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Generating primitive positive clones

John W. Snow

Abstract. SupposeF is a set of operations on a finite setA. Define PPC(F) to be the smallest primitive
positive clone onA containingF . For any finite algebraA, let PPC#(A) be the smallest numbern for which
PPC(CloA) = PPC(ClonA). S. Burris and R. Willard [2] conjectured that PPC#(A) ≤ |A| when CloA is
a primitive positive clone and|A| > 2. In this paper, we look at how large PPC#(A) can be when special
conditions are placed on the finite algebraA. We show that PPC#(A) ≤ |A| holds when the variety generated
by A is congruence distributive, Abelian, or decidable. We also show that PPC#(A) ≤ |A| + 2 if A generates a
congruence permutable variety and every subalgebra ofA is the product of a congruence neutral algebra and an
Abelian algebra. Furthermore, we give an example in which PPC#(A) ≥ (|A| − 1)2 so that these results are not
vacuous.

1. Introduction

A primitive positive formula is a first order formula of the form∃ ∧ (atomic). A clone
C on a setA is aprimitive positive clone if every operation onA defined from operations
in C using a primitive positive formula is already inC. S. Burris and R. Willard proved in
[2] that there are finitely many primitive positive clones on any finite set. They also claim
that every primitive positive clone on a finite setA is generated using primitive positive
definitions from its members of rank|A||A|. They conjecture that every such primitive
positive clone is actually generated from its members of rank|A| if A has more than two
elements.

Suppose thatF is a set of operations on a finite setA. Define PPC(F) to be the smallest
primitive positive clone onA containingF . For any finite algebraA, let

PPC#(A) = min{n : PPC(CloA) = PPC(ClonA)}.
The Burris-Willard conjecture is that PPC#(A) ≤ |A| when CloA is a primitive positive
clone and|A| > 2. In this paper we look at how large PPC#(A) can be when special
conditions are placed on the finite algebraA.
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It follows from Burris [1] that PPC#(A) ≤ |A| whenA is a hereditarily subdirectly
irreducible algebra in a congruence distributive variety or an algebra which has a linearly
ordered lattice as a reduct. We show that this inequality also holds when the variety generated
by A is congruence distributive, Abelian, or decidable. We also show that PPC#(A) ≤
|A| + 2 if A generates a congruence permutable variety and every subalgebra ofA is the
product of a congruence neutral algebra and an Abelian algebra. Furthermore, we give an
example in which PPC#(A) ≥ (|A| − 1)2 so that these results are not vacuous.

2. Preliminaries

If A andB are similar algebras, let Hom(A,B) be the set of all homomorphisms from
A to B. For any algebraA, let Z(A) denote the clone∪∞

n=1Hom(An,A). This is called the
centralizer clone of A, and the operations inZ(A) are said tocentralize the operations
of A. For any finite setA, the primitive positive clones onA correspond to the centralizer
clones onA. In fact, PPC(CloA) = Z(Z(A)).

Supposef is ann-ary operation on a setA andt is any operation onA. We say thatf
respectsor preservest if f is a homomorphism from〈A, t〉n to 〈A, t〉.

The following theorem and lemma will be essential throughout the paper. Theorem 2.1
is due to Kuznecov (see [3] and [16]). The Proof of Lemma 2.2 was inspired by the
Proof of Theorem 2 of [2].

THEOREM 2.1. ([3] and [16])SupposeF1 and F2 are sets of operations on a finite
setA.

PPC(F1) = PPC(F2) if and only if Z(〈A,F1〉) = Z(〈A,F2〉).

LEMMA 2.2. (see [2])Suppose thatA is a finite algebra withkmembers,n is a positive
integer, andf : An → A is anyn-ary operation onA. Thenf ∈ Hom(An,A) if and only
if kerf ∈ ConAn andf respects thek-ary term operations ofA.

Proof. If f ∈ Hom(An,A), then kerf ∈ An andf respects thek-ary term operations
of A. Suppose then thatf 6∈ Hom(An,A) but that kerf ∈ ConAn. We show thatf fails to
respect somek-ary term operation ofA. Since kerf ∈ ConAn, the algebraAn induces the
natural algebraic structure onAn/ kerf and the canonical surjectionπ : An → An/ kerf
is a homomorphism. Let̄f : An/ kerf → A be the unique map for whichf = f̄ ◦ π .
Sincef is not a homomorphism, the function̄f is not a homomorphism. This means there
is a termt (x1, . . . , xm) in the language ofA and elementsa1, . . . , am of An/ kerf so that

f̄ (tA
n/ kerf (a1, . . . , am)) 6= tA(f̄ (a1), . . . , f̄ (am)).

Since kerