 is continuous at 2.

3.3.2 Use the definition to prove that the function f : R→ R given by

f(x) =


1

x
x 6= 0

0 x = 0

is not continuous at 0.

3.3.3 Suppose that z ∈ E ⊆ R is not an accumulation point of E and
that f : E → R. Use the definition to prove that f is continuous at z.

3.3.4 Suppose that z ∈ E ⊆ R is not an accumulation point of E and
that f : E → R. Suppose also that 〈xn〉 is a sequence in E converging
to z. Prove that 〈f(xn)〉 converges to f(z).

3.3.5 A function f : D → R satisfies the Lipschitz condition on D if
there is an M ∈ R so that |f(x) − f(y)| ≤ M |x − y| for all x, y ∈ D.
Prove that if f satisfies the Lipschitz condition on D and if z ∈ D then
f is continuous at z.

3.4 Limits and Continuity

If you compare the definition of the limit of a function (Definition 3.1.1)
with the definition of continuity (Definition 3.3.1) you should see that
the two are quite similar. The differences between the definition of the
limit of f at z being L and the definition of f being continuous at z
are
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• To discuss the limit of f at z, the point z must be an accumulation
point of the domain of f . For continuity at z, the point z need
not be an accumulation point.

• In the definition of the limit, the function value f(z) is irrelevant
because of the inequality “0 < |x− z|.” In fact, z might not even
be in the domain of f . In the definition of the continuity of f at
z, the point z must be in the domain of f , and the value f(z) is
essential to the definition.

• The L in the definition of the limit at z is replaced by f(z) in the
definition of continuity at z.

With these differences in mind, the definitions should make this theo-
rem obvious:

Theorem 3.4.1. Suppose that z ∈ D ⊆ R is an accumulation point of
D. A function f : D → R is continuous at z if and only if

lim
x→z

f(x) = f(z).

�

Example 3.4.2. Theorem 3.4.5 along with Example 3.1.8 reveal the
unsurprising fact that linear functions are continuous.

So what happens at non-accumulation points of the domain? A
function is continuous at all non-accumulation points in its domain.

Theorem 3.4.3. If z ∈ D ⊆ R is not an accumulation point of D,
then any function f : D → R is continuous at z.

Figure 3.3: Since z is not an accumulation point of D, there is an
interval (z − δ, z + δ) which intersects D only at z. If |x − z| < δ, then
x = z and |f(x)− f(z)| = 0 < ε.
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Proof. Suppose that f : D → R is any function and that z ∈ D is not
an accumulation point of D. Since z is not an accumulation point of
D, there is an interval (a, b) containing z which contains no points of
D other than z. There is a δ > 0 so that (z − δ, z + δ) ⊆ (a, b). Note
that if x ∈ D and if |x − z| < δ, then x = z. Now let ε > 0. Suppose
that x ∈ D and that |x− z| < δ. Then x = z so

|f(x)− f(z)| = |f(z)− f(z)| = 0 < ε.

Thus f is continuous at z.

Example 3.4.4. Recall that in Example 3.1.15 we considered the func-
tion f(x) = x2 on the domain D = {1/n : n ∈ N} ∪ {0}. We saw in
that example that lim

x→z
f(x) = 0 = f(0). This implies by Theorem 3.4.1

that f is continuous at 0. Since D has no other accumulation points,
f is continuous at every other point in its domain also.

Combining the previous two theorems gives:

Theorem 3.4.5. Suppose that z ∈ D ⊆ R. A function f : D → R is
continuous at z if and only if for every sequence 〈sn〉 in D converging
to z, lim f(sn) = f(z).

Proof. If z is an accumulation point of D, then this follows directly
from Theorem 3.4.1. If z is not an accumulation point of D, then the
only way a sequence 〈sn〉 in D can converge to z is if that sequence is
eventually equal to z. Then the sequence 〈f(sn)〉 is eventually equal to
f(z), so lim f(sn) = f(z). Thus the statements, “For every sequence
〈sn〉 in D converging to z, lim f(sn) = f(z)” and, “f is continuous at
z” are both true and the theorem holds when z is not an accumulation
point of D.

Example 3.4.6. Theorem 3.4.5 is useful in proving that certain func-
tions are not continuous at given points. Recall that in Example 3.3.4
we considered the function f : R→ R given by

f(x) =

{
x x ∈ Q
−x x 6∈ Q

.

We proved there that f is continuous at 0. We can now easily prove
that f is not continuous at any other point in R. Let z 6= 0 be a rational
number. Let 〈xn〉 be a sequence of irrational numbers which converges
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to z. Then f(xn) = −xn for all n, so lim f(xn) = −z 6= z = f(z). Since
limxn = z but lim f(xn) 6= f(z), f is not continuous at z. If z 6= Q, we
can argue similarly using a sequence of rational numbers converging to
z.

We employ Theorem 3.4.5 in the proof of this next theorem that
contains a fundamental property of continuous functions. If f(z) is
not 0 and if f is continuous at z, then f must be nonzero near z. An
alternative approach to the proof of this theorem is pictured in Figure
3.4.

Figure 3.4: Suppose that f(z) > 0. Let ε = f(z)/2 > 0. There is a
δ > 0 so that if x is within δ of z then f(x) is within ε of f(z). But this
means that f(x) > f(z)− ε = f(z)/2 > 0.

Theorem 3.4.7. Suppose that f : D → R is continuous at z ∈ D.
If f(z) > 0, then there is an open interval (a, b) containing z so that
f(x) > 0 for all x ∈ (a, b) ∩D.

Proof. We prove the theorem in using the contrapositive along with
Theorems 2.2.17 and 3.4.5. Suppose that for every open interval (a, b)
containing z there is an x ∈ (a, b) ∩ D with f(x) ≤ 0. We will prove
that f(z) ≤ 0. For each n ∈ N, the interval (z− 1/n, z+ 1/n) contains
z, so there is some xn ∈ (z − 1/n, z + 1/n) ∩D with f(xn) ≤ 0. The
sequence 〈xn〉 must converge to f(z). By Theorem 3.4.5, the sequence
〈f(xn)〉 converges to z. Since f(xn) ≤ 0 for all n, then by Theorem
2.2.17 f(z) = lim f(xn) ≤ 0. We have established the contrapositive of
the theorem.

Theorem 3.4.5 combined with Theorem 2.2.16 immediately give us
these algebraic properties of continuity. We note that Theorem 3.4.7
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is essential for part (9) as it implies that if 〈xn〉 is any sequence that
converges z in D then 〈g(xn)〉 is eventually non-zero.

Theorem 3.4.8. (Algebraic Properties of Continuity) Suppose
that z ∈ D ⊆ R and that f, g : D → R are functions which are contin-
uous at z. Suppose also that k ∈ R and that p is a polynomial. These
functions are continuous at z:

1. The constant function k

2. kf .

3. f + g.

4. f − g.

5. p.

6. fg.

7. |f |.

8.
√
f (if f(x) ≥ 0 for x ∈ D).

9. f/g (if g(z) 6= 0). �

We close this section by addressing continuity and compositions.

Theorem 3.4.9. Suppose that z ∈ D ⊆ R, that f : D → R is contin-
uous at z, that f(D) ⊆ E ⊆ R and that g : E → R is continuous at
f(z). Then g ◦ f is continuous at z.

Proof. Suppose that 〈xn〉 is any sequence in D converging to z. Since
f is continuous at z, Theorem 3.4.5 implies 〈f(xn)〉 is a sequence in
E converging to f(z). Since g is continuous at f(z), the sequence
〈g(f(xn))〉 = 〈g ◦ f(xn)〉 converges to g◦f(z) by Theorem 3.4.5. Again
by Theorem 3.4.5, this implies that g ◦ f is continuous at z.

Exercises 3.4
3.4.1 Suppose that f : R → R is continuous everywhere and that
f(r) = r2 for every rational number r. Find f(

√
2). Support your an-

swer with a proof. Hint: There is a sequence 〈rm〉 of rational numbers
approaching

√
2.

3.4.2 Suppose that f : R → R is continuous everywhere and that
f(r) = 0 for all rational numbers r. Prove that f(x) = 0 for all x ∈ R.
Hint: If x is irrational, then there is a sequence of rational numbers
approaching x.
3.4.3 Suppose that f : D → R is continuous at z ∈ D. Prove that there
is an open interval I containing z so that f is bounded on I ∩D. That
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is, prove that there is a number M and an open interval I containing
z so that if x ∈ D ∩ I, then |f(x)| < M . Hint: There is a δ so that if
x is within δ of z then f(x) is within 1 of f(z).

3.4.4 Suppose that f, g : D → R are continuous. Prove that max(f, g)
is continuous on D. Hint: Use Exercise 1.6.6.

3.4.5 Let g(x) = x2 and f(x) =

{
4 x ≥ 0

0 x < 0
. Which of these functions

are continuous at 0? f , g, f + g, fg, f ◦ g, g ◦ f?

3.4.6 Suppose that f, g : R → R are continuous and that f(r) = g(r)
for all r ∈ Q. Prove that f = g. Hint: If x is irrational, then there is
a sequence of rational numbers approaching x.

3.4.7 Suppose that S ⊆ R has an accumulation point z which is not
in S. Prove that there is a function f : S → R which is continuous but
unbounded. Hint: Consider as an example the function 1/x.

3.5 Uniform Continuity

To say that a function f : D → R is continuous at x0 ∈ D is essen-
tially to say that if x is close to x0, then f(x) is close to f(x0). This
is a local property that applies around the point x0. It will be useful
for us to have a more global idea of continuity that declares whenever
x and y are close to each other in D, then f(x) and f(y) are close
to each other. This is a property that functions such as f(x) = 1/x
fail. If x and y are both close to 0, then 1/x and 1/y might be any dis-
tance apart. This global notion of continuity is call uniform continuity.

Definition 3.5.1. Suppose that E ⊆ D ⊆ R. A function f : D → R
is uniformly continuous on E if for every real number ε > 0 there is
a real number δ > 0 so that for all x, y ∈ E, if |x − y| < δ then
|f(x)− f(y)| < ε.

Example 3.5.2. The function f(x) = 1/x is not uniformly continuous
on (0, 1). To demonstrate that f is not uniformly continuous, let us first
call attention to the negation of the definition of uniform continuity. A
function f : D → R is not uniformly continuous on E if there is a real
number ε > 0 so that for all real numbers δ > 0 there are x, y ∈ E with
|x − y| < δ but |f(x) − f(y)| ≥ ε. We will argue that ε = 1 satisfies
this, so let ε = 1 and δ > 0. We must find x, y ∈ (0, 1) with |x− y| < δ
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but |f(x)−f(y)| ≥ ε. Let x ∈ (0, 1) with x < δ, and let y = x/2. Then

|x− y| = x− y = x/2 < δ/2 < δ.

But

|f(x)− f(y)| = f(y)− f(x) =
2

x
− 1

x
=

1

x
> 1 = ε.

Thus, no matter what δ may be given, we can always find x and y so
that |x− y| < δ but |f(x)− f(y)| ≥ ε.

Figure 3.5: If x and y are near 0, then 1/x and 1/y might be some
distance apart since 1/x is so steep near 0. On the other hand, if x, y > 1
then 1/x and 1/y should be somewhat close since 1/x is not steep here.

Example 3.5.3. The function f(x) = 1/x is uniformly continuous on
(1,∞). Let ε > 0, and let δ = ε. Suppose that x, y ∈ (1,∞) with
|x− y| < δ. Then

|f(x)− f(y)| = |1
x
− 1

y
| = |y − x

xy
|.

Since x, y ∈ (1,∞), then xy > 1. This implies that

|y − x
xy
| < |x− y| < δ = ε.

Thus f is uniformly continuous on (1,∞).
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Example 3.5.4. The function f(x) = x2 is not uniformly continuous
on [1,∞). Let ε = 1 (any positive number will work). Suppose that
δ > 0. Let x be any number in [1,∞) which is greater than 1/δ, and
let y = x+ δ/2. Then

|f(x)− f(y)| = |x2 − y2|
= |x+ y||x− y|
= (2x+ δ/2)δ/2

= xδ + δ2/4

≥ xδ
> (1/δ)δ

= 1.

Example 3.5.5. The function f(x) = x2 is uniformly continuous on
[1, 2]. Let ε > 0. Let δ = ε/4. Suppose that x, y ∈ [1, 2] and that
|x− y| < δ. Note that if x, y ∈ [1, 2], then |x+ y| ≤ 4.

|f(x)− f(y)| = |x2 − y2|
= |x+ y||x− y|
< 4δ

= 4ε/4

= ε.

Theorem 3.5.6. If f is continuous on a closed interval [a, b], then f
is uniformly continuous on [a, b].

Proof. Suppose by way of contradiction that f is continuous but not
uniformly continuous on [a, b]. Since f is not uniformly continuous,
then:

There exists ε > 0 so that for all δ > 0 there are x, y ∈ [a, b]
with |x− y| < δ but |f(x)− f(y)| ≥ ε.

For each n ∈ N, we apply this with δ = 1/n. Then, for each n ∈ N,
there are xn, yn ∈ [a, b] with |xn − yn| < 1/n but |f(xn)− f(yn)| ≥ ε.

The sequence 〈xn〉 is bounded and must have a subsequence 〈xnk
〉

which converges to a number x0. Note that since a ≤ xn ≤ b for all n,
then x0 ∈ [a, b]. The sequence 〈ynk

〉 is bounded and must have a con-

vergent subsequence
〈
ynkl

〉
. As a subsequence of 〈xnk

〉, the sequence
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xnkl

〉
must converge to x0. Since

〈
xnkl

〉
and

〈
ynkl

〉
each converge,

so does their difference
〈
xnkl
− ynkl

〉
Since |xnkl

−ynkl
| < 1/(nkl), this

difference converges to 0. It follows that
〈
ynkl

〉
also converges to x0.

Since f is continuous at x0, we know that
〈
f(xnkl

)
〉

and
〈
f(ynkl

)
〉

both converge to f(x0). This implies that |f(xnkl
) − f(ynkl

)| should
converge to 0. However, we also know that |f(xn)−f(yn)| ≥ ε for all n,
so |f(xnkl

)−f(ynkl
)| cannot converge to 0. Based on this contradiction,

we must conclude that the assumption that f is continuous but not
uniformly continuous on [a, b] is false.

Lemma 3.5.7. If f : D → R is uniformly continuous and 〈xn〉 is a
convergent sequence in D then 〈f(xn)〉 is a convergent sequence.

Proof. We will prove that 〈f(xn)〉 is Cauchy. Let ε > 0. Since f
is uniformly continuous on D, there is a δ > 0 so that if x, y ∈ D
and |x − y| < δ, then |f(x) − f(y)| < δ. Since 〈xn〉 is convergent,
〈xn〉 is Cauchy. Therefore, there is an N so that if m,n ≥ N then
|xn − xm| < δ. Now suppose that m,n ≥ N . Then |xn − xm| < δ, so
|f(xn) − f(xm)| < ε. This proves that 〈f(xn)〉 is Cauchy and, hence,
convergent.

Theorem 3.5.8. A continuous function f : (a, b) → R is uniformly
continuous if and only if f has limits at a and at b.

Proof. Suppose first that f has limits at a and b. Let L = lim
x→a

f(x)

and R = lim
x→b

f(x). Define a new function f̂ : [a, b]→ R by

f̂(x) =


f(x) x ∈ (a, b)

L x = a

R x = b

.

Then f̂ is continuous on [a, b]. That f̂ is continuous at x ∈ (a, b) follows
because here f̂ = f , and we assumed that f is continuous on (a, b). At
a, f̂ is continuous because

lim
x→a

f̂(x) = lim
x→a

f(x) = L = f̂(a).

Note here that when evaluating lim
x→a

f̂(x), the value at a is irrelavant

so we can use f . That f̂ is continuous at b is proven similarly. Since
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f̂ is continuous on [a, b], f̂ is uniformly continuous on [a, b]. Since f̂ is
uniformly continuous on [a, b], f̂ is uniformly continuous on (a, b). But
since f̂ = f on (a, b), this implies that f is uniformly continuous on
(a, b).

Now assume that f is uniformly continuous on (a, b). We will prove
that lim

x→a
f(x) exists. The proof for b is similar. Suppose that 〈xn〉 and

〈yn〉 are any sequences in (a, b) which converge to a. By Lemma 3.5.7,
we know that 〈f(xn)〉 a 〈f(yn)〉 both converge. We will prove that
they converge to the same number L. This will imply that if 〈zn〉 is
any sequence in (a, b) converging to a, then 〈f(zn)〉 converges to L.
Therefore, we will know that lim

x→a
f(x) = L. Let s be the sequence

〈x1, y1, x2, y2, x3, y3, . . .〉 .

That is, for each n ∈ N, s2n = yn and s2n−1 = xn. Since

limxn = lim yn = a

then also lim sn = a. By Lemma 3.5.7, we know that 〈f(sn)〉 converges.
Let L = lim f(sn). Since 〈f(xn)〉 and 〈f(yn)〉 are subsequences of the
convergent sequence 〈f(sn)〉, it follows that 〈f(xn)〉 and 〈f(yn)〉 both
converge to L. The theorem now follows as described above.

Exercises 3.5
3.5.1 Use the definition to prove that the function f : R→ R given by
f(x) = x3 is uniformly continuous on (0, 1).
3.5.2 Use the definition to prove that the function f : R→ R given by
f(x) = x3 is not uniformly continuous on (0,∞).

3.5.3 Define f : [3.4, 5] → R by f(x) =
2

x− 3
. Use the definition to

prove that f is uniformly continuous on [3.4, 5].
3.5.4 Define f : (2, 7)→ R by f(x) = x3− x+ 1. Use the definition to
prove that f is uniformly continuous on (2, 7).
3.5.5 Which of the following functions are uniformly continuous on the
given interval? Justify your answer with any theorem you need.

a. f(x) =
x

x+ 1
on [2, π]

b. f(x) = x4 on [0, 1]

c. f(x) = x4 on (0, 1)
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d. f(x) = x4 on R

3.5.6 Prove that if f : D → R satisfies the Lipschitz condition on D
(see Exercise 3.3.5) then f is uniformly continuous on D.

3.6 The Extreme Value Theorem

One of the common applications of calculus is in optimization – finding
the maximum or minimum values of a function. The first step in any
such problem is knowing that a solution exists. We prove here that
any continuous function on a closed interval achieves both a maximum
value and a minimum value. This is the Extreme Value Theorem 3.6.2

Theorem 3.6.1. (Bounded Value Theorem) If f is continuous on
[a, b], then f is bounded on [a, b].

We offer two proofs of this theorem (because it is so much fun).
The first uses uniform continuity. The second simply establishes the
contrapositive.

Figure 3.6: The numbers x0, x1, . . . , xN are less than δ apart. If
x ∈ [a, b], then x is in one of the intervals [xn−1, xn]. This means that
x is within δ of xn, so f(x) is within 1 of f(xn). Thus every value
f(x) is within 1 of one of f(x0), f(x1), . . . , f(xN ). It follows that f(x) is
bounded.

Proof. This proof is pictured in Figure 3.6. Since f is continuous on
[a, b], by 3.5.6 f is uniformly continuous on [a, b]. Select ε = 1 in the
definition of uniform continuity. There is a δ > 0 so that if x and y are
in [a, b] and |x− y| < δ, then |f(x)− f(y)| < 1. Select N ∈ N so that
(b− a)/N < δ/2. For n = 0, 1, 2, . . . , N , let xn = a+ n(b− a)/N . Let

m = min(f(x0)− 1, f(x2)− 1, . . . , f(xN )− 1)
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and

M = max(f(x0) + 1, f(x2) + 1, . . . , f(xN ) + 1).

If x ∈ [a, b], then there is an n with |x−xn| < δ. By uniform continuity
and our choice of δ, this implies that |f(x)− f(xn)| < 1, so we have

m ≤ f(xn)− 1 < f(x) < f(xn) + 1 ≤M.

Thus, the set {f(x) : x ∈ [a, b]} is bounded between m and M .

And now we address the proof yet again. This time, we use the
contrapositive.

Proof. Suppose that f is not bounded on [a, b]. Then f is either un-
bounded above or unbounded below. We will address the case when f
is unbounded above. The case when f is unbounded below will work
similarly. Suppose that f is unbounded above. For each positive integer
n, there is an xn ∈ [a, b] so that f(xn) > n. Since the sequence 〈xn〉
is bounded within [a, b], this sequence has a convergent subsequence
〈xnk
〉. Let z = limxnk

. Note that z ∈ [a, b]. Since f(xnk
) > nk for all

k, f(xnk
) is unbounded and cannot converge. In particular, f(xnk

) does
not converge to f(limxnk

), so f is not continuous at z = limxnk
.

Theorem 3.6.2. (Extreme Value Theorem) If f is continuous on
[a, b], then there are u, v ∈ [a, b] so that f(u) ≤ f(x) ≤ f(v) for all
x ∈ [a, b].

Proof. We will prove the existence of v. Let S = {f(x) : x ∈ [a, b]}. By
3.6.2, we know that S is bounded. Let y0 = supS. We will prove that
there is a v ∈ [a, b] with f(v) = y0. For each n ∈ N, y0 − 1/n is not an
upper bound of S, so there is some yn ∈ S so that y0− 1/n < yn ≤ y0.
By choice now, 〈yn〉 is a sequence in S converging to y0.

From the definition of S, we know that for each n there is some
xn ∈ [a, b] so that f(xn) = yn. The sequence 〈xn〉 is bounded (in
[a, b]) and must therefore have a subsequence 〈xnk

〉 which converges to
a number v. Since a ≤ xn ≤ b for all n, it must be that v ∈ [a, b],
so f is continuous at v. Since f is continuous at v, 〈f(xnk

)〉 must
converge to f(v). However, since ynk

= f(xnk
), this means that 〈ynk

〉
converges to f(v). Now, 〈ynk

〉 is a subsequence of the sequence 〈yn〉,
which converges to y0. Therefore, 〈ynk

〉 must also converge to y0. Since
limits of sequences are unique, it must be that f(v) = y0 = supS.
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3.7 The Intermediate Value Theorem

A grade school description of a continuous function is a function which
has no holes, skips, or jumps. We know this to be somewhat näıve
at this point. However, the fact that a continuous function has no
breaks is an important property which requires proof. The first step
is a special case that asserts that a continuous function cannot change
signs without passing 0.

Theorem 3.7.1. (Bolzano’s Theorem) Suppose that f : [a, b] → R
is continuous and that f(a) and f(b) have opposite signs. There is a
z ∈ (a, b) such that f(z) = 0.

Figure 3.7: The sequence 〈xn〉 approaches z from the left. By conti-
nuity, the sequence 〈f(xn)〉 approaches f(z) along negative values. This
forces f(x) ≤ 0. The sequence 〈yn〉 approaches z from the right. By
continuity, the sequence 〈f(yn)〉 approaches f(z) along positive values.
This forces f(x) ≥ 0.

Proof. Suppose that f(a) < 0 < f(b). Let

z = sup{x ∈ [a, b] : f(x) < 0}.

(We know this set is not empty because f(a) < 0.) There is a sequence
〈xn〉 in the set {x ∈ [a, b] : f(x) < 0} which converges to z. Since
a ≤ xn ≤ b for all n, it must be that z ∈ [a, b]. Since f is continuous
at z, the sequence 〈f(xn)〉 converges to f(z). Since f(xn) < 0 for all
n, it follows that f(z) ≤ 0.

For each n ∈ N, let yn = min(z+1/n, b). Then 〈yn〉 is a sequence in
[a, b] converging to z. Since f is continuous at z, the sequence 〈f(yn)〉
converges to f(z). By our choice of z, it must be that f(yn) ≥ 0 for
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all n. Therefore, f(z) ≥ 0. We now have 0 ≤ f(z) ≤ 0, so f(z) = 0 as
desired.

The following can now easily be proven by letting f(x) = g(x)− y
in Bolzano’s Theorem:

Theorem 3.7.2. (Intermediate Value Theorem) Suppose that the
function g : [a, b] → R is continuous and that y is between g(a) and
g(b). There is a z ∈ (a, b) such that g(z) = y. �

We close by proving the inverse of a continuous function is also
continuous. This proof relies on the Extreme Value Theorem and the
Intermediate Value Theorem to conclude that the image of a closed
interval under a continuous function is a closed interval.

Theorem 3.7.3. Suppose that f is an injective real valued function
defined on an interval [a, b]. If f is continuous then f−1 is continuous.

Proof. By the Extreme Value Theorem 3.6.2 and the Intermediate
Value Theorem 3.7.2, we know that f([a, b]) is a closed interval [c, d]
and f−1 maps from [c, d] to [a, b]. Let y0 ∈ [c, d] and let 〈yn〉 be any
sequence in [c, d] converging to y0. We must show that

〈
f−1(yn)

〉
con-

verges to f−1(y). For each n = 0, 1, 2, . . . let xn = f−1(yn). Then 〈xn〉
is a sequence in [a, b]. We will use Theorem 2.6.12 to show that 〈xn〉
converges. Suppose that 〈xnk

〉 is any convergent subsequence of 〈xn〉.
Let z = limxnk

. Since f is continuous at z, we have

f(z) = lim f(xnk
) = lim ynk

= y0 = f(x0).

Since f is injective, it follows that z = x0, so every convergent sub-
sequence of 〈xn〉 converges to x0. By Theorem 2.6.12, 〈xn〉 converges
to x0. But xn = f−1(yn) for all n, so this is the same as saying that〈
f−1(yn)

〉
converges to f−1(y0). Since this is true for all sequences

converging to y0, f−1 is continuous at y0. Since this is true for all
y0 ∈ [c, d], f−1 is continuous on [c, d].

Exercises 3.7
3.7.1 Find an interval of length 1 that includes a solution to the equa-
tion xex = 1. Hint: By trial and error find a so that f(a) and f(a+ 1)
are opposite signs where f(x) = xex − 1.
3.7.2 Find an interval of length 1 that includes a solution to the equa-
tion x3 − 6x2 + 2.826 = 0.
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3.7.3 Prove that every odd degree polynomial has a real root. Hint:
Consider the sign of p(x) for very large positive x and and very large
negative x.
3.7.4 Suppose that f : [0, 1] → [0, 1] is continuous. Prove that there
is a z ∈ [0, 1] so that f(z) = z. Such a z is called a fixed point of f .
Hint: Consider the function f(x) − x and use the Intermediate Value
Theorem.
3.7.5 Prove that there is no continuous function f : R → R so that
the equation f(x) = c has exactly two solutions for every c ∈ R. Hint:
Suppose there is.
3.7.6 Suppose f, g : [a, b] → R are continuous, that f(a) < g(a) and
that g(b) < f(b). Prove that there is some z ∈ [a, b] where f(z) = g(z).
Hint: Consider the difference f(x)− g(x).
3.7.7 Suppose f : [a, b]→ R is continuous. Let B = {f(x) : x ∈ [a, b]}.
Prove that B is a closed interval.
3.7.8 In the proof of Bolzano’s Theorem 3.7.1, how do we know that
z 6= b?
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Chapter 4

Differentiation

In this chapter, we develop the theory of the derivative. In these dis-
cussions, it is best to think of slope, instantaneous velocity, or linear
approximations. A linear function is a function f : R → R of the
form f(x) = mx + b where m, b ∈ R. The graph y = f(x) of a linear
function is a line. The graph of a linear function f(x) = mx + b has
the distinctive feature that for any two values x1 6= x2 the difference
quotient

f(x2)− f(x1)

x2 − x1

is equal to m. This number is the slope of the line and is sometimes
called the rate of change of f with respect to x. If x changes by 1 unit,
then f(x) changes by m units. If f is interpreted as the position of an
object moving along an axis and if x is interpreted as time, then the
slope of f(x) = mx + b is the rate of change in position with respect
to time. This is velocity.

The slope m of a linear function f(x) = mx + b gives a good
deal of information about the function f . If m = 0, then f is con-
stant. If m > 0, then f is strictly increasing – when x1 < x2, then
f(x1) < f(x2). If m < 0, then f is strictly decreasing – when x1 < x2,
then f(x1) > f(x2). The derivative is an attempt to extend this notion
of slope to functions for which the difference quotient above may not
be constant.

Exercises 4.0
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4.0.1 Suppose that f : R → R is given by f(x) = mx + b and that
x1, x2 ∈ R. Prove that

f(x2)− f(x1)

x2 − x1
= m.

4.0.2 Suppose that f : R → R is given by f(x) = mx + b and that
x1 ∈ R and x2 = x1 + 1. Prove that f(x2)− f(x1) = m.
4.0.3 Suppose that f : R→ R is given by f(x) = mx+ b where m > 0
and that x1 < x2 ∈ R. Prove that f(x1) < f(x2).

4.1 Tangent Lines

The notion of a line tangent to a circle is simple enough to describe.
A tangent line is a line which intersects the circle at exactly one point,
or it is a line which intersects but does not cross the circle. These
descriptions are not adequate for describing lines tangent to graphs of
functions as can be seen in Figure 4.1. For now, let us forget trying to

Figure 4.1: The graph on the left depicts a tangent line which crosses
a function. The graph on the right depicts a tangent line that intersects
a function at more then one point.

define a tangent line, and let us rather imagine how we might try to
find the line tangent to the graph of a function y = f(x) at a point z.
To find this line, we need two things – a point on the line and the slope
of the line. We have a point, (z, f(z)). We only need to find the slope.
Suppose that x is close to z (and in the domain of f). Then f(x) should
be close to f(z). (Well that really implies some sort of continuity, but
this is an informal discussion.) The point (x, f(x)) should be close to
the line tangent to y = f(x) at z. This means that the slope of the
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Figure 4.2: If x is close to z, then the slope of the secant line connecting
(z, f(z)) and (x, f(x)) should be close to the slope of the line tangent to
f at z.

line connecting (x, f(x)) and (z, f(z)) should be close to the slope of
the tangent. That is

slope of tangent at z ≈ f(x)− f(z)

x− z
.

Presumably, this approximation should get better if x is allowed to
move closer to z. Thus it appears that

slope of tangent at z = lim
x→z

f(x)− f(z)

x− z
.

Then we could define the tangent line to y = f(x) at z to be the line
through (z, f(z)) with this slope.

4.2 Linear Approximations

Another possible description of the line tangent to y = f(x) at z is that
the tangent line is the line which gives the best possible approximation
to f near z. That is, this is a line `(x) = mx + b so that `(z) = f(z)
and so that if x is close to z then `(x) is close to f(x). Moreover, this
line should be “closer to f” than any other line. Now if f is somewhat
nonlinear, then such an approximation might be good near z but much



88

worse far from z. To find this line, we again only need the slope m. If
x is any point, then the slope of the line is

slope of linear approximation =
`(x)− `(z)
x− z

.

If x is close to z, then `(x) is close to f(x) and `(z) = f(z), so this
slope is close to

slope of linear approximation ≈ f(x)− f(z)

x− z
.

Again, this approximation is better the closer x is to z, so perhaps

slope of linear approximation = lim
x→z

f(x)− f(z)

x− z
.

4.3 Instantaneous Velocity

Suppose that an object is moving along a number line and that we
have a function f so that the position of the object at any time t is
f(t). We would like to find the velocity of the object at a particular
time z. Suppose that t is a time shortly after z. (Actually, t may be
before or after z.) We can easily find the average velocity from time z
to time t. This is the change in position, f(t) − f(z), divided by the
change in time t− z:

average velocity =
f(t)− f(z)

t− z
.

Now the average velocity between z and t may not be that close to the
velocity at z. It could be that the object “hits the breaks” at time z
so that the velocity changes abruptly between z and t. On the other
hand, velocity should be continuous, so if t is close enough to z, then
this average velocity should be close to the velocity at z. It appears
that

velocity at z = lim
t→z

f(t)− f(z)

t− z
.

4.4 The Definition of the Derivative

Based on the previous discussion, we make this definition.
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Definition 4.4.1. Suppose that z ∈ D ⊆ R is an accumulation point
of D and that f : D → R is any function. If the limit

lim
x→z

f(x)− f(z)

x− z
exists then f is differentiable at z and the derivative at z of f is

f ′(z) = lim
x→z

f(x)− f(z)

x− z
.

If f is differentiable at z, then the tangent line to the curve y = f(x) at
the point (z, f(z)) is the line through (z, f(z)) with slope f ′(z). This
is the line

y = f ′(z)(x− z) + f(z).

Note that in this definition we allow z to be an accumulation point
of the domain. Many texts restrict z to be an interior point of the
domain. A statement of the form, “Suppose that f is differentiable at
z” is meant to imply that f is a function with some domain D ⊆ R,
that z is an accumulation point of D, that z ∈ D, and that f ′(z) exists.

Example 4.4.2. (Derivative of a Constant) The derivative of any
constant function is 0 everywhere. If f : R → R is constant, then f
is differentiable everywhere and f ′(a) = 0 for all a ∈ R. Suppose that
c ∈ R and f(x) = c for all x. Suppose that a ∈ R.

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

c− c
x− a

= lim
x→a

0

x− a
= lim

x→a
0

= 0

Example 4.4.3. (Derivative of a Linear Function) The derivative
of any linear function is its slope. Suppose that f : R→ R is given by
f(x) = mx+ b. Then f is differentiable everywhere and f ′(a) = m for
all a ∈ R. Let a ∈ R. Then

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

(mx+ b)− (ma+ b)

x− a

= lim
x→a

m(x− a)

x− a
= lim

x→a
m

= m
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Thus, f ′ is constantly m.

Example 4.4.4. Suppose that f : R→ R is given by f(x) = |x|. Then
f is not differentiable at 0. To see this, suppose that 〈xn〉 and 〈yn〉 are
the sequences given by xn = 1/n and yn = −1/n. Note that

lim
|xn| − |0|
xn − 0

= lim
1/n

1/n
= lim 1 = 1

but

lim
|yn| − |0|
yn − 0

= lim
1/n

−1/n
= lim−1 = −1.

Since these two limits differ,

lim
x→0

|x| − |0|
x− 0

cannot exist. Thus f is not differentiable at 0.

Example 4.4.5. Suppose that f : R→ R is given by f(x) = x3. Then
f is differentiable everywhere and f ′(x) = 3x2 for all x ∈ R. Let a ∈ R.
Then

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x3 − a3

x− a

= lim
x→a

(x− a)(x2 + xa+ a2)

x− a
= lim

x→a
(x2 + xa+ a2)

= a2 + a2 + a2

= 3a2

Thus, for any a, f ′(a) = 3a2. We would usually prefer to write this as
f ′(x) = 3x2 for all x ∈ R.

Recall that for any positive integer n

(xn − an) = (x− a)(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1).

We can use this to extend the previous example.
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Example 4.4.6. (Power Rule for Positive Integer Exponents)
Suppose that f : R→ R is given by f(x) = xn. Then f is differentiable
everywhere and f ′(x) = nxn−1 for all x ∈ R. Let a ∈ R. Then

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

xn − an

x− a

= lim
x→a

(x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

x− a
= lim

x→a
(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1)

= nan−1

Thus, for any a, f ′(a) = nan−1. We would usually prefer to write this
as f ′(x) = nxn−1 for all x ∈ R.

Example 4.4.7. Suppose that f : [0,∞)→ R is given by f(x) =
√
x.

Then f is differentiable at all a ∈ (0,∞) and f ′(a) =
1

2
√
a

. Let a > 0.

Then

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

√
x−
√
a

x− a

= lim
x→a

[√
x−
√
a

x− a
·
√
x+
√
a√

x+
√
a

]
= lim

x→a

x− a
(x− a)(

√
x+
√
a)

= lim
x→a

1√
x+
√
a

=
1

2
√
a
.

This limiting process fails at 0. Suppose that 〈xn〉 is given by xn = 1/n.
Then

f(xn)− f(0)

xn − 0
=

√
1/n

1/n
=
√
n.

Since this sequence is unbounded, lim
x→0

f(xn)− f(0)

xn − 0
cannot exist.

Exercises 4.4
4.4.1 Use the definition of the derivative to find the derivative of the
given function at the stated point.
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a. f(x) = x4 at x = 5

b. f(x) =
3x+ 4

2x− 1
at x = 1

4.4.2 Use the definition to find the derivative of f(x) = x2.

4.4.3 Use the definition to find the derivative of f(x) =
1√
x

.

4.4.4 Prove that the function f(x) = x1/3 is not differentiable at 0.

4.4.5 Suppose that f : R → R is differentiable everywhere and that
z ∈ R. Prove that

lim
h→0

f(z + h)− f(z − h)

2h

exists and equals f ′(z).

4.4.6 Suppose that f : R → R is continuous everywhere and differen-
tiable at z ∈ R. Define g : R→ R by

g(x) =


f(x)− f(z)

x− z
x 6= z

f ′(z) x = z
.

Prove that g is continuous everywhere.

4.4.7 Suppose that f, h : R→ R are functions so that f(x) ≤ h(x) for
all x ∈ R. Suppose also that f and h are differentiable at z ∈ R and
that f(z) = h(z). Prove that f ′(z) = h′(z).

4.4.8 Let f(x) =

{
0 x < 0

x2 0 ≤ x

a. Sketch the graph of f .

b. Prove that f is differentiable everywhere and find the derivative.

c. Sketch the graph of f ′

4.4.9 Let f(x) =

{
x2 x ∈ Q
−x2 x 6∈ Q

.

a. Prove that f is not continuous at any z 6= 0.

b. Prove that f is differentiable at 0.
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4.5 Properties of the Derivative

Theorem 4.5.1. If f is differentiable at a, then f is continuous at a.

Proof. If f is differentiable at a, then

lim
x→a

f(x)− f(a)

x− a

exists. Note that for x 6= a,

f(x) =
f(x)− f(a)

x− a
(x− a) + f(a).

Then

f(a) = f ′(a) · 0 + f(a)

= lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a) + lim
x→a

f(a)

= lim
x→a

(
f(x)− f(a)

x− a
(x− a) + f(a)

)
= lim

x→a
f(x)

Thus f is continuous at a.

Theorem 4.5.2. Suppose that f and g are differentiable at a and that
k ∈ R.

1. (Constant Multiple Rule) kf is differentiable at a and

(kf)′(a) = kf ′(a).

2. (Sum Rule) f + g is differentiable at a and

(f + g)′(a) = f ′(a) + g′(a).

3. (Product Rule) fg is differentiable at a and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

4. (Quotient Rule) If g(a) 6= 0, f/g is differentiable at a and

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

(g(a))2
.
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Proof. 1. (Constant Multiple Rule) Note that

kf ′(a) = k lim
x→a

f(x)− f(a)

x− a

= lim
x→a

kf(x)− kf(a)

x− a

= lim
x→a

(kf)(x)− (kf)(a)

x− a
.

Since this last limit exists and is equal to kf ′(a), then kf is
differentiable at a and (kf)′(a) = kf ′(a).

2. (Sum Rule) Note that

f ′(a) + g′(a) = lim
x→a

f(x)− f(a)

x− a
+ lim
x→a

g(x)− g(a)

x− a

= lim
x→a

(
f(x)− f(a)

x− a
+
g(x)− g(a)

x− a

)
= lim

x→a

f(x)− f(a) + g(x)− g(a)

x− a

= lim
x→a

f(x) + g(x)− f(a)− g(a)

x− a

= lim
x→a

(f + g)(x)− (f + g)(a)

x− a
,

Since this last limit exists, f + g is differentiable at a and

(f + g)′(a) = f ′(a) + g′(a).

3. (Product Rule) This one may be slightly more exciting. Notice
that

f ′(a)g(a) + f(a)g′(a)

=

(
lim
x→a

f(x)− f(a)

x− a

)
g(a) +

(
lim
x→a

f(x)
)(

lim
x→a

g(x)− g(a)

x− a

)

= lim
x→a

(
f(x)− f(a)

x− a
g(a) + f(x)

g(x)− g(a)

x− a

)
= lim

x→a

f(x)g(a)− f(a)g(a) + f(x)g(x)− f(x)g(a)

x− a

= lim
x→a

f(x)g(x)− f(a)g(a)

x− a

= lim
x→a

(fg)(x)− (fg)(a)

x− a
.
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Since this last limit exists, fg is differentiable at a and
(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

4. (Quotient Rule) Suppose that g(a) 6= 0. Since g is continuous
at a, this implies that g(x) 6= 0 for x near a. Thus we can safely
divide by g(x) near a. Then

f ′(a)g(a)− f(a)g′(a)

(g(a))2

=

(
lim
x→a

f(x)− f(a)

x− a

)
g(a)− f(a)

(
lim
x→a

g(x)− g(a)

x− a

)
g(a) lim

x→a
g(x)

= lim
x→a

f(x)−f(a)
x−a g(a)− f(a)g(x)−g(a)

x−a
g(a)g(x)

= lim
x→a

f(x)g(a)− f(a)g(a)− f(a)g(x) + f(a)g(a)

(x− a)g(a)g(x)

= lim
x→a

f(x)g(a)− f(a)g(x)

(x− a)g(a)g(x)

= lim
x→a

f(x)g(a)
g(a)g(x) −

f(a)g(x)
g(a)g(x)

x− a

= lim
x→a

f(x)
g(x) −

f(a)
g(a)

x− a

= lim
x→a

(f/g)(x)− (f/g)(a)

x− a
Since this last limit exists, f/g is differentiable at a and

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

(g(a))2
.

Example 4.5.3. If f(x) = 3x2 + 4x+ 5 then

f ′(x) = (3x2)′ + (4x)′ + (5)′ Sum Rule (twice)

= (3x2)′ + (4x)′ + 0 Derivative of a Constant

= (3x2)′ + 4 Derivative of a Line

= 3(x2)′ + 4 Constant Multiple Rule

= 3(2x) + 4 Power Rule

= 6x+ 4.
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It should be clear that this process can be repeated for any poly-
nomial. Therefore we have:

Theorem 4.5.4. Every polynomial is differentiable everywhere. �

Example 4.5.5. Suppose that f(x) =
2x+ 1

3x+ 1
. Then

f ′(x) =
(2x+ 1)′(3x+ 1)− (2x+ 1)(3x+ 1)′

(3x+ 1)2
Quotient Rule

=
2(3x+ 1)− (2x+ 1)3

(3x+ 1)2
Derivative of a Line

=
−1

(3x+ 1)2
.

Example 4.5.6. Suppose f is differentiable at 2 and that f(2) = −2
and f ′(2) = 3. Suppose also that g(x) = 4x3 + 5x so that g(2) = 42.
Note that g′(x) = 12x2 + 5 so that g′(2) = 53. Let h = fg. Then

h′(2) = (fg)′(2) = f ′(2)g(2) + f(2)g′(2) = 3 · 42 + (−2) · 53 = 20.

We now turn our attention to compositions. The idea behind the
next proof is to consider

g ◦ f(x)− g ◦ f(a)

x− a
=
g(f(x))− g(f(a))

x− a

=
g(f(x))− g(f(a))

f(x)− f(a)

f(x)− f(a)

x− a

and to take a limit as x → a. The first fraction should approach
g′(f(a)) and the second should approach f ′(a). The problem with this
approach is that it may be that f(x) = f(a) even when x 6= a, so the
first fraction may not be defined. In the proof below, we replace this
fraction with a function which is defined everywhere g is.

Theorem 4.5.7. (Chain Rule) Suppose that f is differentiable at a
and that g is differentiable at f(a). Then g ◦ f is differentiable at a
and (g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. Define a function h to have the same domain as g so that

h(x) =


g(x)− g(f(a))

x− f(a)
x 6= f(a)

g′(f(a)) x = f(a).
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Notice that since

lim
x→f(a)

h(x) = lim
x→f(a)

g(x)− g(f(a))

x− f(a)
= g′(f(a)) = h(f(a))

h is continuous at f(a). Also, since f is differentiable at a, f is contin-
uous at a, so h ◦ f is continuous at a and

lim
x→a

h(f(x)) = h(f(a)) = g′(f(a)).

If x 6= f(a), then g(x)− g(f(a)) = h(x)(x− f(a)). Also,

g(f(a))− g(f(a)) = 0 = h(f(a))(f(a)− f(a)),

so g(x) − g(f(a)) = h(x)(x − f(a)) for all x in the domain of g. In
particular, g(f(x)) − g(f(a)) = h(f(x))(f(x) − f(a)). We can now
consider the derivative of g ◦ f .

lim
x→a

g ◦ f(x)− g ◦ f(a)

x− a
= lim

x→a

g(f(x))− g(f(a))

x− a

= lim
x→a

h(f(x))(f(x)− f(a))

x− a

= lim
x→a

h(f(x))
f(x)− f(a)

x− a
= g′(f(a))f ′(a).

Example 4.5.8. Suppose that f(x) = x2 + x + 1, g(x) = x9, and
h(x) = g ◦ f(x) = (x2 + x + 1)9. We could find h′ by first expanding
the ninth power. This would be tedious. Using Chain Rule is much
faster. Note that f ′(x) = 2x+ 1 and g′(x) = 9x8. Then

h′(x) = g′(f(x))f ′(x) = 9(x2 + x+ 1)8(2x+ 1).

We can easily extend the power rule to all rational exponents. To
do so, we need to first deal with roots. This will be accomplished with
the help of the next theorem.

Theorem 4.5.9. Suppose that f is injective and differentiable on [a, b].
If z ∈ [a, b], and if f ′(z) 6= 0, then f−1 is differentiable at f(z) and

(f−1)′(f(z)) =
1

f ′(z)
.
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Figure 4.3: The function on the right is f . The function on the left is
f−1. The point (z, f(z)) is on the graph of f , so the point (f(z), z) is on
the graph of f−1. The slope of the tangent to this point on f−1 is the
reciprocal of the slope of the tangent at the corresponding point on f ,

that is:
1

f ′(z)
.

Proof. Notice that by the Extreme Value Theorem and the Intermedi-
ate Value Theorem, f([a, b]) is a closed interval [c, d], so that f(z) is
an accumulation point of f([a, b]). Since f is injective, we know that if
x 6= z, then f(x) 6= f(z). Then, since f ′(z) 6= 0, we know

lim
x→z

x− z
f(x)− f(z)

=
1

f ′(z)
.

Let ε > 0. There is a δ1 > 0 so that for all x ∈ [a, b], if 0 < |x−z| < δ1,
then ∣∣∣∣ x− z

f(x)− f(z)
− 1

f ′(z)

∣∣∣∣ < ε.

By Theorem 3.7.3, we know that f−1 is continuous. Therefore, there
is a δ > 0 so that for all x ∈ [c, d],

if 0 < |x− f(z)| < δ, then |f−1(x)− f−1(f(z))| < δ1.

Now, f−1(f(z)) = z, so

if 0 < |x− f(z)| < δ, then |f−1(x)− z| < δ1.
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Also, by injectivity, we know that since x 6= f(z) then

f−1(x) 6= f−1(f(z)) = z.

Thus we can actually say

if 0 < |x− f(z)| < δ, then 0 < |f−1(x)− z| < δ1.

Suppose that x ∈ [c, d] and that 0 < |x− f(z)| < δ. Then we know
0 < |f−1(x)− z| < δ1. Now f−1(x) ∈ [a, b] and 0 < |f−1(x)− z| < δ1,
so ∣∣∣∣ f−1(x)− z

f(f−1(x))− f(z)
− 1

f ′(z)

∣∣∣∣ < ε.

Note that z = f−1(f(z)) and f(f−1(x)) = x, so we have that if x ∈ [c, d]
and 0 < |x− f(z)| < δ then∣∣∣∣f−1(x)− f−1(f(z))

x− f(z)
− 1

f ′(z)

∣∣∣∣ < ε.

We have established that

lim
x→f(z)

f−1(x)− f−1(f(z))

x− f(z)
=

1

f ′(z)
.

Therefore, f−1 is differentiable at z and

(f−1)′(f(z)) =
1

f ′(z)
.

We can use this theorem about derivatives of inverse functions to
prove that functions of the form x1/n, where n is a positive integer, are
differentiable.

Theorem 4.5.10. Suppose that n is a positive integer. Let D = R
if n is odd and D = [0,∞) if n is even. Let g : D → D be given by
g(x) = x1/n. Then g is differentiable on D − {0} and

g′(x) =
1

n
x1/n−1.
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Proof. Let f : D → D be given by f(x) = xn. Then g = f−1. Let
x ∈ D − {0}. We will show that g is differentiable at x and that
g′(x) has the stated value. Let z = g(x). Then z ∈ D − {0}. Let
a, b ∈ D − {0} so that a < z < b. Then f is differentiable on [a, b] and
f ′(z) 6= 0. By Theorem 4.5.9 g = f−1 is differentiable at f(z) = x and

g′(x) = (f−1)′(f(z)) =
1

f ′(z)
=

1

nzn−1
=

=
1

n
z1−n =

1

n
(x1/n)1−n =

1

n
x1/n−1.

We can use Theorem 4.5.10, the Chain Rule, and the Quotient Rule
to extend the Power Rule to all rational exponents. For simplicity’s
sake, we restrict our domain to positive real numbers for this theorem.

Theorem 4.5.11. (Power Rule for Rational Exponents) Suppose
that m,n ∈ Z are relatively prime with n > 0. Let D = (0,∞). Let
f : D → D be given by f(x) = xm/n. Then f is differentiable on all of
D and

f ′(x) =
m

n
xm/n−1.

Proof. If m = 0, then f(x) = 1 and f ′(x) = 0 as required by the
theorem. Suppose that m > 0. Then

f(x) = (xm)1/n .

Applying the Chain Rule and Theorem 4.5.10 gives

f ′(x) =
1

n
(xm)1/n−1mxm−1 =

m

n
xm/n−1.

Now assume that m < 0. Then

f(x) =
1

x|m|/n
.

We can use what we just proved for positive integers along with the
quotient rule to get

f ′(x) =
0 · x|m|/n − 1 · |m|n x

|m|/n−1

(x|m|/n)2
= −1 · −m

n

x−m/n−1

x−2m/n
=
m

n
xm/n−1.
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This power rule can be extended to any real number, but doing so
would require a healthy treatments of arbitrary exponential functions.
This will have to wait.

Exercises 4.5
4.5.1 Prove the chain rule (that (g ◦ f)′(a) = g′(f(a))f ′(a)) assuming
that f is injective. Hint: See the discussion before the proof of the
chain rule.
4.5.2 Use the derivative of the identity function, the product rule, and
induction to prove the power rule for natural number exponents.
4.5.3 Suppose that f : [a, b] → [c, d] is differentiable at z ∈ [a, b], that
g : [c, d]→ [r, s] is differentiable at f(z), and h : [r, s]→ [t, u] is differ-
entiable at g(f(z)). Prove that the function h ◦ (g ◦ f) is differentiable
at z and find the derivative.
4.5.4 Suppose that f : [a, b] → [c, d] and g : [c, d] → [r, s] are differen-
tiable. Suppose also that f ′ and g′ are also differentiable. Prove that
(g ◦ f)′ is differentiable and find the derivative.
4.5.5 Find the equation of the line tangent to f−1 at the point (3, 1)
if f(x) = x3 + 2x2 − x+ 1.

4.6 Extrema and the Mean Value Theorem

Definition 4.6.1. A function f has a local minimum at c if f is defined
on an open interval I around c so that f(c) ≤ f(x) for all x ∈ I. A
function f has a local maximum at c if f is defined on an open interval
I around c so that f(x) ≤ f(c) for all x ∈ I. A local extremum is either
a local maximum or a local minimum.

Theorem 4.6.2. (Fermat’s Theorem) If f has a local extremum at
c and if f is differentiable at c, then f ′(c) = 0.

Proof. Suppose that f has a local maximum at c. Then f is defined
on an open interval (a, b) containing c so that f(x) ≤ f(c) for all
x ∈ (a, b). Let 〈xn〉 be a sequence in (a, c) with limxn = c and let 〈yn〉
be a sequence in (c, b) with lim yn = c. Then

lim
f(xn)− f(c)

xn − c
= lim

f(yn)− f(c)

yn − c
= f ′(c).

Now, since f has a local maximum at c, then

f(xn) ≤ f(c) and f(yn) ≤ f(c)
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Figure 4.4: Fermat’s Theorem tells us that local extrema of f occur
either at points where the derivative of f is 0 – such as a and b – or where
the derivative is not defined – as at c.

for all n. This means that f(xn)− f(c) ≤ 0 and f(yn)− f(c) ≤ 0. On
the other hand, xn − c < 0 and yn − c > 0 for all n. It follows that for
all n

0 ≤ f(xn)− f(c)

xn − c
and

f(yn)− f(c)

yn − c
≤ 0.

But then

0 ≤ lim
f(xn)− f(c)

xn − c
= f ′(c) = lim

f(yn)− f(c)

yn − c
≤ 0

so f ′(c) = 0.

Theorem 4.6.3. (Rolle’s Theorem) Suppose that f : [a, b] → R is
continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then
there is at least one z ∈ (a, b) so that f ′(z) = 0.

Proof. Since f is continuous on [a, b], by The Extreme Value Theorem
(Theorem 3.6.2) there are u, v ∈ [a, b] with f(u) ≤ f(x) ≤ f(v) for all
x ∈ [a, b]. If {u, v} = {a, b}, then it follows that f is constant on [a, b].
Then f ′(x) = 0 for all x ∈ (a, b). Suppose then that either u or v is
in (a, b). Let z be u or v – whichever is in (a, b). Then f has a local
extremum at z. By Fermat’s Theorem, f ′(z) = 0.

Theorem 4.6.4. (Mean Value Theorem) Suppose f : [a, b]→ R is
continuous on [a, b] and differentiable on (a, b). There is at least one

z ∈ (a, b) so that f ′(z) =
f(b)− f(a)

b− a
.
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Figure 4.5: Rolle’s Theorem tells us that if f is differentiable and
f(a) = f(b), then f must have a horizontal tangent line somewhere
between a and b. This particular function has three.

Proof. Let

m =
f(b)− f(a)

b− a
.

Define L : [a, b] → R so that L(x) = m(x − a) + f(a) (so, L is the
line connecting the endpoints of f on [a, b]). As a linear funciton, L is
differentiable and L′ is constantly the slope of L, which is m. Define
h : [a, b] → R by h(x) = f(x) − L(x). Then h is continuous on [a, b]
and differentiable on (a, b). Moreover, h(a) = f(a) − L(a) = 0 and
h(b) = f(b) − L(b) = 0. By Rolle’s Theorem, there is some z ∈ (a, b)
where h′(z) = 0. but then

0 = h′(z) = f ′(z)− L′(z) = f ′(z)−m = f ′(z)− f(b)− f(a)

b− a
so

f ′(z) =
f(b)− f(a)

b− a
.

Theorem 4.6.5. (Zero Derivative Theorem) Suppose that f is
differentiable on an interval I. If f ′(x) = 0 for all x ∈ I, then f is
constant on I.

Proof. Suppose that f ′ is constantly 0 on I. Suppose that a < b ∈ I.
We will show that f(a) = f(b). Since f is differentiable on all of I, f
is continuous on all of I and, hence, on [a, b]. Since f is differentiable
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Figure 4.6: The Mean Value Theorem tells us that if f is differentiable,
then there is a tangent line between a and b which is parallel to the line
connecting the points (a, f(a)) and (b, f(b)). In this picture, there are
two.

on I, f is differentiable on (a, b). By the Mean Value Theorem, there
is a z ∈ (a, b) where

f ′(z) =
f(b)− f(a)

b− a
.

But f ′(z) = 0, so

0 =
f(b)− f(a)

b− a
.

It now follows that f(b) = f(a). Thus f is constant.

Theorem 4.6.6. (Constant Difference Theorem) Suppose that f
and g are both differentiable on an interval I and that f ′(x) = g′(x) for
all x ∈ I. There is some c ∈ R so that f(x)− g(x) = c for all x ∈ I.

Proof. Define h : I → R by h = f − g. Since f ′ = g′, then h′ is con-
stantly 0. By the Zero Derivative Theorem, h is a constant. Therefore,
there is a c ∈ R so that f(x)− g(x) = h(x) = c for all x ∈ I.

Exercises 4.6
4.6.1 Suppose that f has a local minimum at c and that f ′(c) exists.
Prove that f ′(c) = 0. (This is the other half of the proof of Fermat’s
Theorem.)
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4.6.2 Use Rolle’s Theorem to prove that the equation x3 − 3x+ b = 0
has at most one solution in [−1, 1].

4.6.3 Suppose that f : [0, 2]→ R is differentiable, f(0) = 0, f(1) = 2,
and f(2) = 2. Prove that

1. There is a c1 ∈ [0, 2] where f ′(c1) = 0.

2. There is a c2 ∈ [0, 2] where f ′(c2) = 2.

4.6.4 Suppose that f : (a, b)→ R is differentiable and that |f ′(x)| ≤M
for all x ∈ (a, b). Prove that f is uniformly continuous on (a, b). Give
an example of a uniformly continuous and differentiable function on
(−1, 1) which has an unbounded derivative.

4.6.5 Suppose f : R→ R is a function so that |f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R. Prove that f is constant.

4.6.6 Suppose that f : R→ R is differentiable and that 1 ≤ f ′(x) ≤ 2
for all x ∈ R. Prove that if f(0) = 0 then x ≤ f(x) ≤ 2x for all x ≥ 0.

4.7 First Derivative Tests

Theorem 4.7.1. If f is differentiable on an interval I and f ′(x) 6= 0
for all x ∈ R, then f is injective on I.

Proof. Suppose that f is differentiable on I but is not injective. Then
there exist a < b ∈ I so that f(a) = f(b). The function f is continuous
on [a, b] and differentiable on (a, b). By Rolle’s Theorem, there is a
z ∈ (a, b) where f ′(z) = 0. Thus, if f is not injective, then f ′ is
sometimes 0. This is the contrapositive of the theorem.

Definition 4.7.2. Suppose that I is an interval. A function f : I → R
is increasing on I if f(x) ≤ f(y) for all x < y in I. The function f
is decreasing on I if f(x) ≥ f(y) for all x < y in I. If f is either
increasing or decreasing on I, then f is monotonic on I. The function
f : I → R is strictly increasing on I if f(x) < f(y) for all x < y in I.
The function f is strictly decreasing on I if f(x) > f(y) for all x < y
in I.

Theorem 4.7.3. (First Derivative Test for Monotonicity) Sup-
pose that I is an interval and that f : I → R is differentiable on I.

1. f is increasing on I if and only if f ′(x) ≥ 0 for all x ∈ I.
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Figure 4.7: The results of this section tell us that the local extrema
of f occur at points where the derivative of f is either 0 or not defined.
When f ′ > 0, the function f is increasing. When f ′ < 0, the function
f is decreasing. This information can be used to analyze a function and
locate local extrema.

2. f is decreasing on I if and only if f ′(x) ≤ 0 for all x ∈ I.

Proof. We will prove (1). The rest of the theorem is left as an exercise.
Suppose first that f is increasing on I. Let z ∈ I, and let 〈xn〉 be a
sequence in I approaching z so that xn > z for all n (a special case is
needed if z is a right hand endpoint of I). Then xn − z > 0 for all n.
Since f is increasing, f(xn) ≥ f(z) so f(xn) − f(z) ≥ 0 for all n. It

follows that f ′(z) = lim
f(xn)− f(z)

xn − z
≥ 0.

Suppose now that f ′(x) ≥ 0 on I. We will prove that f is increasing
on I. Let a < b ∈ I. We will show that f(a) ≤ f(b). The function f
is continuous on [a, b] and differentiable on (a, b). By the Mean Value
Theorem, there is some z ∈ (a, b) so that

f ′(z) =
f(b)− f(a)

b− a
.

Then f(b) − f(a) = f ′(z)(b − a). Since f ′(z) ≥ 0 and b − a > 0, then
f(b)− f(a) ≥ 0. Thus f(a) ≤ f(b). This holds whenever a < b, so f is
increasing.

Notice in this proof that if we instead had assumed that f ′(z) > 0,
then the conclusion would be that f(b) − f(a) > 0 so f(a) < f(b).
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In this case, f would be strictly increasing. Thus the proof is easily
modified to prove:

Theorem 4.7.4. Suppose that I is an interval and that f : I → R is
differentiable on I.

1. If f ′(x) > 0 for all x ∈ I then f is strictly increasing on I.

2. If f ′(x) < 0 for all x ∈ I then f is strictly decreasing on I. �

Theorem 4.7.5. (First Derivative Test for Local Extrema) Sup-
pose that a < b < c in R and that f : (a, c)→ R is continuous on (a, c)
and differentiable on (a, b) and (b, c).

1. If f ′(x) > 0 on (a, b) and f ′(x) < 0 on (b, c), then f has a local
maximum at b.

2. If f ′(x) < 0 on (a, b) and f ′(x) > 0 on (b, c), then f has a local
minimum at b.

Proof. We will prove part (1). The rest is left as an exercise. Suppose
that a < x < b. Then f is continuous on [x, b] and differentiable on
(x, b). By the Mean Value Theorem, there is some z ∈ (x, b) so that

f ′(z) =
f(b)− f(x)

b− x
.

Then f(b)− f(x) = f ′(z)(b− x). Since f ′(z) > 0 and (b− x) > 0, then
f(b)− f(x) > 0. Thus f(b) > f(x) when x ∈ (a, b).

Now suppose that b < x < c. Then f is continuous on [b, x] and
differentiable on (b, x). By the Mean Value Theorem, there is some
z ∈ (b, x) so that

f ′(z) =
f(x)− f(b)

x− b
.

Then f(x) − f(b) = f ′(z)(x − b). Since f ′(z) < 0 and (x − b) > 0,
then f(x)− f(b) < 0. Thus f(b) > f(x) when x ∈ (b, c). Thus, for any
x ∈ (a, c), f(x) ≤ f(b), and f has a local maximum at b.

Exercises 4.7
4.7.1 Prove part (2) of Theorem 4.7.3.
4.7.2 State and prove the special case which is needed in the proof of
part (1) of Theorem 4.7.3 if z is a right hand endpoint of I.
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4.7.3 Prove part (1) of Theorem 4.7.4.
4.7.4 Prove part (2) of Theorem 4.7.5.
4.7.5 Let f, g : [0, 1] → R be differentiable with f(0) = g(0) and
f ′(x) > g′(x) for all x ∈ [0, 1]. Prove f(x) > g(x) for all x ∈ (0, 1].
4.7.6 Suppose that f : [a, b]→ R is differentiable at c ∈ (a, b) and that
f ′(c) > 0. Prove that there is an x ∈ (c, b) so that f(x) > f(c).

4.8 l’Hôpital’s Rule

We close this chapter with an application of the derivative to finding
special types of limits. This application, known as l’Hôpital’s Rule, is
one of the fundamental tools for evaluating limits. To prove the theo-
rem related to l’Hôpital’s Rule, we first need this somewhat technical
extension to the Mean Value Theorem. The proof of this theorem is a
quick application of Rolle’s Theorem to the function

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a)).

Theorem 4.8.1. (Extended Mean Value Theorem) Suppose that
f and g are continuous on [a, b] and differentiable on (a, b). There is
at least one z ∈ (a, b) where

f ′(z)(g(b)− g(a)) = g′(z)(f(b)− f(a)).

�

Theorem 4.8.2. (l’Hôpital’s Rule) Suppose that f and g are con-
tinuous on [a, b] and differentiable on (a, b) and that z ∈ (a, b). If

1. g′(x) 6= 0 for x ∈ (a, b),

2. f(z) = g(z) = 0, and

3. lim
x→z

f ′/g′ exists

Then lim
x→z

f(x)/g(x) exists and lim
x→z

f(x)/g(x) = lim
x→z

f ′(x)/g′(x).

Proof. Let L = lim
x→z

f ′(x)/g′(x). Suppose that 〈xn〉 is any sequence in

(a, b)−{z} with limxn = z. By Theorem 4.8.1 there is a sequence 〈yn〉
so that for every n, yn is strictly between xn and z and

f ′(yn)(g(xn)− g(z)) = g′(yn)(f(xn)− f(z)).
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Notice that by the Squeeze Theorem lim yn = z. Also notice that since
g′ is never 0, by Theorem 4.7.1, g is injective. Since xn 6= z for all n,
this means that g(xn) − g(z) 6= 0, so we can divide by this expression
to get

f ′(yn)

g′(yn)
=
f(xn)− f(z)

g(xn)− g(z)
.

Since f(z) = g(z) = 0, this becomes

f ′(yn)

g′(yn)
=
f(xn)− f(z)

g(xn)− g(z)
=
f(xn)

g(xn)
.

Since lim
x→z

f ′(x)/g′(x) = L and since lim yn = z, then lim
f ′(yn)

g′(yn)
= L.

It follows now that

lim
f(xn)

g(xn)
= lim

f ′(x)

g′(x)
= L.

Since this is true for all sequences 〈xn〉 approaching z in (a, b) − {z},
then

lim
x→z

f(x)

g(x)
= L = lim

x→z

f ′(x)

g′(x)
.

Exercises 4.8
4.8.1 Prove the Extended Mean Value Theorem 4.8.1.
4.8.2 In this exercise, we will prove a simplified version of l’Hôpital’s
Rule. Suppose that z ∈ D ⊆ R is an accumulation point of D and that
f, g : D → R are functions so that:

1. f and g are differentiable at z,

2. g(x) 6= 0 for x 6= z in D,

3. f(z) = g(z) = 0, and

4. g′(z) 6= 0.

Then lim
x→z

f(x)

g(x)
exists and is equal to

f ′(z)

g′(z)
.

4.8.3 Find the limit:

1. lim
x→1

lnx

x− 1
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2. lim
x→0

x

ex − 1

3. lim
x→0

sin(x)

x

4. lim
x→0

x2 sin(x)

sin(x)− x cos(x)



Chapter 5

Integration

In this chapter, we develop the integral fully enough to prove the Fun-
damental Theorem of Calculus. For most discussions about the in-
tegral, it is best to picture either the process of approximating the
area under a non-negative function or the process of approximating
the distance traveled on a number line by an object with non-negative
velocity.

5.1 Area

Suppose that f : [a, b]→ R is never negative and that we would like to
approximate the area under the curve y = f(x) over the interval [a, b].
We begin by partitioning the interval [a, b] into smaller subintervals.
This is accomplished by selecting points

x0 = a < x1 < x2 < · · · < xn = b

in the interval [a, b]. On each of the intervals [xi−1, xi], we will draw a
rectangle from the x-axis up to the curve. The height of this rectangle
should be determined by the height of the curve y = f(x). For each
i = 1, 2, . . . , n, select ci ∈ [xi−1, xi]. Then we can draw a rectangle on
the interval [xi−1, xi] with height f(ci). The width of this rectangle is
∆xi = xi−xi−1. The area of this rectangle is f(ci)∆xi. The total area
under the curve y = f(x) can then be approximated by adding up the
areas of all of these rectangles:

Area ≈
n∑
i=1

f(ci)∆xi.

111
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Figure 5.1: This figure depicts an attempt to approximate the area
under a curve y = f(x) using rectangles. The points a = x0 < x1 <
· · · < xn = b partition the interval [a, b]. Points c1, c2, . . . , cn are selected
in each subinterval. The points c2 and c4 are displayed. On each interval
[xi−1, xi], a rectangle is drawn with height f(ci). The width of this
rectangle is ∆xi = xi − xi−1. The widths ∆x4 and ∆x6 are displayed.

Whether or not this is a good approximation of the area depends on
properties of the function f(x) and the partition.

Example 5.1.1. We illustrate this process with f : [−1, 1]→ R given
by f(x) = 1−x2. Let n be a positive integer. We will partition [−1, 1]
into n intervals of the same width. Since the width of our interval is
1−(−1) = 2, the width of each smaller interval is ∆x = 2/n. We select
points x0 = −1 < x1 < x2 < · · · < xn = 1 which divide [−1, 1] into
n subintervals of width ∆x. This requires that for i = 0, 1, . . . , n we
should have xi = −1 + i∆x = −1 + 2i/n. To simplify notation here,
we will choose ci in [xi−1, xi] to be the right hand endpoint xi. The
rectangle we draw on [xi−1, xi] has width ∆x = 2/n and height

f(xi) = f

(
−1 +

2i

n

)
= 1−

(
−1 +

2i

n

)2

=
4i

n
− 4i2

n2
.

The area of this rectangle is

f(xi)∆x =

(
4i

n
− 4i2

n2

)
2

n
=

8i

n2
− 8i2

n3
.
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Figure 5.2: This figure depicts an arrangement of six rectangles as
described in Example 5.1.1. In this case, we use a regular partition with
all rectangles of equal width ∆x, and rectangles are drawn to the height
of the function at the right hand endpoints of the intervals.

The total area under y = f(x) over [−1, 1] is approximated by the sum
of the areas of these rectangles:

Area ≈
n∑
i=1

f(xi)∆x

=

n∑
i=1

(
8i

n2
− 8i2

n3

)

=
8

n2

n∑
i=1

i− 8

n3

n∑
i=1

i2.

Using the familiar formulas for summations

n∑
i=1

i =
n(n+ 1)

2
and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

this becomes

Area ≈ 8

n2
· n(n+ 1)

2
− 8

n3
· n(n+ 1)(2n+ 1)

6

=
4(n+ 1)

n
− 4(n+ 1)(2n+ 1)

3n2
.
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This gives us a sequence of approximations to the area under y = f(x)
using n rectangles for each n ∈ N. Presumably, this approximation is
better if we use more, narrower rectangles. Perhaps

Area = lim
∆x→0

n∑
i=1

f(xi)∆x = lim
n→∞

(
4(n+ 1)

n
− 4(n+ 1)(2n+ 1)

3n2

)
=

4

3
.

Figure 5.3: It appears that as we use more and more rectangles, an
approximation at area using a regular partition improves. In this figure,
we have used twice as many rectangles to approximate area as in Figure
5.2. The shaded regions indicate improvement in the approximation. In
the left half of the picture, the shaded regions were over-approximations
before. In the right half of the picture, the shaded regions indicate what
were under-approxiations.

There are at least two potential flaws with the process we just
followed. First, we partitioned the interval [−1, 1] in a very precise way
so that all subintervals were the same width. This is called a regular
partition. It could be that this choice of partition affected the limiting
process in some way. Second, we selected values in the subintervals to
be the right hand endpoints. This might also have affected the limiting
process. Perhaps we would have found a different result with left hand
endpoints or midpoints or the highest or lowest points on the interval.
The formalities we develop below must avoid all such potential errors.
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5.2 Distance

Suppose that an object is moving on the y-axis and that its velocity
is given by a function v. Suppose also that v(t) ≥ 0 for all times t in
an interval [a, b]. We would like to approximate the distance traveled
by the object from time t = a to time t = b. As before, we begin by
partitioning the time interval [a, b] into smaller subintervals by selecting
points t0 = a < t1 < t2 < · · · < tn = b in [a, b]. For each i, let
∆ti = ti − ti−1 and select ci ∈ [ti−1, ti]. We will approximate the
distance traveled by the object over each small interval [ti−1, ti] and
then add these smaller approximations together. Now, on an interval
[ti−1, ti], the velocity of the moving object cannot change too much
(velocity is continuous), so since ci ∈ [ti−1, ti], then v(t) ≈ v(ci) on the
entire interval [ti−1, ti]. This means that the distance traveled from
t = ti−1 to t = ti is approximately v(ci)∆ti (distance is rate times
time). The total distance is then approximated by summing over all of
the intervals:

Distance ≈
n∑
i=1

v(ci)∆ti.

Notice the similarity between this sum and the sum we found consid-
ering area in Section 5.1.

5.3 Riemann Sums

The sums encountered in the previous discussions are called Riemann
Sums. We can consider such sums for any function f : [a, b]→ R with-
out consideration of the interpretation of f and without consideration
of whether or not f is positive or negative. When we consider such
sums with narrower and narrower subintervals, then the values of the
sums might tend to get closer to each other. This should surely happen
in the case of the velocity function since there should be less variation
in velocity over smaller and smaller time intervals. Let the mesh of a
partition x0 = a < x1 < x2 < · · · < xn = b be the maximum value
of ∆xi = xi − xi−1. We can consider a limit of Riemann Sums of the
form:

lim
mesh→0

n∑
i=1

f(ci)∆xi

taken over all partitions of [a, b], over all ways of selecting the ci’s, as
the mesh of the partitions gets smaller and smaller. When such a limit
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exists, we call this limit the Riemann Integral of f over [a, b] and denote

it as

∫ b

a
f . As indicated above, this value has meaning for applications

related to area and distance (and a host of other applications).

To simplify the limit process in the description of the Riemann
Integral, Darboux suggested replacing each f(ci) with either

sup{f(ci) : ci ∈ [xi−1, xi]}

(which corresponds in some sense to drawing rectangles as tall as pos-
sible) or

inf{f(ci) : ci ∈ [xi−1, xi]}

(which corresponds in some sense to drawing rectangles as short as
possible). All Riemann Sums for a given partition will fall between

n∑
i=1

sup{f(ci) : ci ∈ [xi−1, xi]}∆xi

and
n∑
i=1

inf{f(ci) : ci ∈ [xi−1, xi]}∆xi.

Using these types of sums to simplify the limiting process will lead us
to the Darboux Integral. This notion of the integral is equivalent to the
Riemann Integral.

5.4 The Fundamental Theorems and Why They
are Obvious

There are (at least) two theorems called the Fundamental Theorem of
Calculus. They are listed below as Theorems 5.9.4 and 5.9.6. The first
roughly states that to calculate an integral of a derivative of a function
f , we simply evaluate f at the endpoints of the interval and subtract:∫ b

a
f ′ = f(b)− f(a).

Suppose that f(t) gives the position of an object moving on a number
line at time t. Then the derivative f ′ gives the velocity of the object.
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If f ′ ≥ 0, then the discussion above indicates that

∫ b

a
f ′ is the distance

traveled by the object. Clearly, one way to calculate the distance trav-
eled by an object is to take its final position f(b) and subtract its initial
position f(a).

The other Fundamental Theorem considers a function of the form

F (x) =

∫ x

a
f ′.

The theorem says that F is continuous, and if f ′ is continuous then F
is differentiable with F ′ = f ′. Again, if we interpret f as position and
f ′ as velocity, then F is distance traveled. Surely distance traveled
should be continuous. Moreover, the derivative of distance traveled
with respect to time is velocity, so F ′ should be the same as f ′.

This may all be well and good, but interpretations can be mislead-
ing. We begin now the process of formally defining the integral and
proving the Fundamental Theorems of Calculus in a manner that is
independent of any interpretation as area or position or distance.

5.5 Partitions and Sums

Here we make formal the idea of a partition and the upper and lower
sums mentioned above. Notice that since we will be employing suprema
and infima, we insist that our functions are bounded. This is the only
restriction on the functions.

Definition 5.5.1. A partition of a closed interval [a, b] is a finite subset
P of [a, b] which includes a and b. We will usually number the elements
of P in an increasing manner so that P = {x0, x1, . . . , xn} where

a = x0 < x1 < x2 < · · · < xn = b.

The mesh of this partition P is

|P | = max{(xi − xi−1) : i = 1, 2, . . . , n}.

If f : [a, b] → R is a bounded function, then the upper sum of f for
partition P is

U(f, P ) =

n∑
i=1

sup{f(x) : x ∈ [xi−1, xi]}(xi − xi−1).
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The lower sum of f for partition P is

L(f, P ) =
n∑
i=1

inf{f(x) : x ∈ [xi−1, xi]}(xi − xi−1).

Figure 5.4: Upper (left) and lower (right) sums for the same function
with the same partition.

The notation in this definition is a bit cumbersome. We will usually
make the following notational conventions for a bounded function f :
[a, b]→ R and a partition P = {x0, x1, . . . , xn} where

a = x0 < x1 < x2 < · · · < xn = b.

First, we will abuse notation in defining partitions. We can denote this
partition P as

P = {a = x0 < x1 < x2 < · · · < xn = b}.

Next, we let ∆xi = xi − xi−1. Finally, for any i = 1, 2, . . . , n, let

mi = inf{f(x) : x ∈ [xi−1, xi]} and Mi = sup{f(x) : x ∈ [xi−1, xi]}.

We will refer to this notation as the standard notation for partitions.
With the standard notation,

L(f, P ) =

n∑
i=1

mi∆xi and U(f, P ) =

n∑
i=1

Mi∆xi.

Example 5.5.2. Suppose f : [−1, 1] → R is given by f(x) = 1 − x2.
Let

P = {−1,−1/2, 0, 1/4, 1/2, 3/4, 1}.
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This table summarizes a computation of L(f, P ) and U(f, P ):

i xi ∆xi mi Mi mi∆xi Mi∆xi
0 −1
1 −1/2 1/2 0 3/4 0 3/8
2 0 1/2 3/4 1 3/8 1/2
3 1/4 1/4 15/16 1 15/64 1/4
4 1/2 1/4 3/4 15/16 3/16 15/64
5 3/4 1/4 7/16 3/4 7/64 3/16
6 1 1/4 0 7/16 0 7/64

L(f, P ) = 58/64 U(f, P ) = 106/64

Notice that the mesh of P is |P | = 1/2 and that L(f, P ) < U(f, P ).
This computation does not do much for us in the way of approximating
an area. The area under y = 1−x2 over [−1, 1] appears to be somewhere
between 58/64 and 106/64. For a better approximation, we either need
to use a partition with a finer mesh, or we need to use a more general
partition.

Example 5.5.3. Suppose that c ∈ R and f : [a, b] → R is given
by f(x) = c. Let P = {a = x0 < x1 < · · · < xn = b} be any
partition of [a, b]. Notice that on each interval [xi−1, xi] the maximum
and minimum values of f are both c, so mi = Mi = c for all i. Then
L(f, P ) is

L(f, P ) =

n∑
i=1

mi∆xi

=

n∑
i=1

c(xi − xi−1)

= c
n∑
i=1

(xi − xi−1)

= c(x1 − x0 + x2 − x1 + x3 − x2 + · · ·+ xn − xn−1)

= c(xn − x0)

= c(b− a).

Notice how the sum here “telescopes” down to (b− a). The arithmetic
for U(f, P ) works identically since each mi = Mi. For this function,
every lower sum and every upper sum is c(b− a).
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Example 5.5.4. Suppose that f : [2, 5]→ R is given by f(x) = x. Let
P = {2 = x0 < x1 < · · · < xn = 5} be any parition of [2, 5]. Notice
that since f is increasing, on each interval [xi, xi−1] the minimum value
is mi = f(xi−1) = xi−1 and the maximum value is Mi = f(xi) = xi.
Then

L(f, P ) =

n∑
i=1

mi∆xi =
n∑
i=1

xi−1(xi − xi−1)

and

U(f, P ) =

n∑
i=1

Mi∆xi =

n∑
i=1

xi(xi − xi−1).

These expressions do not mean much as they are. With a little more
information later, we will be able to combine these sums into a sum-
mation that also telescopes.

Figure 5.5: If f is increasing on [xi−1, xi], then the maximum value of
f occurs at xi and the minimum value occurs at xi−1.

Example 5.5.5. Suppose that f : [0, 1]→ R is given by

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

.

Let P = {0 = x0 < x1 < · · · < xn = 1} be any partition of [0, 1]. Since
every interval [xi−1, xi] contains a rational number, each Mi is 1. Since
every interval [xi−1, xi] also contains an irrational number, each mi is
0. It follows that

L(f, P ) =

n∑
i=1

mi∆xi =

n∑
i=1

0∆xi = 0
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and

U(f, P ) =
n∑
i=1

Mi∆xi =
n∑
i=1

∆xi = 1.

Notice that this last summation again telescopes down to the width of
the interval [0, 1]. For any partition P then,

L(f, P ) = 0 < 1 = U(f, P ).

Example 5.5.6. Suppose that f, g : [2, 5]→ R are given by f(x) = 3x2

and g(x) = x3. Note that g′(x) = f(x). We will address upper and
lower sums for a partition P = {2 = x0 < x1 < · · · < xn = 5} of [2, 5].
Using the standard notation,

L(f, P ) =

n∑
i=1

mi∆xi and U(f, P ) =

n∑
i=1

Mi∆xi.

If we apply the Mean Value Theorem to g on [xi, xi−1], then there is a
ti ∈ [xi, xi−1] so that

f(ti) = g′(ti) =
g(xi)− g(xi−1)

xi − xi−1
.

It follows that g(xi)− g(xi−1) = f(ti)(xi − xi−1) = f(ti)∆xi. Then

n∑
i=1

f(ti)∆xi =

n∑
i=1

(g(xi)− g(xi−1)) =

= g(xn)− g(x0) = g(5)− g(2) = 125− 8 = 117.

(Notice the telescoping.) Moreover, since mi ≤ f(ti) ≤Mi for all i, we
know that L(f, P ) ≤ 117 ≤ U(f, P ). This holds for all partitions P .

We now need to establish some order theorems about upper and
lower sums which will allow us to define the integral.

Lemma 5.5.7. Suppose that f : [a, b]→ R is a bounded function and P
is a partition of [a, b]. Further suppose that M ∈ R so that |f(x)| ≤M
for all x ∈ [a, b]. Then

−M(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).
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Proof. Suppose that P = {a = x0 < x1 < x2 < · · · < xn = b} and use
the standard notation for partitions. Note that

n∑
i=1

∆xi =
n∑
i=1

(xi − xi−1) = (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1).

This summation “telescopes” and collapses to xn − x0 = b − a. Note
also that −M ≤ mi ≤Mi ≤M for each i. Now

−M(b− a) = −M
n∑
i=1

∆xi =

n∑
i=1

−M∆xi ≤
n∑
i=1

mi∆xi = L(f, P )

and

L(f, P ) =

n∑
i=1

mi∆xi ≤
n∑
i=1

Mi∆xi = U(f, P )

and

U(f, P ) =

n∑
i=1

Mi∆xi ≤
n∑
i=1

M∆xi = M

n∑
i=1

∆xi = M(b− a).

As a consequence of this lemma, the sets of upper and lower sums
for a given function are bounded. This will allow us to apply the
Completeness Axiom to these sets to define upper and lower integrals
later. The lemma also tells us that the lower sum for a particular
partition is less than or equal to the upper sum for that partition.
What might be more surprising is that every lower sum is less than or
equal to every upper sum. To prove this, we need the following lemma.
This result tells us that if we add points to a partition, then the lower
sum may only increase, and the upper sum may only decrease. Thus,
when partitions are refined by adding points, the upper and lower sums
move closer toward each other (if they move at all).

Lemma 5.5.8. (Partition Refinement Lemma) If P ⊆ Q are par-
titions of [a, b] and f : [a, b]→ R is bounded then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. Suppose that P = {a = x0 < x1 < · · · < xn = b}. Since
partitions are by definition finite, Q can be constructed by adding one
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point at a time to P . We will prove that if we add one point to P , then
the lower sum may increase and the upper sum may decrease. The
result will then follow by induction. Suppose that z ∈ [a, b]−P . Then
there is some j so that xj−1 < z < xj . Let P ′ = P ∪ {z}. Use the
standard notation for partitions in reference to P . We will calculate
U(f, P )− U(f, P ′) and see that this difference is non-negative. It will
follow that U(f, P ) ≥ U(f, P ′). The situation described in this proof
is displayed in Figure 5.6.

Figure 5.6: This figure depicts what is going on in the proof of Lemma
5.5.8. Outside of the interval [xj−1, xj ] the partitions P and P ′ are
identical. These regions contribute nothing to the difference U(f, P ) −
U(f, P ′). Within the interval [xj−1, xj ], P

′ has one additional point z.
Note that K1 (the supremum on the left) and K2 (the supremum on the
right) are both less than or equal to Mj . The difference U(f, P )−U(f, P ′)
is the thin shaded region.

Define

K1 = sup{f(x) : x ∈ [xj−1, z]} and K2 = sup{f(x) : x ∈ [z, xj ]}.

Since we have [xj−1, z] ⊆ [xj−1, xj ] and [z, xj ] ⊆ [xj−1, xj ], it follows
that K1 ≤Mj and K2 ≤Mj . If we separate out the interval [xj−1, xj ]
in the summations for U(f, P ) and U(f, P ′) then we get

U(f, P ) =

j−1∑
i=1

Mi∆xi +Mj(xj − xj−1) +
n∑

i=j+1

Mi∆xi
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and

U(f, P ′) =

j−1∑
i=1

Mi∆xi +K1(z − xj−1) +K2(xj − z) +
n∑

i=j+1

Mi∆xi.

Then

U(f, P )− U(f, P ′) = Mj(xj − xj−1)− [K1(z − xj−1) +K2(xj − z)]
= Mj(xj − xj−1)−K1(z − xj−1)−K2(xj − z)
≥Mj(xj − xj−1)−Mj(z − xj−1)−Mj(xj − z)
= Mj(xj − xj−1 − z + xj−1 − xj + z)

= 0.

Since U(f, P ) − U(f, P ′) ≥ 0, we know that U(f, P ) ≥ U(f, P ′). A
similar argument with infima will show that L(f, P ) ≤ L(f, P ′). We
have now shown that if we add one point to P to create P ′, then

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

Thus adding one point to a partition moves the lower and upper sums
“toward the middle.” We can now construct Q from P by adding
finitely many points one at a time. Applying what we have shown to
each step (by induction) gives the desired result.

A consequence of this refinement lemma is that every lower sum is
less than or equal to every upper sum.

Theorem 5.5.9. Suppose that P and Q are partitions of [a, b] and that
f : [a, b]→ R is bounded. Then L(f, P ) ≤ U(f,Q).

Proof. Note that P ∪Q is also a partition of [a, b]. Since P ⊆ P ∪Q,
Lemma 5.5.8 gives that L(f, P ) ≤ L(f, P ∪ Q). Since Q ⊆ P ∪ Q,
Lemma 5.5.8 also gives U(f, P ∪Q) ≤ U(f,Q). Putting these together
gives

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

5.6 Integrals

By Lemma 5.5.8, we know that when points are added to a partition,
lower sums increase. Keeping in mind the limiting process discussed
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for Riemann Sums earlier, we might like to know if these sums increase
toward a particular limit as partitions are refined. They do, and this
limit is merely the least upper bound of all lower sums. This least upper
bound exists because Lemma 5.5.7 tells us that the set of all lower sums
of a bounded function on a closed interval is bounded. Similarly, the
set of all upper sums of a fixed function has a greatest lower bound.

Definition 5.6.1. Suppose that f : [a, b]→ R is bounded. The upper
integral of f over [a, b] is

∫ b

a
f = inf{U(f, P ) : P is a partition of [a, b]}.

The lower integral of f over [a, b] is∫ b

a
f = sup{L(f, P ) : P is a partition of [a, b]}.

Theorem 5.6.2. Suppose that P and Q are partitions of [a, b] and
that f : [a, b] → R is bounded. Let M ∈ R so that |f(x)| ≤ M for all
x ∈ [a, b]. Then

−M(b− a) ≤ L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ U(f,Q) ≤M(b− a).

Proof. Let A and B be these sets:

A = {L(f,R) : R is a partition of [a, b]}

and

B = {U(f,R) : R is a partition of [a, b]}.

If R′ is any partition of [a, b], then we know that L(f,R) ≤ U(f,R′) for
all partitions R of [a, b]. This means that U(f,R′) is an upper bound

of A, so U(f,R′) ≥ supA =

∫ b

a
f . Thus, for all partitions R′ of [a, b],

we have

∫ b

a
f ≤ U(f,R′). This means that

∫ b

a
f is a lower bound of B,

so

∫ b

a
f ≤ inf B =

∫ b

a
f . The result now follows from Lemma 5.5.7.
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The lower integral can be considered an attempt at calculating the
area under a function looking only at the shortest possible rectangles
that follow the function. The upper integral is comparable to work-
ing with the tallest rectangles that follow the function. If these two
approaches do not agree, then we would have no good idea for what
the area under a function (or the integral) should be. To avoid this
dilemma, we isolate our attention to those functions for which the up-
per and lower integrals agree.

Definition 5.6.3. Suppose that f : [a, b]→ R is bounded. If∫ b

a
f =

∫ b

a
f

then f is integrable on [a, b]. The integral of f over [a, b] is∫ b

a
f =

∫ b

a
f =

∫ b

a
f.

Example 5.6.4. Recall that in Example 5.5.3 we considered a constant
function f(x) = c on a closed interval [a, b]. We saw in that example
that L(f, P ) = U(f, P ) = c(b − a) for any partition P of [a, b]. It

follows that

∫ b

a
f =

∫ b

a
f = c(b − a), so f is integrable on [a, b] and∫ b

a
f = c(b− a).

Example 5.6.5. Recall that in Example 5.5.5 we considered the func-
tion

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

on the interval [0, 1]. We saw there that for any partition P of [0, 1],
the lower sum was L(f, P ) = 0 and the upper sum was U(f, P ) = 1.

It follows that

∫ b

a
f = 0 < 1 =

∫ b

a
f . Therefore, f is not integrable on

[0, 1].

Example 5.6.6. In Example 5.5.6 we considered f(x) = 3x2 on the
interval [2, 5]. We saw there that L(f, P ) ≤ 117 ≤ U(f, P ) for any

partition P . It follows that

∫ 5

2
f ≤ 117 ≤

∫ 5

2
f . We still do not know
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if this function is integrable, but if it is, the value of the integral must
be 117.

Exercises 5.6
5.6.1 Mimic Example 5.1.1 with the function f(x) = x3 on [0, 1].
5.6.2 Mimic Example 5.1.1 with the function f(x) = x+ x2 on [1, 4].
5.6.3 Let P be a regular partition of [2, 5] into n subintervals. Let
f(x) = x. Calculate the difference U(f, P )−L(f, P ). Refer to Example
5.5.4.
5.6.4 Repeat the previous exercise on the interval [0, 1] with the func-
tion from Example 5.5.5.
5.6.5 Mimic the procedure in Example 5.5.6 with f(x) = 2x on the
interval [0, 1].
5.6.6 Give an example of a function f : [0, 1] → R which is not inte-
grable on [0, 1] so that |f | is integrable on [0, 1].

5.7 Conditions for Integrability

It is rare that we can tell directly from sums whether or not a function
is integrable as easily as in Example 5.6.4. Our next order of business
to to develop a general method of telling when a function might be
integrable.

Theorem 5.7.1. (The ε-Partition Integrability Condition) A
bounded function f : [a, b] → R is integrable if and only if for every
ε > 0 there is a partition P of [a, b] so that U(f, P )− L(f, P ) < ε.

Proof. Suppose first that f is integrable. Then

∫ b

a
f =

∫ b

a
f . Let ε > 0.

Since

∫ b

a
f is the supremum of all lower sums, there is a partition P1

so that

∫ b

a
f − L(f, P1) < ε/2. Similarly, since

∫ b

a
f is the infimum of

all upper sums, there is a partition P2 so that U(f, P2) −
∫ b

a
< ε/2.

Let P = P1 ∪ P2. Then by Lemma 5.5.8

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2).
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Figure 5.7: Regardless of whether or not f is positive, the difference
U(f, P ) − L(f, P ) is an area as depicted in this figure. Theorem 5.7.1
declares that f is integrable if and only if this area can be made smaller
than any positive ε.

It follows that

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1)

= U(f, P2)−
∫ b

a
f +

∫ b

a
f − L(f, P1)

= U(f, P2)−
∫ b

a
f +

∫ b

a
f − L(f, P1)

< ε/2 + ε/2

= ε.

Now suppose that such a partition exists for every positive ε. We
will show that f is integrable. To do so, we must show that the lower
and upper integrals of f are equal. We will accomplish this by showing
that their difference is less than every positive real number. Let ε > 0.
There is a partition P so that U(f, P )− L(f, P ) < ε. Since

L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ U(f, P )

it follows that 0 ≤
∫ b

a
f −

∫ b

a
f < ε. Since this is true for all ε > 0, we
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have that

∫ b

a
f =

∫ b

a
f so f is integrable.

Example 5.7.2. In Example 5.5.4 we considered the function f(x) = x
on the interval [2, 5]. We will show that f is integrable on [2, 5]. Let
ε > 0. Suppose that P is a partition of [2, 5] with |P | < ε/3. Using the
standard notation, we saw in Example 5.5.4 that

L(f, P ) =
n∑
i=1

mi∆xi =
n∑
i=1

xi−1∆xi

and

U(f, P ) =

n∑
i=1

Mi∆xi =

n∑
i=1

xi∆xi.

Therefore

U(f, P )− L(f, P ) =
n∑
i=1

(xi − xi−1)∆xi

<
n∑
i=1

(xi − xi−1)(ε/3)

= (ε/3)
n∑
i=1

(xi − xi−1)

= (ε/3)(xn − x0)

= (ε/3)3

= ε.

By the ε-partition integrability condition, f is integrable on [2, 5].

The ε-partition integrability condition allows us to see when some
functions are (or are not) integrable. It does not do much good for
finding the actual value of the integral. This is taken care of by the
next theorem.

Theorem 5.7.3. Suppose that f : [a, b] → R is integrable and that
R ∈ R so that L(f, P ) ≤ R ≤ U(f, P ) for all partitions P of [a, b].

Then

∫ b

a
f = R.



130

Proof. Suppose that f is integrable and that such an R exists. We will

show that

∫ b

a
f = R by showing that

∣∣∣∣∫ b

a
f −R

∣∣∣∣ is less than every

positive real number. Suppose that ε > 0. There is a partition P
so that U(f, P ) − L(f, P ) < ε. Since L(f, P ) ≤ R ≤ U(f, P ) and

L(f, P ) ≤
∫ b

a
f ≤ U(f, P ), it follows that

∣∣∣∣∫ b

a
f −R

∣∣∣∣ < ε. Since this

is true for all ε,

∫ b

a
f = R.

The proofs of the previous two theorems can be combined to prove:

Theorem 5.7.4. Suppose that f : [a, b] → R is bounded and that
R ∈ R. If for every ε > 0 there is a partition P of [a, b] so that
U(f, P )−L(f, P ) < ε and L(f, P ) ≤ R ≤ U(f, P ), then f is integrable

on [a, b] and

∫ b

a
f = R. �

Example 5.7.5. In Example 5.5.6 we considered f(x) = 3x2 on the
interval [2, 5]. We saw there that for any partition P , the number 117
was between L(f, P ) and U(f, P ). If we can show that f is integrable,
then this will be the value of the integral. Let ε > 0. Let P be a
partition of [2, 5] with |P | < ε/63. We will use the standard notation for
partitions. Note that since f is increasingmi = f(xi−1) andMi = f(xi)
for each i. This means that

U(f, P )− L(f, P ) =

n∑
i=1

(Mi −mi)∆xi

=

n∑
i=1

(f(xi)− f(xi−1))∆xi

<

n∑
i=1

(f(xi)− f(xi−1))ε/63

= (ε/63)
n∑
i=1

(f(xi)− f(xi−1))

= (ε/63)(f(5)− f(2))

= (ε/63)63

= ε.
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Thus, by the ε-partition integrability condition, f is integrable on [2, 5].
Since L(f, P ) ≤ 117 ≤ U(f, P ) for all partitions P (as shown in Exam-

ple 5.5.6),

∫ 5

2
f = 117.

The ε-partition integrability condition allows us quickly to conclude
that monotonic and continuous functions are integrable.

Theorem 5.7.6. If f : [a, b] → R is bounded and monotonic, then f
is integrable.

Proof. Assume that f is increasing and bounded on [a, b]. The case
when f is decreasing is left as an exercise. Let ε > 0. If f(b) = f(a),
then f is constant and, hence, integrable by Example 5.6.4. Suppose
then that f(b) 6= f(a). Let δ = ε/(f(b)− f(a)). Suppose that

P = {a = x0 < x1 < · · · < xn = b}

is any partition of [a, b] with |P | < δ. Using the standard partition no-
tation, note that Mi = f(xi) and mi = f(xi−1) because f is increasing.
Then

U(f, P )− L(f, P ) =
n∑
i=1

Mi∆xi −
n∑
i=1

mi∆xi

=
n∑
i=1

(Mi −mi)∆xi

<

n∑
i=1

(Mi −mi)δ

= δ
n∑
i=1

(Mi −mi)

= δ

n∑
i=1

(f(xi)− f(xi−1))

= δ(f(xn)− f(x0))

= δ(f(b)− f(a))

= ε.

By the ε-partition integrability condition, f is integrable.

Theorem 5.7.7. If f : [a, b]→ R is continuous, then f is integrable.
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Proof. Let ε > 0. Since f is continuous on [a, b], f is uniformly contin-
uous on [a, b]. This means that there is a δ so that if x, y ∈ [a, b] and
|x− y| < δ, then |f(x)− f(y)| < ε/(b− a). Suppose that

P = {a = x0 < x1 < · · · < xn = b}

is any partition of [a, b] with |P | < δ. We will use the standard par-
tition notation. For each i, since f is continuous on [xi−1, xi], the
Extreme Value Theorem guarantees the existence of ui, vi ∈ [xi−1, xi]
with f(ui) = mi and f(vi) = Mi. Note also that since xi − xi−1 < δ,
then

Mi −mi = f(vi)− f(ui) < ε/(b− a).

Then

U(f, P )− L(f, P ) =
n∑
i=1

Mi∆xi −
n∑
i=1

mi∆xi

=
n∑
i=1

(Mi −mi)∆xi

=
n∑
i=1

(f(vi)− f(ui))∆xi

<
n∑
i=1

(ε/(b− a))∆xi

= (ε/(b− a))
n∑
i=1

∆xi

= (ε/(b− a))(b− a)

= ε.

By the ε-partition integrability condition, f is integrable.

We close this section with results that allow us to “take apart”
and “piece together” integrable functions to create more integrable
functions. The first result shows that integrability is preserved when
intervals are restricted.

Theorem 5.7.8. Suppose that f : [a, b]→ R is integrable and

a ≤ u < v ≤ b.

Then f is integrable on [u, v].
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Proof. Let ε > 0. Since f is integrable on [a, b], there is a partition
P = {a = x0 < x1 < · · · < xn = b} of [a, b] so that

U(f, P )− L(f, P ) < ε.

By Lemma 5.5.8, we can assume that u, v ∈ P so that there are j and
k so that u = xj and v = xk. We can consider Q = {xj , xj+1, . . . , xk}
as a partition of [u, v]. Then

U(f,Q)− L(f,Q) =

k∑
i=j+1

(Mi −mi)∆xi

≤
n∑
i=1

(Mi −mi)∆xi

= U(f, P )− L(f, P )

< ε.

By the ε-partition integrability condition, f is integrable on [u, v].

This next result allows us to piece together functions which are
integrable on adjacent intervals.

Theorem 5.7.9. Suppose that f : [a, c]→ R is bounded and a < b < c.
If f is integrable on [a, b] and on [b, c], then f is integrable on [a, c].

Moreover,

∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof. Suppose that f is integrable on [a, b] and on [b, c]. Let ε > 0.
There is a partition P1 of [a, b] so that U(f, P1) − L(f, P1) < ε/2.
There is a partition P2 of [b, c] so that U(f, P2) − L(f, P2) < ε/2. Let
P = P1∪P2, so that P is a partition of [a, c] which contains b. Use the
standard notation for partitions with P and assume that xk = b. Note
that

U(f, P ) =
n∑
i=1

Mi∆xi =
k∑
i=1

Mi∆xi+
n∑

i=k+1

Mi∆xi = U(f, P1)+U(f, P2).

Similarly, L(f, P ) = L(f, P1) + L(f, P2). Therefore

U(f, P )− L(f, P ) = (U(f, P1) + U(f, P2))− (L(f, P1) + L(f, P2))

= (U(f, P1)− L(f, P1)) + (U(f, P2)− L(f, P2))

< ε/2 + ε/2

= ε.
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Furthermore, since

L(f, P1) ≤
∫ b

a
f ≤ U(f, P1) and L(f, P2) ≤

∫ c

b
f ≤ U(f, P2)

then

L(f, P ) = L(f, P1)+L(f, P2) ≤
∫ b

a

f+

∫ c

b

f ≤ U(f, P1)+U(f, P2) = U(f, P ).

Now by Theorem 5.7.4, f is integrable on [a, c] and∫ c

a
f =

∫ b

a
f +

∫ c

b
f.

This next result allows us to change the value of an integrable
function at an endpoint without affecting integrability or the value of
the integral. Combined with the previous two theorems, it follows that
we can alter an integrable function at finitely many points without
changing integrability. This will be one of the more technical proofs
of this section. The main idea is to select partitions with points near
enough to the endpoint that ∆x is small enough to minimize the effect
of the value of the function at the endpoint.

Theorem 5.7.10. Suppose that f, g : [a, b]→ R are bounded. If f(x) =
g(x) for all x ∈ [a, b) and if f is integrable on [a, b], then g is integrable

on [a, b] and

∫ b

a
f =

∫ b

a
g.

Proof. Let ε > 0. Since f is integrable on [a, b], there is a partition
P1 of [a, b] so that U(f, P1) − L(f, P1) < ε/6. Let M ∈ R so that
|f(x)| < M and |g(x)| < M for all x ∈ [a, b]. Select z ∈ (a, b) so that
M(b−z) < ε/12. Let P = P1∪{z}. Then U(f, P )−L(f, P ) < ε/6. We
will use the standard notation for partitions for P = {a = x0 < x1 <
· · · < xn = b} with the modification that we will affix superscripts to

the Mi’s and mi’s (such as Mf
i or mg

i ) to indicate which function we

are considering. Notice that for i < n, Mf
i = Mg

i so that

U(f, P )− U(g, P ) = (Mf
n −Mg

n)∆xn.



135

Also, note that ∆xn < ε/(12M) since z ∈ P . Then

|U(f, P )− U(g, P )| = |(Mf
n −Mg

n)∆xn|
< |Mf

n −Mg
n|ε/(12M)

≤ (|Mf
n |+ |Mg

n|)ε/(12M)

≤ (|M |+ |M |)ε/(12M)

= ε/6.

Similarly, |L(f, P )− L(g, P )| < ε/6. It follows that

|U(g, P )− L(g, P )| = |U(g, P )− U(f, P ) + U(f, P )− L(f, P )

+ L(f, P )− L(g, P )|
≤ |U(g, P )− U(f, P )|+ |U(f, P )− L(f, P )|

+ |L(f, P )− L(g, P )|
< ε/6 + ε/6 + ε/6

= ε/2.

< ε

At this point, we know by the ε-partition integrability condition that
g is integrable.

We now want to show that

∫ b

a
g =

∫ b

a
f . To do so, we show that

the difference between these values is less than every positive ε. We
let ε > 0 and then repeat the discussion above. Now consider the
difference

∣∣∣∣∣
∫ b

a

g −
∫ b

a

f

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

g − U(g, P ) + U(g, P )− U(f, P ) + U(f, P )−
∫ b

a

f

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

g − U(g, P )

∣∣∣∣∣+ |U(g, P )− U(f, P )|+

∣∣∣∣∣U(f, P )−
∫ b

a

f

∣∣∣∣∣
< ε/2 + ε/6 + ε/6

= 5ε/6

< ε.

Since

∣∣∣∣∫ b

a
g −

∫ b

a
f

∣∣∣∣ < ε for all ε > 0, these two integrals are equal.
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As a consequence of the previous theorems, we have:

Theorem 5.7.11. If f : [a, b] → R is piecewise integrable on [a, b],
then f is integrable [a, b]. �

This implies that if a function on a closed interval is bounded, and if
it is piecewise continuous or monotonic, then the function is integrable.
This accounts for most functions encountered in a basic calculus class.

Exercises 5.7
5.7.1 Use Theorem 5.7.4 to prove that f(x) = x3 is integrable on [1, 3].
5.7.2 Use Theorem 5.7.4 to prove that f(x) = x2 is integrable on
[−1, 1].
5.7.3 Define f : [0, 2]→ R by

f(x) =

{
1 0 ≤ x < 1

2 1 ≤ x ≤ 2

Prove that f is integrable on [0, 2].
5.7.4 Prove that if f : [a, b]→ R is decreasing, then f is integrable.
5.7.5 Suppose that f : [a, b] → R is continuous and integrable, that

f(x) ≥ 0 for all x ∈ R, and that

∫ b

a
f = 0. Prove that f(x) = 0 for all

x ∈ R.

5.7.6 Suppose that f : [0, 1]→ R is continuous and that

∫ x

0
f =

∫ 1

x
f

for all x ∈ (0, 1]. Prove that f(x) = 0 for all x ∈ [0, 1].
5.7.7 Let f : [a, b]→ R be bounded. Suppose that there are sequences
〈Un〉 and 〈Ln〉 of upper and lower sums for f so that lim(Un−Ln) = 0.

a. Prove that f is integrable on [a, b].

b. Prove that 〈Un〉 and 〈Ln〉 converge to a common limit L.

c. Prove that

∫ b

a
f = L.

5.7.8 Use monotonicity as in Examples 5.5.4 and 5.7.2 to prove that
f(x) = x5 is integrable on [0, 1].
5.7.9 Mimic Examples 5.5.6, 5.6.6, and 5.7.5 to prove that f(x) = x4

is integrable on [0, 1] and find the value of the integral.
5.7.10 Mimic Examples 5.5.6, 5.6.6, and 5.7.5 to prove f(x) = cos(x)
is integrable on [0, π/2] and find the value of the integral. (You may
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assume the standard properties of cos(x), but list what you actually
need to know about cos(x) to solve this problem.)

5.7.11 Suppose that f, g : [a, b]→ R are bounded. Define

Mf = sup{f(x) : x ∈ [a, b]}

Mg = sup{g(x) : x ∈ [a, b]}

Mf+g = sup{f(x) + g(x) : x ∈ [a, b]}.

Prove that Mf+g ≤Mf +Mg.

5.7.12 Suppose that f : [a, b]→ R is bounded. Define

Mf = sup{f(x) : x ∈ [a, b]}

M |f | = sup{|f(x)| : x ∈ [a, b]}

mf = inf{f(x) : x ∈ [a, b]}

m|f | = inf{|f(x)| : x ∈ [a, b]}

Prove that M |f | −m|f | ≤Mf −mf .

5.8 Algebraic Properties of the Integral

The integral satisfies many algebraic properties that simplify the pro-
cess of finding integrals. We prove enough of them here to get us
through the Fundamental Theorem of Calculus. The first two theorems
show that the integral interacts nicely with some arithmetic operations.
To prove the first, we need to recall (from Exercise 1.6.16) that for any
bounded set A and for any k > 0

sup{kx : x ∈ A} = k sup{x : x ∈ A} = k supA

and

inf{kx : x ∈ A} = k inf{x : x ∈ A} = k inf A.

On the other hand, if k < 0, then

sup{kx : x ∈ A} = k inf{x : x ∈ A} = k inf A

and

inf{kx : x ∈ A} = k sup{x : x ∈ A} = k supA.
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Theorem 5.8.1. If f : [a, b] → R is integrable and k ∈ R, then kf is

integrable on [a, b] and

∫ b

a
(kf) = k

∫ b

a
f .

Proof. If k = 0, then kf = 0 is integrable by Example 5.6.4 and∫ b

a
(0f) = 0 = 0

∫ b

a
f . Suppose then that k > 0. The case when k < 0

will be left as an exercise. Let P = {a = x0 < x1 < · · · < xn = b} be
any partition of [a, b]. We will prove that U(kf, P ) = kU(f, P ). We
will use the standard notation for partitions, except that we will use
superscripts (such as Mk

i and mk
i ) to indicate when we are addressing

kf rather than f . Note that by the discussion above, since k > 0, then
Mk
i = kMi and mk

i = kmi. Then

U(kf, P ) =
n∑

i=1

Mk
i ∆xi

=
n∑

i=1

kMi∆xi

= k

n∑
i=1

Mi∆xi

= kU(f, P ).

Since U(kf, P ) = kU(f, P ) for all partitions P , then∫ b

a
(kf) = inf{U(kf, P ) : P a partition of [a, b]}

= inf{kU(f, P ) : P a partition of [a, b]}
= k inf{U(f, P ) : P a partition of [a, b]}

= k

∫ b

a
f.

We can similarly show that

∫ b

a
(kf) = k

∫ b

a
f . Since f is integrable, we

now have ∫ b

a

(kf) = k

∫ b

a

f = k

∫ b

a

f =

∫ b

a

(kf)

so kf is integrable. The value of this integral is∫ b

a

(kf) = k

∫ b

a

f = k

∫ b

a

f.



139

We now address integrals of sums and differences.

Theorem 5.8.2. Suppose that f, g : [a, b] → R are integrable. Then
f + g and f − g are integrable on [a, b] and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g and

∫ b

a
(f − g) =

∫ b

a
f −

∫ b

a
g.

Proof. Let ε > 0. There are partitions P1 and P2 so that

U(f, P1)− L(f, P1) < ε/2 and U(g, P2)− L(g, P2) < ε/2.

Let P = P1 ∪ P2. Then

U(f, P )− L(f, P ) < ε/2 and U(g, P )− L(g, P ) < ε/2.

Assume that P = {a = x0 < x1 < · · · < xn = b}, and we will again
modify the standard notation with superscripts. Note that for each i,
Mf+g
i ≤Mf

i +Mg
i and that mf+g

i ≥ mf
i +mg

i (by Exercise 5.7.11). It
follows that

U(f + g, P ) =

n∑
i=1

Mf+g
i ∆xi

≤
n∑
i=1

(Mf
i +Mg

i )∆xi

=

n∑
i=1

Mf
i ∆xi +

n∑
i=1

Mg
i ∆xi

= U(f, P ) + U(g, P ).

Similarly, L(f + g, P ) ≥ L(f, P ) + L(g, P ). Then

U(f + g, P )− L(f + g, P ) ≤ [U(f, P ) + U(g, P )]− [L(f, P ) + L(g, P )]

= [U(f, P )− L(f, P )] + [U(g, P )− L(g, P )]

< ε/2 + ε/2

= ε.

By the ε-partition integrability condition, f + g is integrable.

To prove that

∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g, we will show that the

difference between these values is less than every positive ε. Let ε > 0
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and repeat the work we just performed to establish integrability. We
now have

[U(f, P ) + U(g, P )]− [L(f, P ) + L(g, P )] < ε

and

[L(f, P ) + L(g, P )] ≤
∫ b

a
f +

∫ b

a
g ≤ [U(f, P ) + U(g, P )]

and also

[L(f, P )+L(g, P )] ≤ L(f+g, P ) ≤
∫ b

a

(f+g) ≤ U(f+g, P ) ≤ [U(f, P )+U(g, P )].

Since

∫ b

a
f+

∫ b

a
g and

∫ b

a
(f+g) are both in an interval with width

less than ε, it follows that

∣∣∣∣∫ b

a
f +

∫ b

a
g −

∫ b

a
(f + g)

∣∣∣∣ < ε. Since this

is true for all ε > 0, then

∫ b

a
f +

∫ b

a
g =

∫ b

a
(f + g) as desired.

The work for differences now follows by noting that

f − g = f + [(−1)g]

and applying the theorems for constant multiples and sums.

We now turn from arithmetic operations to order relations. These
are the final ingredients that we will need to prove the Fundamental
Theorem of Calculus.

Lemma 5.8.3. If f : [a, b] → R is integrable and k ∈ R, so that

k ≤ f(x) for all a ∈ [a, b], then k(b− a) ≤
∫ b

a
f .

Proof. Consider the most trivial partition of [a, b]

P = {a = x0 < x1 = b}.

Using the standard notation, we see

k(b− a) ≤ m1(b− a) = L(f, P ).

Since k(b− a) is less than or equal to one lower sum, it is less than or

equal to the supremum of all lower sums, k(b− a) ≤
∫ b

a
f =

∫ b

a
f .
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Theorem 5.8.4. Suppose that f, g : [a, b]→ R are integrable and that

f(x) ≤ g(x) for all x ∈ [a, b]. Then

∫ b

a
f ≤

∫ b

a
g.

Proof. Let h(x) = g(x)−f(x). Then h(x) ≥ 0 for all x ∈ [a, b]. Also, by
Theorem 5.8.2, h is integrable on [a, b]. By Theorem 5.8.2 and Lemma
5.8.3 we now have∫ b

a
g −

∫ b

a
f =

∫ b

a
h ≥ 0(b− a) = 0.

It follows that

∫ b

a
g ≥

∫ b

a
f as desired.

Theorem 5.8.5. If f : [a, b]→ R is integrable then |f | is integrable on

[a, b] and

∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.

Proof. We first show that |f | is integrable. Let ε > 0. There is a
partition P = {a = x0 < x1 < · · · < xn = b} of [a, b] so that
U(f, P ) − L(f, P ) < ε. We again use the standard notation modi-

fied with superscripts. Note that for each i, M
|f |
i −m

|f |
i ≤ Mf

i −m
f
i

(by Exercise 5.7.12). Therefore

U(|f |, P )− L(|f |, P ) =
n∑
i=1

(M
|f |
i −m

|f |
i )∆xi

≤
n∑
i=1

(Mf
i −m

f
i )∆xi

= U(f, P )− L(f, P )

< ε.

By the ε-partition integrability condition, |f | is integrable on [a, b].

Since −|f | ≤ f ≤ |f |, Theorems 5.8.4 and 5.8.1 now give

−
∫ b

a
|f | =

∫ b

a
−|f | ≤

∫ b

a
f ≤

∫ b

a
|f |.

Thus,

∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f |.
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Exercises 5.8

5.8.1 Prove that

∫ b

a
(kf) = k

∫ b

a
f when k < 0.

5.8.2 Suppose that f : [a, b] → R is bounded and that |f(x)| < B for
all x ∈ [a, b].

a. Prove that

U(f2, P )− L(f2, P ) ≤ 2B[U(f, P )− L(f, P )]

for all partitions P of [a, b]. Hint: Difference of squares.

b. Prove that if f is integrable on [a, b], then f2 is also integrable on
[a, b].

5.8.3 Let f and g be integrable functions on an interval [a, b].

a. Prove that fg is integrable. Hint: Use that

4fg = (f + g)2 − (f − g)2.

b. Prove that max(f, g) and min(f, g) are integrable on [a, b].

5.8.4 Prove that if h is continuous on [a, b] and

∫ b

a
h = 0 then there is

some x ∈ [a, b] with h(x) = 0.
5.8.5 Suppose that f and g are continuous on [a, b] and that∫ b

a
f =

∫ b

a
g.

Prove that there exists x ∈ [a, b] with f(x) = g(x).

5.9 The Fundamental Theorem of Calculus

There are two related theorems that are graced with the title “Funda-
mental Theorem of Calculus.” One theorem is an evaluation theorem
which allows one to evaluate integrals by doing derivatives backwards.
The other theorem declares that the derivative of an integral is the
original function. These theorems are frequently numbered I and II or
called “First” and “Second,” but the order varies from text to text.
We will avoid such terminology because we do not wish to imply some
philosophy that holds one of the theorems above the other. In the end
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though, one theorem has to be printed first. We choose to present first
the theorem with the simpler proof.

We begin by defining some notation which will simplify our argu-
ments by allowing us to be slightly less careful with the order of the
endpoints of intervals.

Definition 5.9.1. If f is a function defined at a real number a, then∫ a

a
f = 0.

Suppose that a < b in R and that f : [a, b]→ R is integrable. Then∫ a

b
f = −

∫ b

a
f.

This notation allows some of the results of the previous sections to

be extended to integrals of the form

∫ b

a
f where we do not know which,

if either, of a and b is larger. In particular, this notation allows us the
following extension of Theorem 5.7.9.

Theorem 5.9.2. Suppose that f is integrable on an interval containing

a, b, and c. Then

∫ c

a
f =

∫ b

a
f +

∫ c

b
f . �

In the first version of the Fundamental Theorem of Calculus that
we will encounter, we will refer to a function defined on (a, b) being
integrable on [a, b]. Here is the definition of this notion.

Definition 5.9.3. Suppose that f : (a, b)→ R is a bounded function.
We say that f is integrable on [a, b] if an extension of f to [a, b] is
integrable. Note that by Theorem 5.7.10 the values at the endpoints
really are irrelevant, so this means that every extension of f to [a, b] is
integrable (and the integrals are all equal).

Now we finally approach one of the Fundamental Theorems of Cal-
culus. Before addressing this Theorem, you might want to review Ex-
amples 5.5.6, 5.6.6, and 5.7.5.

Theorem 5.9.4. (Fundamental Theorem of Calculus) Suppose
that f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b). If
f ′ is integrable on [a, b], then∫ b

a
f ′ = f(b)− f(a).
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Proof. We will prove that f(b) − f(a) is between every pair of upper
and lower sums and then apply Theorem 5.7.3. Let

P = {a = x0 < x1 < · · · < xn = b}

be any partition of [a, b]. We use the standard notation for partitions.
Apply the Mean Value Theorem on each interval [xi−1, xi] to find some
ti ∈ (xi−1, xi) so that

f ′(ti) =
f(xi)− f(xi−1)

xi − xi−1
.

It follows that f ′(ti)∆xi = f(xi)− f(xi−1). Now

f(b)− f(a) =
n∑
i=1

(f(xi)− f(xi−1)) =
n∑
i=1

f ′(ti)∆xi.

Since mi ≤ f(ti) ≤Mi for each i, we have

L(f ′, P ) =

n∑
i=1

mi∆xi ≤
n∑
i=1

f ′(ti)∆xi ≤
n∑
i=1

Mi∆xi = U(f ′, P ).

Therefore

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P ).

Since this is true for all partitions P , and since f ′ is integrable, Theorem
5.7.3 now tells us that ∫ b

a
f ′ = f(b)− f(a).

Example 5.9.5. In Example 5.1.1 we attempted to calculate

∫ 1

−1
f

where f : [−1, 1]→ R is given by f(x) = 1− x2. It happens to be that

f is the derivative of g(x) = x− 1

3
x3. Therefore,

∫ 1

−1
f = g(1)− g(−1) =

(
1− 1

3

)
−
(
−1 +

1

3

)
=

4

3
.

This agrees with our work in Example 5.1.1
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Theorem 5.9.6. (Fundamental Theorem of Calculus) Suppose
that f : [a, b] → R is integrable on [a, b] and that F : [a, b] → R is
defined by

F (x) =

∫ x

a
f.

Then F is continuous on [a, b]. If f is continuous at z ∈ (a, b), then F
is differentiable at z and F ′(z) = f(z).

Figure 5.8: If f ≥ 0, then the function F in Theorem 5.9.6 gives the
area under f between a and x. If f is actually a velocity function, then
F gives displacement (which is the same as distance if f ≥ 0).

Proof. First we prove that F is (uniformly) continuous on [a, b]. Let
ε > 0. Let M > 0 be an upper bound of |f | on [a, b]. Let 0 < δ < ε/M .
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Suppose that x < y ∈ [a, b] with |x− y| < δ. Then

|F (y)− F (x)| =
∣∣∣∣∫ y

a
f −

∫ x

a
f

∣∣∣∣
=

∣∣∣∣∫ y

a
f +

∫ a

x
f

∣∣∣∣
=

∣∣∣∣∫ y

x
f

∣∣∣∣
≤
∫ y

x
|f |

≤
∫ y

x
M

= M(y − x)

< Mδ

< Mε/M

= ε.

Thus F is uniformly continuous on [a, b].

Now suppose that f is continuous at z ∈ (a, b). We will prove that
F is differentiable at z and that F ′(z) = f(z). We do so applying the
definition of the limit to the definition of the derivative. Let ε > 0.
There is a δ so that if x ∈ [a, b] and |x− z| < δ then |f(x)− f(z)| < ε.
Suppose that x ∈ [a, b] and that 0 < |x− z| < δ. We will show that

∣∣∣∣F (x)− F (z)

x− z
− f(z)

∣∣∣∣ < ε.

There are two cases, either x < z or z < x. We will address the case
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when x < z. In this case

F (x)− F (z)

x− z
=

1

x− z

(∫ x

a
f −

∫ z

a
f

)
=

1

x− z

(∫ x

a
f +

∫ a

z
f

)
=

1

x− z

∫ x

z
f

=
1

x− z

(
−
∫ z

x
f

)
=

1

z − x

∫ z

x
f

In the next part of the proof, we will use a trick to combine a constant

f(z) into an integral. Since f(z) is constant,

∫ z

x
f(z) = (z − x)f(z).

Dividing gives f(z) =
1

z − x

∫ z

x
f(z). Now consider∣∣∣∣F (x)− F (z)

x− z
− f(z)

∣∣∣∣ =

∣∣∣∣( 1

z − x

∫ z

x
f

)
− f(z)

∣∣∣∣
=

∣∣∣∣( 1

z − x

∫ z

x
f

)
−
(

1

z − x

∫ z

x
f(z)

)∣∣∣∣
=

∣∣∣∣ 1

z − x

∫ z

x
[f − f(z)]

∣∣∣∣
≤ 1

|z − x|

∫ z

x
|f − f(z)|

Now, since |x − z| < δ, then |f − f(z)| < ε on the interval [x, z]. It
follows that ∣∣∣∣F (x)− F (z)

x− z
− f(z)

∣∣∣∣ ≤ 1

|z − x|

∫ z

x
|f − f(z)|

≤ 1

|z − x|

∫ z

x
ε

=
1

|z − x|
(z − x)ε

= ε.
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We have satisfied the definition of the limit that

lim
x→z

F (x)− F (z)

x− z
= f(z).

Thus, F ′(z) = f(z).

Exercises 5.9
5.9.1 Prove Theorem 5.9.2

5.9.2 Define f : R→ R by

f(x) =


0 x < 0

x 0 ≤ x ≤ 1

4 1 < x

a. Find the function F (x) =

∫ x

0
f .

b. Sketch the graph of F . Where is F continuous?

c. Where is F differentiable? Find F ′.

5.9.3 Let f : R→ R be the greatest integer function.

a. Find the function F (x) =

∫ x

0
f .

b. Sketch the graph of F . Where is F continuous?

c. Where is F differentiable? Find F ′.

5.9.4 Define f : R→ R by

f(x) =


0 x < 0

x2 + 1 0 ≤ x ≤ 2

0 2 < x

a. Find the function F (x) =

∫ x

0
f .

b. Sketch the graph of F . Where is F continuous?

c. Where is F differentiable? Find F ′.
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5.9.5 Suppose that f : R→ R is continuous and define

F (x) =

∫ x+1

x−1
f

for all x ∈ R. Prove that F is differentiable on R and find F ′.
5.9.6 Suppose that g : [0, 1] → [0, 1] is a strictly increasing bijection.
Give a geometric argument for the equality∫ 1

0
g +

∫ 1

0
g−1 = 1.

5.9.7 Use Theorem 5.9.6 to prove Theorem 5.9.4 in the case when f ′

is continuous.
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Chapter 6

Series

6.1 Definitions and Basic Properties

First, an example:

Example 6.1.1. A man is asked to walk a mile. First, he walks half
a mile. Then, he walks half of the remaining distance, or a quarter of
a mile. Next, he walks half of the remaining distance, or one eighth of
a mile. He continues in this manner indefinitely, at each step walking
half the remaining distance. After n steps, he has walked

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n

miles. A quick induction argument shows that

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
= 1− 1

2n
.

The distances traveled by the man after n steps for some values of n
are:

n distance

1 1/2
2 3/4
3 7/8
4 15/16
5 31/32
6 63/64
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Even though the man does not ever reach a full mile, the fact that

lim

(
1− 1

2n

)
= 1 tells us that he does get arbitrarily close to a mile,

and if he could take infinitely many steps, maybe we could say the man
would reach one mile. In fact, we might want to write

1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1.

The topic of this section is this sort of infinite summation.

Definition 6.1.2. A series is a formal expression of the form

∞∑
k=m

ak

where is 〈ak〉 is any sequence defined for k ≥ m. This series may also
be written as

am + am+1 + am+2 + am+3 + · · ·

For integers n ≥ m, the nth partial sum of this series is

sn =

n∑
k=m

ak = am + am+1 + am+2 + am+3 + · · ·+ an.

Note that the partial sums of the series form a sequence 〈sn〉.

Remark 6.1.3. The initial value of the index (subscript) may vary
from series to series. We will write most of our theorems assuming the
initial value is k = 1. It should be clear though that the results hold
for other initial values.

Example 6.1.4. The sum discussed in Example 6.1.1 is the series
∞∑
k=1

1

2k
. Some partial sums of this series are listed in the table in that

example. Notice how these numbers seem to get closer and closer to 1
as n gets larger and larger. We will say that the series converges to 1.

Example 6.1.5. For the sum

∞∑
k=1

k, the partial sums look like

1 + 2 + · · ·+ n.

As n increases, these partial sums are unbounded, so the sequence of
partial sums cannot converge.
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Definition 6.1.6. Suppose that
∞∑
k=1

ak is any series and that 〈sn〉 is the

sequence of partial sums of that series. We say that

∞∑
k=1

ak converges

to a real number L if the sequence of partial sums 〈sn〉 converges to L.

In this case, we write
∞∑
k=1

ak = L. If a series does not converge, then

that series diverges.

Example 6.1.7. Consider the series

∞∑
k=1

1

k(k + 1)
=

1

2
+

1

6
+

1

12
+

1

20
+ · · ·

Some quick partial fractions work gives us that

1

k(k + 1)
=

1

k
− 1

k + 1

so
∞∑
k=1

1

k(k + 1)
=

∞∑
k=1

(
1

k
− 1

k + 1

)
.

This makes it easy to calculate partial sums. For any n

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

(
1

n
− 1

n+ 1

)
= 1 +

(
−1

2
+

1

2

)
+

(
−1

3
+

1

3

)
+ · · ·+

(
− 1

n
+

1

n

)
− 1

n+ 1

= 1− 1

n+ 1
.

Now

lim sn = lim

(
1− 1

n+ 1

)
= 1

so our series converges to 1. We can write

∞∑
k=1

1

k(k + 1)
= 1.
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For the next example, we need to recall how to factor a difference
of nth powers. For any positive integer n,

1− rn+1 = (1− r)(1 + r + r2 + r3 + · · ·+ rn).

A consequence of this factoring is that

(1 + r + r2 + r3 + · · ·+ rn) =
1− rn+1

1− r
if r 6= 1.

Definition 6.1.8. A geometric series is a series of the form

a+ ar + ar2 + ar3 + · · · =
∞∑
k=0

ark

where a and r are real numbers with a 6= 0.

Theorem 6.1.9. (Geometric Series) Consider the geometric series

a+ ar + ar2 + ar3 + · · · =
∞∑
k=0

ark.

• If |r| < 1 then the series converges to
a

1− r
.

• If |r| ≥ 1 then the series diverges.

Proof. If r = 1, then the series is
∞∑
k=0

a, and its partial sums are given

by sn = (n+1)a. In this case, 〈sn〉 is unbounded and cannot converge.
Thus the series diverges.

Suppose now that r 6= 1. Then the partial sums of the geometric
series are given by

sn = a+ ar + ar2 + · · ·+ arn

= a(1 + r + r2 + · · ·+ rn)

= a
1− rn+1

1− r
.

It follows that if |r| < 1 then

lim sn =
a

1− r
.

In this case, the series converges to
a

1− r
. Otherwise, 〈sn〉 is un-

bounded and the series does not converge.
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Example 6.1.10. The series

∞∑
k=0

5

3n

is a geometric series with a = 5 and r =
1

3
. Since |r| < 1, the series

converges to
a

1− r
=

5

1− 1
3

=
15

2
.

Example 6.1.11. The series

∞∑
k=2

2 · 3k

4k+1

is also a geometric series. We can see the geometric nature of the series
if we rearrange things a bit:

∞∑
k=2

2 · 3k

4k+1
=
∞∑
k=2

2

4

3k

4k
=
∞∑
k=2

1

2

(
3

4

)k
.

Thus we have a geometric series with r =
3

4
. Such a series must

converge. However, we have to be careful before we use the geometric
series formula. The formula assumes that the first exponent on r in
the sum is 0. In our case, the first exponent is 2. We can rearrange
things a bit to make the first exponent 0:

∞∑
k=2

1

2

(
3

4

)k
=

1

2

(
3

4

)2

+
1

2

(
3

4

)3

+
1

2

(
3

4

)4

+
1

2

(
3

4

)5

+ · · ·

=
1

2

(
3

4

)2

+
1

2

(
3

4

)2(3

4

)1

+
1

2

(
3

4

)2(3

4

)2

+ · · ·

=
9

32
+

9

32

(
3

4

)1

+
9

32

(
3

4

)2

+
9

32

(
3

4

)3

+ · · ·

This is now a geometric series with a =
9

32
and r =

3

4
. It converges to

a

1− r
=

9
32

1− 3
4

=
9

8
.
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Suppose that
∞∑
k=1

ak is any convergent series and that 〈sn〉 is its

sequence of partial sums. There is some number L so that lim sn = L.
It is also the case that lim sn−1 = L. Therefore,

lim an = lim(sn − sn−1) = lim sn − lim sn−1 = L− L = 0.

That is, the terms of any convergent series must converge to 0. The
contrapositive of this statement can be useful to identify some series
as divergent:

Theorem 6.1.12. (Term Test for Divergence) If lim ak 6= 0 then
∞∑
k=1

ak diverges. �

Example 6.1.13. Consider the series
∞∑
k=1

n+ 1

n
. Since

lim
n+ 1

n
= 1 6= 0

the series diverges by the Term Test.

For series whose terms are not negative, convergence is equivalent
to being bounded. Suppose that ak ≥ 0 for all k and let 〈sn〉 be the

sequence of partial sum of

∞∑
k=1

ak. For any n, because an is not negative,

sn+1 = sn + an+1 ≥ sn. Thus 〈sn〉 is an increasing sequence. Such a
sequence converges if and only if it is bounded.

Theorem 6.1.14. If ak ≥ 0 for all k, then

∞∑
k=1

ak converges if and

only if its sequence of partial sums is bounded.

As a result, convergence for series of nonnegative terms reduces to
a discussion of “bigness” and “smallness.” For the series to converge,
the partial sums must stay small (bounded). For the series to diverge,
the partial sums must get large (unbounded).
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Before we can address the next example, we need to consider the

integral

∫ n

1

1

xp
dx for various values of p. It is not hard to see that:

∫ n

1

1

xp
dx =


1

1− p
(
n1−p − 1

)
p < 1

ln(n) p = 1
1

p− 1

(
1− 1

np−1

)
p > 1

Consider the sequence 〈In〉 given by In =

∫ n

1

1

xp
dx. In every case,

〈In〉 is an increasing sequence. The sequence is unbounded if p ≤ 1

and converges to
1

1− p
if p > 1.

Theorem 6.1.15. (p-series) The p-series

∞∑
k=1

1

kp
=

1

1p
+

1

2p
+

1

3p
+ · · ·

converges if p > 1 and diverges if p ≤ 1.

Proof. Let 〈In〉 be as in the discussion before the theorem, and let 〈sn〉
be the sequence of partial sums of the series in question. If p ≤ 0, then
the terms of the series do not converge to 0, so the series diverges by

the Term Test. Suppose then that p > 0. Let f(x) =
1

xp
. Consider

the regular partition P of [1, n+ 1] with ∆x = 1. We will consider the
upper sum associated to f and the partition P . See Figure 6.1. Since
f is decreasing, f has a maximum value at the left hand enpoint of
each interval in the partition. Therefore,

In+1 =

∫ n+1

1

1

xp
dx

≤ U(f, P )

= f(1)∆x+ f(2)∆x+ · · ·+ f(n)∆x

=
1

1p
+

1

2p
+

1

3p
+ · · ·+ 1

np

= sn

so In+1 ≤ sn.
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Figure 6.1: The integral of f over [1, n+ 1] is less than the upper sum
of f which is f(1) + f(2) + · · ·+ f(n).

Figure 6.2: The integral of f over [1, n] is greater than the lower sum
of f which is f(2) + f(3) + · · ·+ f(n).
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Now suppose that P is the regular partition of [1, n] with ∆x = 1.
We will consider the lower sum associated to f and the partition P .
See Figure 6.2. Since f is decreasing, f has a minimum value at the
right hand endpoint of each interval of the partition. Therefore,

In =

∫ n

1

1

xp
dx

≥ L(f, P )

= f(2)∆x+ f(3)∆x+ · · ·+ f(n)∆x

=
1

2p
+

1

3p
+

1

4p
+ · · ·+ 1

np

= sn −
1

1p

so In ≥ sn − 1 or sn ≤ 1 + In.
We now have that In+1 ≤ sn ≤ 1 + In. Suppose now that p ≤ 1.

Then we know that the sequence 〈In+1〉 is unbounded, so the sequence
〈sn〉 of partial sums must be unbounded and cannot converge. In this
case, the series in question must diverge. On the other hand, suppose
that p > 1. This means that the sequence 〈In〉 must converge and
must be bounded. Therefore, the sequence 〈sn〉 of partial sums is also
bounded. Now the sequence 〈sn〉 is increasing (since we are adding only
positive terms), so 〈sn〉 is a bounded increasing sequence. As such, 〈sn〉
must converge, so the series converges.

Example 6.1.16. Harmonic Series The harmonic series is the p-
series

∞∑
k=1

1

k
.

This series diverges, but it does so very slowly. Here are decimal ap-
proximations of a few partial sums of the series:

n sn
10 2.93
100 5.19
1000 7.49
10000 9.79

Example 6.1.17. The p-series
∞∑
k=1

1

k2
converges. It happens to con-

verge to
π2

6
. Values of the summations of p-series for even p are known.
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The value even for p = 3 is unknown.

Convergent sequence can be combined algebraically to form new
convergent sequences.

Theorem 6.1.18. Suppose that
∞∑
k=1

ak converges to L, that
∞∑
k=1

bk con-

verges to M , and that c ∈ R.

1.
∞∑
k=1

(cak) converges to cL.

2.
∞∑
k=1

(ak + bk) converges to L+M .

3.
∞∑
k=1

(ak − bk) converges to L−M .

We express (1) in this theorem by saying we can factor a constant

out of a series. We may even write
∞∑
k=1

(cak) = c
∞∑
k=1

ak. We may express

(2) as
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk.

Proof. We will prove (1). The other parts are left as exercises. Let 〈sn〉

be the sequence of partial sums of

∞∑
k=1

ak, and let 〈tn〉 be the sequence

of partial sums of
∞∑
k=1

(cak). Note that for any n we have

tn = ca1 + ca2 + · · ·+ can = c(a1 + a2 + · · ·+ an) = csn.

It follows that

lim tn = lim csn = cL

so that

∞∑
k=1

(cak) converges to cL.
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Example 6.1.19. Consider the series

∞∑
k=0

2k − 1

3k4k+1
.

We can break the terms of this series into two fractions like so:

∞∑
k=0

2k − 1

3k4k+1
=
∞∑
k=0

(
2k

3k4k+1
− 1

3k4k+1

)
.

When we do so, it looks like we are addressing the difference of two
geometric series:

∞∑
k=0

(
2k

3k4k+1
− 1

3k4k+1

)
=
∞∑
k=0

2k

3k4k+1
−
∞∑
k=0

1

3k4k+1
.

We can manipulate these two geometric series to make the values of a
and r more explicit:

∞∑
k=0

2k

3k4k+1
−
∞∑
k=0

1

3k4k+1
=
∞∑
k=0

1

4

(
2

12

)k
−
∞∑
k=0

1

4

(
1

12

)k
.

In both cases, |r| < 1 so the series converge. Using the geometric series
formula we have:

∞∑
k=0

1

4

(
2

12

)k
−
∞∑
k=0

1

4

(
1

12

)k
=

1
4

1− 1
6

−
1
4

1− 1
12

=
3

110
.

Remark 6.1.20. Notice that our work in this last example is back-
wards. We cannot apply Theorem 6.1.18 to decompose a series alge-
braically into smaller series until we already know the smaller series
converge. If we had gone through all of this work only to find a smaller
series that diverged, then our results would in most cases be inconclu-
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sive. Our work for this problem should probably look like this:

3

110
=

1
4

1− 1
6

−
1
4

1− 1
12

=

∞∑
k=0

1

4

(
2

12

)k
−
∞∑
k=0

1

4

(
1

12

)k
=
∞∑
k=0

2k

3k4k+1
−
∞∑
k=0

1

3k4k+1

=
∞∑
k=0

(
2k

3k4k+1
− 1

3k4k+1

)

=
∞∑
k=0

2k − 1

3k4k+1

But almost no one does it that way.

Exercises 6.1
6.1.1 Find the sum of each of these series.

1.
∞∑
k=1

1

k2 + 2k

2.
∞∑
k=0

(−1)k

3k

3.

∞∑
k=2

3 · 4k+1

5k

4.
∞∑
k=0

2k − 3k

4k

5.

∞∑
k=0

6

4k2 − 1

6.

∞∑
k=1

(
1

2k
− 1

k2 + k

)
6.1.2 Determine if each of these series converges or diverges. Support
your answers.

1.

∞∑
k=0

cos(kπ/2)

2.

∞∑
k=0

2k − 1

3k

3.

∞∑
k=0

(
√

2)k

4.
∞∑
k=0

1

xk
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5.
∞∑
k=1

1√
k

6.
∞∑
k=0

e−k

7.

∞∑
k=1

(
k + 1

k

)k

8.

∞∑
k=1

(
1− 1

k

)k

9.
∞∑
k=1

(
√
k −
√
k + 1)

10.
∞∑
k=1

3 + k

k3

11.
∞∑
k=0

k!

2k

12.

∞∑
k=0

cos(kπ)

2k

6.1.3 Prove part (2) of Theorem 6.1.18

6.1.4 Suppose that
∞∑
k=1

ak is any series and c is a nonzero real number.

Prove that
∞∑
k=1

ak diverges if and only if

∞∑
k=1

cak diverges.

6.1.5 Provide an induction argument for

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
= 1− 1

2n
.

6.1.6 Suppose that 0 ≤ ak ≤ bk for all k, that

∞∑
k=1

ak converges to A,

and that

∞∑
k=1

bk converges to B. Prove that A ≤ B.

6.1.7 The method of proof of Theorem 6.1.15 hints at a more general
test for convergence. State and prove this test.
6.1.8 Use the theorem you stated in Exercise 6.1.7 to determine the

values of p for which the series

∞∑
k=2

1

k(ln k)p
converges.

6.1.9 We will need a couple of common limits in this chapter that we
have not yet encountered. We derive them in this exercise.

1. For k ≥ 1, let xk = k1/k − 1. Solve for k in this expression and

use the Binomial Theorem to prove that

(
k
2

)
x2
k ≤ k for k ≥ 2

2. Use the previous result to conclude that limxk = 0.
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3. Use the previous result to find lim k1/k.

4. Use the Squeeze Theorem to find lim a1/k where a > 1.

5. Use the previous result to find lim a1/k where 0 < a < 1.

6.1.10 We prove that the function f : R → R given by f(x) = 2x

is continuous. Suppose that x ∈ R and that 〈xn〉 is any sequence
converging to x. We need to prove that the sequence 〈2xn〉 converges
to 2x. Let ε > 0.

1. Explain why there is an N > 0 so that if n > N then∣∣∣21/n − 1
∣∣∣ < ε

2x
.

2. Explain why there is an M so that if n > M then

|xn − x| <
1

N
.

3. Suppose that n is greater than N and M . Explain why

|2xn − 2x| < ε.

Hint: |2xn − 2x| = 2x
∣∣2xn−x − 1

∣∣.
6.2 Tests for Convergence

In general, it is very difficult to tell what the limit of a convergent
series is. Geometric series and telescoping series are very special series
in this regard. Usually, the question facing us for a series is not what
the limit is but whether or not the series converges. In this section, we
develop some basic tests for convergence of series.

Since the convergence of a series with nonnegative terms reduces
to the question of boundedness of the sequence of partial sums, we
first define a notion relating the convergence of a generic series to the
convergence of a series of nonnegative terms.

Definition 6.2.1. A series

∞∑
k=1

ak converges absolutely if the series

∞∑
k=1

|ak| converges. A series

∞∑
k=1

ak converges conditionally if the series

∞∑
k=1

ak converges but the series

∞∑
k=1

|ak| diverges.
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We will see in a little while that if a series is absolutely convergent,
then it is convergent. In an absolutely convergent series, the signs of the
terms do not affect convergence of the series (although they will affect
the limit if the series does converge). In a conditionally convergent
series, the signs of the terms do affect convergence of the series.

Example 6.2.2. Consider the series
∞∑
k=1

(−1)k

k2
. Since

∞∑
k=1

1

k2
is a con-

vergent p-series, we know that
∞∑
k=1

∣∣∣∣(−1)k

k2

∣∣∣∣ converges, so
∞∑
k=1

(−1)k

k2

converges absolutely.

Example 6.2.3. Consider the series

∞∑
k=1

(−1)k

k
. Since

∞∑
k=1

1

k
is a di-

vergent p-series, we know that
∞∑
k=1

(−1)k

k
does not converge absolutely.

However, we will learn below (after the Alternating Series Test) that
∞∑
k=1

(−1)k

k
does converge. Since this series is convergent but not abso-

lutely convergent, it is conditionally convergent.

Theorem 6.2.4. (Direct Comparison Test) Suppose that
∞∑
k=1

ak is

a series of nonnegative terms and that
∞∑
k=1

bk is any series.

• If

∞∑
k=1

ak converges and |bk| ≤ ak for all k, then

∞∑
k=1

bk converges

absolutely.

• If

∞∑
k=1

ak diverges and ak ≤ bk for all k, then

∞∑
k=1

bk diverges.

Proof. Suppose first that

∞∑
k=1

ak converges and |bk| ≤ ak for all k. Let

〈sn〉 be the sequence of partial sums for

∞∑
k=1

ak and let 〈tn〉 be the
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sequence of partial sums for
∞∑
k=1

|bk| (note the absolute values). Since

ak ≥ 0 and |bk| ≥ 0 for all k, 〈sn〉 and 〈tn〉 are increasing sequences.
Since 〈sn〉 converges, 〈sn〉 is bounded. Since |bk| ≤ ak for all k, we
know that tn ≤ sn for all n. This implies that 〈tn〉 is also bounded.

As a bounded increasing sequence, 〈tn〉 must converge. Hence,

∞∑
k=1

|bk|

converges, so
∞∑
k=1

bk converges absolutely.

Now suppose that

∞∑
k=1

ak diverges and ak ≤ bk for all k. Again,

let 〈sn〉 be the sequence of partial sums for

∞∑
k=1

ak and let 〈tn〉 be the

sequence of partial sums for
∞∑
k=1

bk (note the lack of absolute values).

Since 0 ≤ ak ≤ bk for all k, we know that that sn ≤ tn for all n. Since
∞∑
k=1

ak diverges, 〈sn〉 diverges. As a divergent increasing sequence, 〈sn〉

must be unbounded. Since sn ≤ tn for all n, the sequence 〈tn〉 is also

unbounded and cannot converge. Thus

∞∑
k=1

bk diverges.

Remark 6.2.5. Note in the Comparison Test, we do not really need
that |bk| ≤ ak for all k. We just need this inequality to hold eventually.
That is, we only need that |bk| ≤ ak for all k ≥ N for some N . This is
enough to bound the partial sums since the first few terms of the series
cannot affect whether or not the partial sums are bounded.

We commented above that convergence of nonnegative series amounts

to a consideration of “bigness.” In the Comparison Test, if
∞∑
k=1

ak con-

verges, then the partial sums of the series stay small. If |bk| ≤ ak, then

the partial sums of
∞∑
k=1

|bk| must also stay small. If

∞∑
k=1

ak diverges,

then the partial sums get large. If ak ≤ bk then the partial sums for
∞∑
k=1

bk are even larger.
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We can use the Comparison Test to prove that absolutely conver-
gent series are convergent.

Theorem 6.2.6. If

∞∑
k=1

ak converges absolutely, then

∞∑
k=1

ak converges.

Proof. Suppose that

∞∑
k=1

ak converges absolutely. For every k, we know

−|ak| ≤ ak ≤ |ak|.

Adding |ak| gives
0 ≤ ak + |ak| ≤ 2|ak|.

Now, since

∞∑
k=1

|ak| converges, Theorem 6.1.18 tells us that

∞∑
k=1

2|ak| also

converges. The Comparison Test tells us that

∞∑
k=1

(ak + |ak|) converges

absolutely. However, for all k, ak + |ak| ≥ 0 so this really means

that
∞∑
k=1

(ak + |ak|) converges. (The absolute values do not matter for

nonnegative terms.)

We now know that

∞∑
k=1

|ak| and

∞∑
k=1

(ak + |ak|) both converge. By

Theorem 6.1.18 again, we know that their difference converges. But
their difference is:

∞∑
k=1

(ak + |ak|)−
∞∑
k=1

|ak| =
∞∑
k=1

(ak + |ak| − |ak|) =

∞∑
k=1

ak.

Thus
∞∑
k=1

ak converges.

Example 6.2.7. Consider the series

∞∑
k=1

2k

5k + k5
. Since 5k + k5 > 5k,

we know that
2k

5k + k5
<

2k

5k
=

(
2

5

)k
. Since

∞∑
k=1

(
2

5

)k
is a convergent

geometric series, the series

∞∑
k=1

2k

5k + k5
converges (absolutely, but the

series is positive) by the Direct Comparison Test.
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Example 6.2.8. Consider the series
∞∑
k=2

1

2k − 1
. Since 2k − 1 < 2k,

we know that
1

2k − 1
>

1

2k
. The series

∞∑
k=2

1

2k
is a constant multiple

of (part of) the Harmonic Series. As such,

∞∑
k=2

1

2k
diverges. By the

Direct Comparison Test,

∞∑
k=2

1

2k − 1
must also diverge.

Example 6.2.9. Consider the series

∞∑
k=2

k2

k3 − 1
. Since k3−1 < k3, we

have
k2

k3 − 1
>
k2

k3
=

1

k
. Since

∞∑
k=2

1

k
is a divergent p-series,

∞∑
k=2

k2

k3 − 1

diverges by the Direct Comparison Test.

Example 6.2.10. Consider the series

∞∑
k=1

sin(k)

k2
. Since | sin(k)| ≤ 1

for all k, we know that

∣∣∣∣sin(k)

k2

∣∣∣∣ ≤ 1

k2
for all k. Since

∞∑
k=1

1

k2
is a

convergent p-series, the series
∞∑
k=1

sin(k)

k2
converges absolutely.

Example 6.2.11. Consider the series

∞∑
k=2

1

k2 − 1
. Since k2 − 1 < k2,

we know that
1

k2 − 1
>

1

k2
. But wait!

∞∑
k=2

1

k2
converges, so all we

know about the series in question is that it is larger than a convergent
series. It may converge, and it may diverge. This inequality is facing
the wrong direction. The comparison test gives us no information in
this case.

Example 6.2.12. Consider the series

∞∑
k=1

3k

2k + k2
. When we try the

Direct Comparison Test, we see that
3k

2k + k2
<

3k

2k
. The series

∞∑
k=1

3k

2k
is

a divergent geometric series. Again, our inequality is facing the wrong
direction to continue with the Direct Comparison Test.
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As the previous two examples indicate, the Direct Comparison Test
does not always work out quite the way we want it to. We have the
following adaptation of the Comparison Test that often works when
Direct Comparison does not.

Theorem 6.2.13. (Limit Comparison Test) Suppose that

∞∑
k=1

ak

and

∞∑
k=1

bk are series of positive terms. If lim
ak
bk

exists and is not 0,

then

∞∑
k=1

ak and

∞∑
k=1

bk both converge or both diverge.

Proof. Let c = lim
ak
bk

. We apply the definition of convergence of a

sequence with ε = c/2 (which must be positive). There is a real number

N so that for all integers k > N we have

∣∣∣∣akbk − c
∣∣∣∣ < c

2
. For k > N this

implies that

− c
2
<
ak
bk
− c < c

2
.

Adding c gives
c

2
<
ak
bk

<
3c

2
.

This then implies that for k > N

c

2
bk < ak <

3c

2
bk.

Now, if

∞∑
k=1

bk converges, then

∞∑
k=1

3c

2
bk converges. In this case,

∞∑
k=1

ak

converges by the Direct Comparison Test. On the other hand, if

∞∑
k=1

bk

diverges, then

∞∑
k=1

c

2
bk diverges. In this case,

∞∑
k=1

ak diverges by the

Direct Comparison Test.

Example 6.2.14. Let us reconsider Example 6.2.11. Consider the

series
∞∑
k=2

1

k2 − 1
. The −1 on bottom is surely insignificant if k is large.
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Therefore, these terms are about the same size as
1

k2
. Therefore, we

do a Limit Comparison with
∞∑
k=1

1

k2
(a convergent p-series). We set up

the limit of the ratio of terms:

lim
1

k2−1
1
k2

= lim
k2

k2 − 1
= 1.

Since we arrived at a limit of 1, both series converge or both diverge.

Since the second series is a convergent p-series, the series
∞∑
k=2

1

k2 − 1
converges.

Example 6.2.15. We revisit the failed Direct Comparison in Example

6.2.12. Consider the series

∞∑
k=1

3k

2k + k2
. We deem the k2 on the bot-

tom to be a distraction. It is surely dominated by 2k as k gets large.

Therefore, we do a Limit Comparison with
∞∑
k=1

3k

2k
(which is a divergent

geometric series). We set up a limit of the ratio of the terms (it does
not matter which terms go on top):

lim

3k

2k+k2

3k

2k

= lim
3k2k

(2k + k2)3k
= lim

2k

2k + k2
.

A few applications of L’Hôpital’s Rule tell us that this limit is equal to

lim
2k

2k + k2
= lim

2k ln 2

2k ln 2 + 2k

= lim
2k ln 2 ln 2

2k ln 2 ln 2 + 2

= lim
2k ln 2 ln 2 ln 2

2k ln 2 ln 2 ln 2
= 1.

Since we arrived at a limit of 1, both series converge or both di-
verge. Since the second series is a divergent geometric series, the series
∞∑
k=1

3k

2k + k2
diverges.
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Let ak = ark for some real numbers r and a 6= 0. The series
∞∑
k=0

ak

is a geometric series. Notice that for all k,

ak+1

ak
= r = |ak|1/k .

This series converges if this common value is less than 1 and diverges if
it is greater than 1. Considering the same ratios and roots for general
series will allow us to compare many series to geometric series. This is
the basis for the next two theorems which are our two most powerful
tests for convergence.

Theorem 6.2.16. (Ratio Test) Suppose that
∞∑
k=1

ak is a series of

nonzero terms and that ρ = lim

∣∣∣∣ak+1

ak

∣∣∣∣ exists.

1. If ρ < 1 then
∞∑
k=1

ak converges.

2. If ρ > 1 then
∞∑
k=1

ak diverges.

3. If ρ = 1, then this test gives no information.

Proof. Suppose first that ρ = lim

∣∣∣∣ak+1

ak

∣∣∣∣ < 1. Let ρ < r < 1. By

the definition of convergence of a sequence, there must be some N so

that if k > N then

∣∣∣∣ak+1

ak

∣∣∣∣ < r. This implies that if k > N then

|ak+1| < r|ak|. Let M be the least integer greater than N . Then we
have these inequalities:

|aM+1| < r|aM |
|aM+2| < r|aM+1| < r2|aM |
|aM+3| < r|aM+2| < r3|aM |
|aM+4| < r|aM+3| < r4|aM |

...
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In general, |aM+k| < rk|aM | for k ≥ 1. Since 0 < r < 1, the series
∞∑
k=1

aM+k =
∞∑

k=M+1

ak converges absolutely by comparison with the

geometric series
∞∑
k=1

rk|aM |. Since the first M terms of a series cannot

affect convergence, this implies that
∞∑
k=1

ak converges absolutely.

Now suppose ρ = lim

∣∣∣∣ak+1

ak

∣∣∣∣ > 1. This proof is similar to the

previous, except we bound the ratios above 1 rather than below 1. Let
ρ > r > 1. By the definition of convergence of a sequence, there must

be some N so that if k > N then

∣∣∣∣ak+1

ak

∣∣∣∣ > r. This implies that if

k > N then |ak+1| > r|ak|. Let M be the least integer greater than N .
Then we have these inequalities:

|aM+1| > r|aM |
|aM+2| > r|aM+1| < r2|aM |
|aM+3| > r|aM+2| < r3|aM |
|aM+4| > r|aM+3| < r4|aM |

...

In general, |aM+k| > rk|aM | for k ≥ 1. Since r > 1, the series
∞∑
k=1

aM+k =

∞∑
k=M+1

ak diverges by comparison with the geometric series

∞∑
k=1

rk|aM |. Since the first M terms of a series cannot affect conver-

gence, this implies that

∞∑
k=1

ak diverges.

To demonstrate that the test gives no information if ρ = 1, we
simply note that the two series

∞∑
k=1

1

n
and

∞∑
k=1

1

n2

both have ρ = 1. However, the first diverges and the second converges.
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The Ratio Test can be particularly useful for series involving fac-
torials and exponents. When working with factorials, we will regularly
use the trick that (k + 1)! = (k + 1)k!.

Example 6.2.17. Consider the series
∞∑
k=1

(2k)!

(k!)2
. We apply the Ratio

Test. If ak =
(2k)!

(k!)2
, then ak+1 =

(2(k + 1))!

((k + 1)!)2
. Then

ρ = lim

∣∣∣∣ak+1

ak

∣∣∣∣
= lim

(2(k+1))!
((k+1)!)2

(2k)!
(k!)2

= lim
(2(k + 1))!

((k + 1)!)2

(k!)2

(2k)!

= lim
(2k + 2)!

(k + 1)!(k + 1)!

k!k!

(2k)!

= lim
(2k + 2)(2k + 1)(2k)!

(k + 1)k!(k + 1)k!

k!k!

(2k)!

= lim
(2k + 2)(2k + 1)

(k + 1)(k + 1)

= 4

Since ρ = 4 > 1 this series diverges.

Example 6.2.18. We apply the ratio test to the series

∞∑
k=1

2kk!

(2k)!
. If
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ak =
2kk!

(2k)!
then ak+1 =

2k+1(k + 1)!

(2(k + 1))!
. Calculating ρ gives

ρ = lim

∣∣∣∣ak+1

ak

∣∣∣∣
= lim

2k+1(k+1)!
(2(k+1))!

2kk!
(2k)!

= lim
2k2(k + 1)k!

(2k + 2)(2k + 1)(2k)!

(2k)!

2kk!

= lim
2(k + 1)

(2k + 2)(2k + 1)

= 0

Since ρ = 0, this series converges (absolutely, but the terms are posi-
tive).

Example 6.2.19. We apply the Ratio Test to the series

∞∑
k=0

1

2k+(−1)k
=

1

2
+

1

1
+

1

8
+

1

4
+

1

32
+ · · · .

For this series, ak =
1

2k+(−1)k
. If k is even, then k + 1 is odd and

ak+1

ak
=

1
2(k+1)−1

1
2k+1

=
2k+1

2(k+1)−1
=

2k+1

2k
= 2.

On the other hand, if k is odd, then k + 1 is even and

ak+1

ak
=

1
2(k+1)+1

1
2k−1

=
2k−1

2k+2
=

1

8
.

Since the sequence

〈∣∣∣∣ak+1

ak

∣∣∣∣〉 alternates between 2 and
1

8
, the limit

required by the Ratio Test cannot exist. The Ratio Test fails.
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Theorem 6.2.20. (Root Test) Suppose that
∞∑
k=1

ak is any series and

that ρ = lim |ak|1/k exists.

1. If ρ < 1 then

∞∑
k=1

ak converges.

2. If ρ > 1 then
∞∑
k=1

ak diverges.

3. If ρ = 1, then this test gives no information.

Proof. Suppose first that ρ = lim |ak|1/k < 1. Let ρ < r < 1. By the
definition of convergence of a sequence, there must be some N so that
if k > N then |ak|1/k < r. This implies that if k > N then |ak| < rk.

Since 0 < r < 1, the series
∞∑
k=1

ak converges absolutely by comparison

with the geometric series
∞∑
k=1

rk.

Now suppose that ρ = lim |ak|1/k > 1. Let ρ > r > 1. By the
definition of convergence of a sequence, there must be some N so that
if k > N then |ak|1/k > r. This implies that if k > N then |ak| > rk.

Since r > 1, the series

∞∑
k=1

ak diverges by comparison with the geometric

series

∞∑
k=1

rk.

The two examples from the proof of Theorem 6.2.16 demonstrate
that the Root Test can give no information if ρ = 1.

Example 6.2.21. We revisit Example 6.2.19 in which the Ratio Test
failed. The series in question is

∞∑
k=0

1

2k+(−1)k
=

1

2
+

1

1
+

1

8
+

1

4
+

1

32
+ · · · .

Using the ratio test yields:

ρ = lim |ak|1/k = lim

∣∣∣∣ 1

2k+(−1)k

∣∣∣∣1/k = lim

∣∣∣∣ 1

2(k+(−1)k)/k

∣∣∣∣ .
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The exponent on 2 in the last fraction is either
k + 1

k
or
k − 1

k
depend-

ing on whether k is even or odd. In both cases, as k increases, the

exponent approaches 1. Therefore, ρ =
1

2
. Since ρ < 1, this series

converges (absolutely).

The Root Test can be quite useful for series which involve expo-
nents.

Example 6.2.22. Consider the series

∞∑
k=1

(
1

k + 1

)2k

. Applying the

Root Test gives

ρ = lim |ak|1/k = lim

∣∣∣∣∣
(

1

k + 1

)2k
∣∣∣∣∣
1/k

= lim
1

(k + 1)2
= 0.

Since ρ < 1, The series converges (absolutely).

Example 6.2.23. Consider the series
∞∑
k=1

(−2)k

k2
. Applying the Root

Test gives

ρ = lim |ak|1/k = lim

∣∣∣∣(−2)k

k2

∣∣∣∣1/k = lim
2

(k1/k)2
= 2.

Since ρ > 1, The series diverges.

Theorem 6.2.24. (Alternating Series Test) Suppose that 〈ak〉 is

a decreasing sequence which converges to 0. The series

∞∑
k=0

(−1)kak

converges.

Proof. The situation described in this proof is depicted in Figure 6.3.

Let 〈sn〉 be the sequence of partial sums of

∞∑
k=0

(−1)kak. We consider

the even indexed terms s2n and the odd indexed terms s2n+1 of 〈sn〉
separately. Note that

s2n+3 = (a0 − a1 + a2 − a3 + · · ·+ a2n − a2n+1) + (a2n+2 − a2n+3)

= s2n+1 + (a2n+2 − a2n+3).
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Figure 6.3: The odd terms of 〈sn〉 form an increasing sequence which
approaches a limit L from the left. The even terms form a decreasing
sequence which approaches L from the right. Note that the distance
between any term sn and L is less than an+1.

Since 〈ak〉 is decreasing, (a2n+2 − a2n+3) ≥ 0. This means that for all
n we have s2n+1 ≤ s2n+3, so 〈s2n+1〉 is an increasing sequence. Also

s2n+1 = a0 − (a1 − a2)− (a3 − a4) + · · · − (a2n−1 − a2n)− a2n+1

Since the differences in parenthesis are nonnegative, s2n+1 ≤ a0 for all
n. Thus, 〈s2n+1〉 is an increasing sequence which is bounded above. As
such, 〈s2n+1〉 converges to a number L.

On the other hand, for all n ≥ 1, s2n = s2n−1 + a2n. Since
lim s2n−1 = L and lim an = 0, we have

lim s2n = lim s2n−1 + lim a2n = L+ 0 = L.

Since the odd terms of 〈sn〉 converge to L and the even terms also
converge, to L, we conclude that lim sn = L and that the series con-
verges.

Example 6.2.25. The Alternating Harmonic Series Since

〈
1

k

〉
is decreasing and converges to 0, the series

∞∑
k=1

(−1)k

k
converges by the

Alternating Series Test. Note that since

∞∑
k=1

1

k
diverges, the alternating

harmonic series converges conditionally. (If you are wondering, this
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series converges to ln(2). We will have tools to approach this limit
after our discussion of power series.)

Example 6.2.26. Consider the series
∞∑
k=1

(−k)k

k + 1
. The signs of this

series do alternate, however 〈|ak|〉 is unbounded, so the Alternating
Series Test does not apply. This series diverges by the Term Test.

Example 6.2.27. Consider the series
∞∑
k=1

cos(kπ)

k!
. The expression

cos(kπ) is just a fancy way of making the series alternate. The value of
cos(kπ) alternates between 1 and −1. The absolute values of the terms
decrease toward 0. This series converges by the Alternating Series Test.

Exercises 6.2
6.2.1 Determine if each of these series converges or diverges. Support
your answers.

1.
∞∑
k=1

2

k +
√
k

2.

∞∑
k=1

sin(k)

k3

3.

∞∑
k=0

(
k

2k + 1

)k

4.

∞∑
k=0

1

k!

5.

∞∑
k=1

1

k
√
k

6.
∞∑
k=0

2k + 3k

3k + 4k

7.

∞∑
k=0

k

2k

8.
∞∑
k=0

1

(k + 1)k

9.
∞∑
k=0

k!

(2k)!

10.
∞∑
k=1

(−1)k√
k

11.

∞∑
k=0

cos(kπ)√
k + 1

12.

∞∑
k=0

(k + 3)!

k! + 3!

13.

∞∑
k=1

e−kk−e

14.

∞∑
k=1

ek

ke
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6.2.2 Suppose that
∞∑
k=1

ak converges absolutely and that 〈bk〉 is bounded.

Prove that

∞∑
k=1

(akbk) converges absolutely.

6.2.3 Suppose that

∞∑
k=1

ak is a convergent series of nonnegative terms.

Prove that

∞∑
k=1

a2
k converges.

6.2.4 Suppose that 〈ck〉 is a decreasing sequence that converges to 0.

Let s be the sum of the series
∞∑
k=0

(−1)kck, and let 〈sn〉 be the sequence

of partial sums of this series. Derive from the proof of the Alternating
Series Test an upper bound for |sn − s|.

6.2.5 Suppose

∞∑
k=1

ak converges absolutely. Prove this infinite version

of the Triangle Inequality:∣∣∣∣∣
∞∑
k=1

ak

∣∣∣∣∣ ≤
∞∑
k=1

|ak|.

6.3 Power Series

We begin this section with an example that motivates the topic we are
about to study.

Example 6.3.1. Consider the geometric series

∞∑
k=0

xk which includes

a variable x. There are two obvious questions to ask about this series:

1. For which values of x does the series converge?

2. Where the series does converge, what does it converge to?

Our knowledge of geometric series allows us to answer these questions
quickly. The series converges exactly for those x with |x| < 1, and it

converges to
1

1− x
. Thus, we might write

1

1− x
=

∞∑
k=0

xk = 1 + x+ x2 + x3 + x4 + · · · for x ∈ (−1, 1).
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Thus, at least on the interval (−1, 1), we can replace the function
1

1− x
with the “infinite polynomial” 1 + x+ x2 + x3 + x4 + · · · . Polynomials
are easy to do calculus with. If these infinite versions of polynomials
are just as easy to do calculus with, then it may be that we can replace
some complicated functions with these special series in order to simplify
calculations.

Definition 6.3.2. A series of the form

∞∑
k=m

ckx
k = c0 + c1x+ c2x

2 + c3x
3 + · · ·

is a power series around 0.

Remark 6.3.3. In these sections we isolate our attention to power
series around 0. It should be noted that all of the results we approach
can easily be extended to power series around a for any real number a.
These power series look like:

∞∑
k=m

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

Example 6.3.4. Consider the power series
∞∑
k=0

k!xk. If x = 0, then

for k > 0 all of the terms of this series are 0, and the series converges
(this is common to all of the series that we will look at). On the other
hand, if x 6= 0, then the terms of this series are unbounded, so the
series diverges by the Term Test. This power series converges only for
x = 0.

Example 6.3.5. Consider the power series

∞∑
k=0

xk

k!
. To determine

where this power series converges, we apply the Ratio Test. First,

ρ = lim

∣∣∣∣∣∣
xk+1

(k+1)!

xk

k!

∣∣∣∣∣∣ = lim

∣∣∣∣ xk+1k!

(k + 1)k!xk

∣∣∣∣ = lim
x

k + 1
= 0.

Since ρ = 0 < 1 no matter what x is, this series converges for all x
by the Ratio Test. Moreover, because we are using the Ratio Test, the
series converges everywhere absolutely.
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Example 6.3.6. Consider the power series
∞∑
k=1

xk

k2k
. To determine

where this power series converges, we will apply the Root Test. First

ρ = lim

∣∣∣∣ xkk2k

∣∣∣∣1/k = lim
|x|
k1/k2

=
|x|
2
.

For this series to converge, we need ρ < 1. This happens if
|x|
2
< 1 or

if −2 < x < 2. On the interval (−2, 2) the series converges absolutely.
At x = ±2, ρ = 1, and the Root Test gives no information. We have

to consider these values of x separately. At x = 2, the series is

∞∑
k=1

1

k
,

which diverges. At x = −2, this series is
∞∑
k=1

(−1)k

k
, which converges.

Therefore, our original power series converges on the interval [−2, 2).

Example 6.3.7. Consider the power series

∞∑
k=1

xk

k
. We apply the Root

Test to determine where this series converges. First, we find ρ:

ρ = lim

∣∣∣∣xkk
∣∣∣∣1/k = lim

|x|
k1/k

= |x|.

The series converges absolutely when |x| = ρ < 1 – which is on the
interval (−1, 1). We consider the endpoints of this interval separately.

At x = 1, this series is

∞∑
k=1

1

k
. This is the harmonic series, which

diverges. At x = −1, the series is

∞∑
k=1

(−1)k

k
. This is the alternating

harmonic series, which converges. Our series converges for x in the
interval [−1, 1).

Notice in these examples each power series may converge every-
where, at a point, or on a bounded interval (which might be open,
closed, or half open and half closed). This is typical for power series.
We will prove this in the next theorem. First, we need a lemma.

Lemma 6.3.8. If the power series

∞∑
k=0

ckx
k converges for x = b 6= 0,

then the power series converges absolutely for all x with |x| < |b|.
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Proof. Since
∞∑
k=0

ckb
k converges, we know that lim

(
ckb

k
)

= 0. This

implies that there is a real number N so that if k > N then |ckbk| < 1.

Then |ck| <
1

|bk|
for k > N . Suppose now that |x| < |b|. Then

∣∣∣x
b

∣∣∣ < 1

so the geometric series

∞∑
k=0

∣∣∣x
b

∣∣∣k converges. Since |ck| <
1

|bk|
for k > N ,

then

|ckxk| = |ck||xk| <
|xk|
|bk|

=
∣∣∣x
b

∣∣∣k
for k > N . It follows that

∞∑
k=0

ckx
k converges absolutely by the Com-

parison Test.

Suppose now that

∞∑
k=0

ckx
k is any power series. Let S be the collec-

tion of x ∈ R for which the series converges absolutely. Note that S is
not empty since the power series converges absolutely at x = 0. It may
be that S is unbounded above. If this is the case, then it has to be that
S = R. To see this, suppose that a ∈ R. Since S is unbounded above,
there is a b ∈ S with |a| < b. Since b ∈ S, the series converges for
x = b. By the Lemma, the series must converge absolutely for x = a.
Thus, R ⊆ S ⊆ R so it must be that S = R.

It might also be that S is bounded above. By the Completeness
Axiom, R = supS exists in R. Since 0 ∈ S, R ≥ 0. If R = 0, then
the power series converges only at x = 0. Suppose that R > 0. We

claim that

∞∑
k=0

ckx
k converges absolutely for x = a where |a| < R and

diverges for x = b where |b| > R. Suppose that |a| < R. Then there is

a b ∈ S with |a| < b < R. Since b ∈ S,

∞∑
k=0

ckx
k converges at x = b. By

the Lemma, the series converges absolutely for x = a. Now suppose

by way of contradiction |b| > R and that

∞∑
k=0

ckx
k converges for x = b.

Since |b| > R, there is a real number a with R < a < |b|. By the

Lemma,

∞∑
k=0

ckx
k converges absolutely for x = a so a ∈ S. However,
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this contradicts the fact that R = supS. Thus, if |b| > R, then
∞∑
k=0

ckx
k

must diverge at x = b. Thus we have:

Theorem 6.3.9. Suppose that
∞∑
k=0

ckx
k is any power series. Exactly

one of these three statements is true:

1. The series converges only for x = 0.

2. There is a real number R > 0 so that the series converges abso-
lutely when |x| < R and diverges when |x| > R.

3. The series converges absolutely for all real numbers. �

Definition 6.3.10. In case (1) of Theorem 6.3.9 we say that the power
series has a radius of convergence of 0. In case (2), we say the series
has a radius of convergence R. In case (3), the radius of convergence of
the series is∞. In (2) and (3) the set of all x for which the power series
converges is called the interval of convergence of the power series.

Example 6.3.11. To find the radius and interval of convergence of a
power series, we first apply either the Root Test or Ratio Test. We
then check the endpoints individually.

1. In Example 6.3.1 the interval of convergence is (−1, 1). The ra-
dius of convergence is 1.

2. In Example 6.3.4 the radius of convergence is 0.

3. In Example 6.3.5 the interval of convergence is (−∞,∞). The
radius of convergence is ∞.

4. In Example 6.3.6 the interval of convergence is [−2, 2). The radius
of convergence is 2.

5. In Example 6.3.7 the interval of convergence is [−1, 1). The radius
of convergence is 1.
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Exercises 6.3
6.3.1 Find the interval of convergence of each of these power series.

1.
∞∑
k=1

(3x)k

k

2.

∞∑
k=1

xk

k33k

3.
∞∑
k=0

2kxk

k!

4.
∞∑
k=0

(−x)k√
k + 1

5.

∞∑
k=0

kxk

3k

6.
∞∑
k=0

kxk

k + 1

6.3.2 Find the interval of convergence of each of these power series.

1.

∞∑
k=0

(3x− 2)k 2.

∞∑
k=0

(x+ 1)k

2k

6.3.3 Suppose that

∞∑
k=0

ckx
k has a finite radius of convergence R, that

ck ≥ 0 for all k, and that the power series converges at x = R. Prove
that the power series converges also at x = −R.

6.3.4 Suppose that
∞∑
k=0

ckx
k is a power series so that lim

∣∣∣∣ck+1

ck

∣∣∣∣ and

lim |ck|1/k both exist. Prove these limits are equal.

6.4 Properties of Power Series

Consider the power series

∞∑
k=0

ckx
k. On the interior of its interval of

convergence, this power series converges to a nice function which we
will call f for this discussion. It is continuous (and, hence, integrable
on bounded intervals) and differentiable. Moreover, derivatives and
integrals of power series are as easy to compute as derivatives and
integrals of polynomials. In this section, we prove that if

f(x) =
∞∑
k=0

ckx
k
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then on the interior of its interval of convergence f(x) is continuous
and differentiable and

f ′(x) =
∞∑
k=1

kckx
k−1.

We will call this series the term-by-term derivative of f(x). Moreover,
on the interior of the interval of convergence of f(x) this power series

∞∑
k=0

ck
k + 1

xk+1

converges to a function whose derivative is f(x). We will call this series
the term-by-term integral of f(x). We prove these statements in this
section. We begin with the continuity of f(x). First, we need a lemma
that says that we can bound the size of the tail of a power series across
any bounded closed interval on which it converges.

Lemma 6.4.1. Suppose that R > 0 is less than the radius of conver-

gence of the power series

∞∑
k=0

ckx
k. For every ε > 0 there is an integer

N > 0 so that if n > N and x ∈ [−R,R] then

∣∣∣∣∣
∞∑
k=n

ckx
k

∣∣∣∣∣ < ε

Proof. Since R is less than the radius of convergence of
∞∑
k=0

ckx
k, we

know that
∞∑
k=0

|ckRk| converges to a number L. This implies that there

is an integer N so that the partial sum

N∑
k=0

|ckRk| is within ε of L. Then

∞∑
k=N+1

|ckRk| =

∣∣∣∣∣
∞∑
k=0

|ckRk| −
N∑
k=0

|ckRk|

∣∣∣∣∣ =

∣∣∣∣∣L−
N∑
k=0

|ckRk|

∣∣∣∣∣ < ε.

Now suppose n > N and |x| ≤ R. Then∣∣∣∣∣
∞∑
k=n

ckx
k

∣∣∣∣∣ ≤
∞∑
k=n

|ckxk| ≤
∞∑

k=N+1

|ckxk| ≤
∞∑

k=N+1

|ckRk| < ε.
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Now we can prove that any power series with a positive radius of
convergence converges to a continuous function.

Theorem 6.4.2. Any power series converges to a continuous function
on the interior of its interval of convergence.

Proof. Suppose that z is in the interior of the interval of convergence

of f(x) =

∞∑
k=0

ckx
k. We will prove that f is continuous at z. There

is an R > 0 which is less than the radius of convergence of the power
series so that z ∈ [−R,R]. Let ε > 0. By Lemma 6.4.1 there is an N

so that

∣∣∣∣∣
∞∑

k=N+1

ckx
k

∣∣∣∣∣ < ε/3 for all x ∈ [−R,R]. Let p(x) =
N∑
k=0

ckx
k.

Note that p(x) is simply a polynomial. Also note that on [−R,R] we
have

|f(x)− p(x)| =

∣∣∣∣∣
∞∑
k=0

ckx
k −

N∑
k=0

ckx
k

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=N+1

ckx
k

∣∣∣∣∣
< ε/3

Since p is a polynomial, p is continuous at z. Therefore, there is a δ > 0
so that if x ∈ [−R,R] and if |x− z| < δ, then |p(x)−p(z)| < ε/3. Now,
suppose that x ∈ [−R,R] and if |x− z| < δ. Then

|f(x)− f(z)| = |f(x)− p(x) + p(x)− p(z) + p(z)− f(z)|
≤ |f(x)− p(x)|+ |p(x)− p(z)|+ |p(z)− f(z)|
= |f(x)− p(x)|+ |p(x)− p(z)|+ |f(z)− p(z)|
< ε/3 + ε/3 + ε/3

= ε.

Thus f is continuous at z. This is true for all z ∈ [−R,R].

The power series f(x) is also continuous at the endpoints of its
interval of convergence if it converges at the endpoints. This is known
as Abel’s Theorem.

Theorem 6.4.3. (Abel’s Theorem) Any power series with a finite
radius of convergence which converges at an endpoint of its interval of
convergence is continuous at that endpoint.
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Proof. Suppose first that f(x) =
∞∑
k=0

ckx
k has a radius of convergence

of 1 and that f converges at 1. We show f is continuous at x = 1. Since

f(x) converges at x = 1, the series

∞∑
k=0

ck converges to some number

L = f(1). Let 〈sn〉 be the sequence of partial sums of

∞∑
k=0

ck. Let

x ∈ (0, 1). Since s0 = c0 and since ck = sk − sk−1, we have

n∑
k=0

ckx
k = c0 +

n∑
k=1

ckx
k

= s0 +
n∑
k=1

(sk − sk−1)xk

= s0 +
n∑
k=1

skx
k −

n∑
k=1

sk−1x
k

= s0 +
n∑
k=1

skx
k − x

n∑
k=1

sk−1x
k−1

= s0 +

n∑
k=1

skx
k − x

n−1∑
k=0

skx
k

= s0 +
n−1∑
k=1

skx
k + snx

n − x
n−1∑
k=1

skx
k − s0x

= (1− x)s0 + snx
n +

n−1∑
k=1

sk(1− x)xk

= snx
n +

n−1∑
k=0

sk(1− x)xk

For every n we have

n∑
k=0

ckx
k = snx

n +
n−1∑
k=0

sk(1− x)xk.
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Taking the limit we now have

f(x) =

∞∑
k=0

ckx
k =

∞∑
k=0

sk(1− x)xk.

Since
1

1− x
=

∞∑
k=0

xk, we have 1 =

∞∑
k=0

(1− x)xk so

f(1) = L = L · 1 = L

∞∑
k=0

(1− x)xk =

∞∑
k=0

L(1− x)xk.

Now we consider the difference f(1) − f(x) (because we want f to be
continuous at 1):

f(1)− f(x) =
∞∑
k=0

(L− sk)(1− x)xk.

Let ε > 0. Since lim sn = L, there is a real number N so that if n > N
then |L− sn| < ε/2. Then

|f(1)− f(x)| =

∣∣∣∣∣
∞∑
k=0

(L− sk)(1− x)xk

∣∣∣∣∣
=

∣∣∣∣∣
N∑
k=0

(L− sk)(1− x)xk +
∞∑

k=N+1

(L− sk)(1− x)xk

∣∣∣∣∣
≤

N∑
k=0

|L− sk|(1− x)xk +

∞∑
k=N+1

|L− sk|(1− x)xk

≤
N∑
k=0

|L− sk|(1− x)xk +

∞∑
k=N+1

ε

2
(1− x)xk

<

N∑
k=0

|L− sk|(1− x)xk +
ε

2
.

The sum

N∑
k=0

|L − sk|(1 − x)xk is a polynomial. Call it h. Then for

all x ∈ (0, 1) we have |f(1)− f(x)| < h(x) + ε/2. Note that h(1) = 0.
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Since h is a polynomial, it is continuous at x = 1, and there is a δ > 0
so that if x ∈ (1− δ, 1) then

0 ≤ h(x) = |h(x)− h(0)| < ε

2
.

It follows than that if x ∈ (1− δ, 1) then

|f(1)− f(x)| < h(x) +
ε

2
<
ε

2
+
ε

2
= ε.

Thus, f is continuous at x = 1.
So far, we have proven any power series with a radius of convergence

of 1 which converges at 1 is continuous at 1. Suppose now that f is a
power series with a radius of convergence of 1 which converges at −1.
Then f(−x) is a power series with a radius of convergence of 1 which
converges at x = 1. As such, f(−x) is continuous at x = 1. It follows
that f(x) is continuous at x = −1.

We now have that any power series with a radius of convergence of
1 which converges at an endpoint of its interval of convergence must be
continuous at that endpoint. Suppose that f is a power series with a
finite radius of convergence R > 0. Then f(x/R) is a power series with
a radius of convergence of 1. If f converges at an endpoint, then f(x/R)
converges at the corresponding endpoint and is continuous there. It
follows that f is also continuous at the endpoint in question.

We have (finally) observed that any power series with a finite ra-
dius of convergence which converges at an endpoint of its interval of
convergence is continuous at that endpoint.

We turn now to derivatives and integrals. We must first prove that
the series claimed at the beginning of the section to give the derivative
and integral of a power series actually converge where we want them
to. First, we approach the term-by-term integral.

Lemma 6.4.4. The power series

g(x) =

∞∑
k=0

ck
k + 1

xk+1

converges on the interior of the interval of convergence of the power
series

f(x) =
∞∑
k=0

ckx
k.
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Proof. Note that for any x, the series g(x) and G(x) =
∞∑
k=0

ck
k + 1

xk are

multiples of each other so both converge or both diverge. We need only
prove that G(x) converges on the interior of the interval of convergence
of f(x). If z is in the interior of the interval of convergence of f(x)
then f(x) converges absolutely at x = z. This means that the series
∞∑
k=0

∣∣∣ckzk∣∣∣ converges. Since

∣∣∣∣ ck
k + 1

zk
∣∣∣∣ ≤ ∣∣∣ckzk∣∣∣, it follows that G(x)

converges (absolutely) at x = z by the Comparison Test. As stated
above, this implies that g(x) must also converge for x = z. Thus, g(x)
converges at every point of the interior of the interval of convergence
of f(x).

Lemma 6.4.5. The power series

h(x) =
∞∑
k=1

kckx
k−1

converges on the interior of the interval of convergence of the power
series

f(x) =

∞∑
k=0

ckx
k.

Proof. Note that for any x, h(x) and H(x) =
∞∑
k=1

kckx
k are multiples

of each other and therefore both converge or both diverge. We need
only show that H(x) converges for all x in the interior of the interval
of convergence of f(x). Let z be in the interior of the interval of
convergence of f(x). Then there is some R > 0 in the interior of the
interval of convergence of f(x) with z ∈ (−R,R). Since R is in the
interior of the interval of convergence of f(x), it must be that f(x)

converges absolutely for x = R. This means that
∞∑
k=0

∣∣∣ckRk∣∣∣ converges

so lim
∣∣∣ckRk∣∣∣ = 0. This implies that there is some N so that if k > N

then
∣∣∣ckRk∣∣∣ < 1. It follows that if k > N then |ck| <

1

Rk
.

For each k > N , ∣∣∣kckzk∣∣∣ ≤ ∣∣∣∣k 1

Rk
zk
∣∣∣∣ = k

∣∣∣ z
R

∣∣∣k .
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The series
∞∑
k=1

k
∣∣∣ z
R

∣∣∣k converges by the Root Test since

lim

∣∣∣∣k ∣∣∣ zR ∣∣∣k
∣∣∣∣1/k = lim

∣∣∣k1/k z

R

∣∣∣ =
∣∣∣ z
R

∣∣∣ < 1.

The series H(x) then converges (absolutely) at x = z by the Compar-
ison Test. As stated above, this implies that h(x) must also converge
for x = z. Thus, h(x) converges at every point of the interior of the
interval of convergence of f(x).

Suppose that f , g, and h are as in the previous two Lemmas. The
series g(x) is the term-by-term integral of f(x). Lemma 6.4.4 says that
the term-by-term integral of a power series converges on the interior of
the interval of convergence of the power series. The series h(x) is the
term-by-term derivative of f(x). Lemma 6.4.5 says that the term-by-
term derivative of a power series converges on the interior of the interval
of convergence of the power series. Let I be in interior of the interval of
convergence of f(x). Let J be the interior of the interval of convergence
of g(x), and let K be the interior of the interval of convergence of h(x).
Lemma 6.4.4 implies that I ⊆ J . Lemma 6.4.5 implies that I ⊆ K.
Now, f(x) is the term-by-term derivative of g(x). By 6.4.5 f(x) must
converge on the interior of the interval of convergence of g(x). This
means that J ⊆ I. Similarly, f(x) is the term-by-term integral of
h(x). By 6.4.4 f(x) must converge on the interior of the interval of
convergence of h(x). This means K ⊆ I. Putting this all together, we
have I = J = K. This establishes:

Theorem 6.4.6. The power series

f(x) =

∞∑
k=0

ckx
k and g(x) =

∞∑
k=0

ck
k + 1

xk+1 and h(x) =

∞∑
k=1

kckx
k−1

all have the same radius of convergence. �

Now that we know our term-by-term derivatives and integrals have
the same radius of convergence as our original power series, we can
actually prove they give use the derivative and integral of our power
series. First we approach integrals. In the proof of this theorem, we

will use Calculus I notation

∫ b

a
f(x)dx for integration to make it easier

to keep track of which variable is the variable of integration.
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Theorem 6.4.7. Suppose that f(x) =
∞∑
k=0

ckx
k is any power series

and that z is in the interior of the interval of convergence of f . Then∫ z

0
f(t)dt =

∞∑
k=0

ck
k + 1

zk+1.

Proof. Let z be in the interior of the interval of convergence of f . We
will address the case when z > 0. There is an R > 0 less than the
radius of convergence of f so that z ∈ [−R,R]. Note that by Theorem

6.4.2 f is continuous on [−R,R], so

∫ z

0
f(t)dt exists. We want to prove

that

lim
n∑
k=0

ck
k + 1

zk+1 =

∫ z

0
f(t)dt.

We will use the definition of the limit of a sequence. Let ε > 0. By

Lemma 6.4.1 there is an N so that

∣∣∣∣∣
∞∑
k=n

ckx
k

∣∣∣∣∣ < ε/R for n > N and for

x ∈ [−R,R]. Let n > N then∣∣∣∣∣
n∑

k=0

ck
k + 1

zk+1 −
∫ z

0

f(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=0

∫ z

0

ckt
kdt−

∫ z

0

f(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ z

0

n∑
k=0

ckt
kdt−

∫ z

0

f(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ z

0

(
n∑

k=0

ckt
k − f(t)

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ z

0

(
n∑

k=0

ckt
k −

∞∑
k=0

ckt
k

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ z

0

(
−

∞∑
k=n+1

ckt
k

)
dt

∣∣∣∣∣
≤
∫ z

0

∣∣∣∣∣
∞∑

k=n+1

ckt
k

∣∣∣∣∣ dt
≤
∫ z

0

ε/Rdt

= zε/R

≤ ε.
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This last inequality follows from the fact that z ≤ R. By the definition
of convergence of a sequence,

∞∑
k=0

ck
k + 1

zk+1 = lim

n∑
k=0

ck
k + 1

zk+1 =

∫ z

0
f.

Theorem 6.4.8. Suppose that f(x) =

∞∑
k=0

ckx
k is any power series.

Then f is differentiable on the interior of its interval of convergence,
and for x in the interior of f ’s interval of convergence

f ′(x) =

∞∑
k=1

kckx
k−1.

Proof. Consider the power series g(x) =
∞∑
k=1

kckx
k−1. By Theorem

6.4.7 (with some reindexing) we know that for x in the interior of the
interval of convergence of g (which is the same as the interior of the
interval of convergence of f)∫ x

0
g(t)dt =

∞∑
k=1

kck
k
xk =

∞∑
k=1

ckx
k = f(x)− c0.

Using the Fundamental Theorem of Calculus to differentiate, we find
g = f ′. This is exactly what we want.

Using what we know about derivatives and integrals of power series,
we can now use the geometric series

1

1− x
=

∞∑
k=0

xk for |x| < 1

to find power series for other functions.

Example 6.4.9. Since

1

1− x
=

∞∑
k=0

xk for |x| < 1
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we can replace x by −x to get

1

1 + x
=

1

1− (−x)
=

∞∑
k=0

(−x)k =

∞∑
k=0

(−1)kxk for |x| < 1.

Now, if f(x) = ln(1 + x) then f ′(x) =
1

1 + x
. It follows from the Zero

Derivative Theorem that the term-by-term integral of our power series
differs from f(x) by a constant C:

ln(x+ 1) = C +
∞∑
k=0

(−1)k

k + 1
xk+1.

We can find C by plugging in an appropriate value for x. We use x = 0.
This gives

ln(1) = C +

∞∑
k=0

(−1)k

k + 1
0k+1 = C + 0.

Since ln(1) = 0, then C = 0 and we have

ln(x+ 1) =
∞∑
k=0

(−1)k

k + 1
xk+1 = x− x2

2
+
x3

3
− x4

4
· · ·

We know that this equality holds at least for x inside the interval
(−1, 1). At x = 1, we are looking at the alternating harmonic series,
which converges. By Abel’s Theorem and a consideration of continuity,
the equality must also hold at x = 1. At x = −1, we have the harmonic
series, which diverges. Therefore, we have

ln(x+ 1) =

∞∑
k=0

(−1)k

k + 1
xk+1 for x in (−1, 1].

Notice that equality at 1 tells us that the alternating harmonic series
converges to ln(2).

Exercises 6.4

6.4.1 Suppose that 〈ck〉 is a bounded sequence. Prove that
∞∑
k=0

ckx
k

converges on (−1, 1) (at least).
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6.4.2 Suppose that 〈ck〉 is a sequence which decreases to 0. Prove that
∞∑
k=0

ckx
k converges on [−1, 1) (at least).

6.4.3 Suppose that
∞∑
k=0

ck converges absolutely. Prove that
∞∑
k=0

ckx
k

converges on [−1, 1] (at least).

6.4.4 Beginning with the power series for
1

1− x
, find a power series

for
x

(1− x)2
.

6.4.5 Find the sum of the series
∞∑
k=0

k

2k
.

6.4.6 Let

s(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
and c(x) =

∞∑
k=0

(−1)kx2k

(2k)!
.

1. Find the interval of convergence of c(x).

2. Find the interval of convergence of s(x).

3. Show that c′ = −s.

4. Show that s′ = c.

5. Use the Zero Derivative Theorem to show that c2 +s2 is constant.

6. Find that constant.

6.4.7 Let

E(x) =

∞∑
k=0

xk

k!
.

Find E′(x).

6.4.8 Begin with the power series for
1

1− x
.

1. Find a power series for
1

1 + x2
.

2. Use the power series you just found to find a power series for
tan−1(x) with radius of convergence 1.

3. Prove that the power series you just found converges at x = 1.
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4. Use Abel’s Theorem to explain why this power series is equal to
tan−1(x) at x = 1.

5. Consider tan−1(1) and this power series to find a series that con-
verges to π.

6.5 Taylor Series

We saw in the previous sections that some common functions such as
1

1− x
and ln(1+x) can be replaced by power series. In this section, we

address the issue of how to find a power series for a function and how
to prove that power series actually converges to the function desired.

Definition 6.5.1. Suppose that f is any function. Define f (0) = f
and for n > 0 define f (n) to be the nth derivative of f (assuming f has
an nth derivative).

Example 6.5.2. Suppose that f(x) =

∞∑
k=0

ckx
k converges on an open

interval containing 0. We know from Theorem 6.4.8 that f has deriva-
tives of all orders. Let us calculate the derivatives of f at 0 (because
we can).

f (0)(x) =

∞∑
k=0

ckx
k f (0)(0) = c0

f (1)(x) =

∞∑
k=1

kckx
k−1 f (1)(0) = c1

f (2)(x) =

∞∑
k=2

k(k − 1)ckx
k−2 f (1)(0) = 2c2

f (3)(x) =

∞∑
k=3

k(k − 1)(k − 2)ckx
k−3 f (3)(0) = 3 · 2c3

f (4)(x) =
∞∑
k=4

k(k − 1)(k − 2)(k − 3)ckx
k−4 f (4)(0) = 4 · 3 · 2c4

If we continue this way, we see that it appears as if

f (k)(0) = k(k − 1)(k − 2) · · · 2ck = k!ck.



197

If we maintain the convention that 0! = 1, then this equality even holds
for k = 0. The interesting thing here is that we can now solve for ck:

ck =
f (k)(0)

k!
.

Therefore, we know exactly what the power series for f looks like:

f(x) =

∞∑
k=0

f (k)(0)

k!
xk.

Thus, given any function f for which we might want to find a power
series, we know exactly what that power series should be.

Definition 6.5.3. Suppose that f is a function defined on an open
interval containing 0 and that f has derivatives of all orders at 0. The
Taylor series for f around 0 is the power series

∞∑
k=0

f (k)(0)

k!
xk.

For any positive integer n, the nth degree Taylor polynomial for f
at 0 is the nth partial sum of the Taylor series for f :

Pn(x) =
n∑

k=0

f (k)(0)

k!
xk = f(0) + f (1)(0)x+

f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

The nth remainder term for f is the difference

Rn(x) = f(x)− Pn(x).

Remark 6.5.4. Since we are only addressing power series around 0,
we will simply call these polynomials and series Taylor polynomials and
Taylor series. The Taylor series around 0 is often called the Maclaurin
Series.

Example 6.5.5. In this example, we find some Taylor polynomials
and the Taylor series for f(x) = ex. First, we need several derivatives
of f(x) and their values at x = 0. This is easy for f(x) = ex:
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f(x) = ex f(0) = 1
f ′(x) = ex f ′(0) = 1
f ′′(x) = ex f ′′(0) = 1
f ′′′(x) = ex f ′′′(0) = 1

f (4)(x) = ex f (4)(0) = 1
...

f (k)(x) = ex f (k)(0) = 1

Using the formula ck =
f (k)

k!
, we see that

c0 = 1, c1 = 1, c2 =
1

2
, c3 =

1

6
, c4 =

1

24
. . . , ck =

1

k!
.

A few of the Taylor polynomials for f(x) = ex are

P1(x) = 1 + x.

This is the line tangent to f(x) = ex at x = 0. P1 agrees with f and
its first derivative at x = 0. Next,

P2(x) = 1 + x+
1

2
x2.

We might call P2 a tangent parabola. It agrees with f and its first two
derivatives at x = 0. Also

P3(x) = 1 + x+
1

2
x2 +

1

6
x3 and P4(x) = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4.

Graphs of f(x) along with P1, P2, P3, and P4 are in Figure 6.4. Notice
how the higher degree polynomials approximate f(x) better on a wider
interval. The Taylor series for f(x) = ex is

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

Example 6.5.6. We find a few Taylor polynomials and the Taylor
series for f(x) = cos(x). First, we need some derivatives and their
values at x = 0.
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Figure 6.4: The graphs of f(x) = ex along with P1, P2, P3, P4 on the
interval [−2, 2]. Notice how the higher degree polynomials approximate
the function better on a wider interval.

f(x) = cos(x) f(0) = 1
f ′(x) = − sin(x) f ′(0) = 0
f ′′(x) = − cos(x) f ′′(0) = −1
f ′′′(x) = sin(x) f ′′′(0) = 0

f (4)(x) = cos(x) f (4)(0) = 1

f (5)(x) = − sin(x) f (5)(0) = 0

f (6)(x) = − cos(x) f (6)(0) = −1

f (7)(x) = sin(x) f (7)(0) = 0
...

Notice that the derivatives seem to follow the pattern 1, 0, -1, 0, 1, 0,
-1, 0,. . .. The first few even degree Taylor polynomials are:

P0(x) = 1

P2(x) = 1− x2

2!

P4(x) = 1− x2

2!
+
x4

4!
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P6(x) = 1− x2

2!
+
x4

4!
− x6

6!

These polynomials are graphed along with f(x) = cos(x) in Figure 6.5.

Figure 6.5: The graphs of f(x) = cos(x) along with P0, P2, P4, P6

on the interval [−2π, 2π]. Notice how the higher degree polynomials
approximate the function better on a wider interval.

To write the Taylor series for cos(x), we have to think a little harder
than we did for ex. First, the signs alternate, beginning with a positive,
so we should have a factor of (−1)k. Next, the exponents are all even,
beginning with 0, so instead of xk, we use x2k. The factorial on the
bottom of the fractions agree with the exponents, so we use (2k)! rather
than k!. Thus, the Taylor series is

∞∑
k=0

(−1)kx2k

(2k)!
.

Example 6.5.7. Consider the function

f(x) =

{
e−1/x2 x 6= 0

0 x = 0.

A graph of f is depicted in Figure 6.6. It can be shown that f (k)(0) = 0
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Figure 6.6: All of the derivatives of this function are equal to 0 at
x = 0. This forces the coefficients in the Taylor series all to be 0, so the
Taylor series cannot converge to f other than at x = 0.

for all k. Therefore, every coefficient in the Taylor series for f is 0, and
the Taylor series converges to the constant 0 function. In particular,
the Taylor series does not converge to f anywhere other than at x = 0.

Notice that for any x the question of whether or not the Taylor
series for f(x) actually converges to f(x) is the same as the question
of whether or not limPn(x) = f(x) (since Pn(x) is the nth partial sum
of the Taylor series). This means that the question of whether or not
the Taylor series converges to f(x) is the same as whether or not the
sequence of remainder terms 〈Rn(x)〉 converges to 0. To address this
issue, we need a tool which will tell us how large Rn(x) can be.

Theorem 6.5.8. (Taylor’s Formula) Suppose that f : (a, b) → R
is a function defined on an open interval containing 0 and that f (n+1)

exists on (a, b). For every z 6= 0 in (a, b) there is a y between 0 and z

so that Rn(z) =
f (n+1)(y)

(n+ 1)!
zn+1.

Proof. First note that the nth degree Taylor polynomial

Pn(x) =

n∑
k=0

f (k)(0)

k!
xk = f(0) + f (1)(0)x+

f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn

agrees with f and its first n derivatives at 0. That is, f (k)(0) = P (k)
n (0)

for k = 0, 1, 2, . . . , n. Let

M =
f(z)− Pn(z)

zn+1
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and define F (x) = f(x)−Pn(x)−Mxn+1. Note that since f has n+ 1
derivatives on (a, b) then F also has n + 1 derivatives on (a, b) (since
−Pn(x)−Mxn+1 is a polynomial). Also, by our choice of M we have
F (k)(0) = 0 for k = 0, 1, 2, . . . , n, n+1 and that F (z) = 0. Since F (n+1)

exists on (a, b), then F (k) is continuous on (a, b) for k = 1, 2, . . . , n. We
now apply Rolle’s Theorem repeatedly.

• Since F (0) = F (z) = 0 and since F is continous and differentiable
on (a, b), by Rolle’s Theorem there is some c1 between 0 and z
where F ′(c1) = 0.

• Since F ′(0) = F ′(c1) = 0 and since F ′ is continous and differen-
tiable on (a, b), by Rolle’s Theorem there is some c2 between 0
and c1 where F ′′(c2) = 0.

• Since F ′′(0) = F ′′(c2) = 0 and since F ′′ is continous and differ-
entiable on (a, b), by Rolle’s Theorem there is some c3 between 0
and c2 where F ′′(c3) = 0.
...

• Since F (n)(0) = F (n)(cn) = 0 and since F (n) is continous and dif-
ferentiable on (a, b), by Rolle’s Theorem there is some y between
0 and cn where F (n+1)(y) = 0.

Now, if we find the (n+ 1)st derivative of F , we see that

F (n+1)(x) = f (n+1)(x)− 0−M(n+ 1)!

We then have

0 = f (n+1)(y)− 0−M(n+ 1)! = f (n+1)(y)− f(z)− Pn(z)

zn+1
(n+ 1)!

Solving for f(z) now gives

f(z) = Pn(z) +
f (n+1)(y)

(n+ 1)!
zn+1

which means that

Rn(z) =
f (n+1)(y)

(n+ 1)!
zn+1

as desired.
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Theorem 6.5.9. Suppose that f : (a, b)→ R is a function defined on
an open interval containing 0 and that f has derivatives of all orders
on (a, b). Suppose also that there is an M ∈ R so that |f (n)(x)| < M
for all nonnegative integers n and all x ∈ (a, b). Then

limRn(z) = 0 for all z ∈ (a, b).

In particular, the Taylor series for f around 0 converges to f on (a, b).

Proof. Let z ∈ (a, b). For each n, apply Taylor’s Formula to find a yn
in (a, b) so that

Rn(z) =
f (n+1)(yn)

(n+ 1)!
zn+1.

Then

lim |Rn(z)| = lim

∣∣∣∣∣f (n+1)(yn)

(n+ 1)!
zn+1

∣∣∣∣∣
≤ lim

∣∣∣∣ M

(n+ 1)!
zn+1

∣∣∣∣
= 0

Since lim |Rn(z)| = 0, then lim |f(z)− Pn(z)| = 0 so f(z) = limPn(z).
Thus the Taylor series for f(x) at x = z converges to f(z).

Example 6.5.10. Here we consider the Taylor series for ex. We found
this series in Example 6.5.5, and we saw that the series converges for
all real numbers in Example 6.3.5. Suppose that z ∈ R. Let (a, b) be
any open interval containing z and 0. Since f (n)(x) = ex for all n, we
have 0 < f (n)(x) = ex < eb for all x in (a, b). Applying the theorem
with M = eb tells us that the Taylor series converges to ex on (a, b).
In particular, it converges at z to ez. Therefore, the Taylor series for
ex converges to ex for all real numbers. So

ex =

∞∑
k=0

xk

k!
for all x ∈ R.

Example 6.5.11. In Example 6.5.6 we found the Taylor series for
cos(x). In Exercise 6.4.6 we discovered that this series converges for all
real numbers. Since the derivatives of all orders of cos(x) are bounded
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by 1 on every open interval containing 0, it follows that the Taylor
series for cos(x) converges to cos(x) for all real numbers. That is:

cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!
for all x ∈ R.

Exercises 6.5
6.5.1 Use the definition to find the first five nonzero terms of the Taylor
series for f(x) =

√
x+ 1.

6.5.2

1. Use the definition to find the first five nonzero terms of the Taylor
series for f(x) = sin(x).

2. Find a formula for the terms of the Taylor series.

3. Find the interval of convergence of the Taylor series.

4. Prove that the Taylor series converges to f on the interior of this
interval.

6.5.3 Modify a power series you know to find a power series for

F (x) =

∫ x

0
e−t

2
dt.

Use the first five nonzero terms of this series to approximate F (1).

6.5.4 Consider the integral

∫ 1

0
sin(t2)dt. There is no elementary func-

tion whose derivative is equal to sin(t2).

1. Modify the Taylor series from 6.5.2 to find a power series for

F (x) =

∫ x

0
sin(t2)dt.

2. Use the power series from part (1) to find a series for

∫ 1

0
sin(t2)dt.

3. The series you just found is (or should be) an alternating series.
Use what we know about alternating series to approximate the
sum of the series with an error of less than .001.

6.5.5 Either find a power series around 0 for f(x) = |x| or prove that
there is not one.

Printing of August 23, 2021
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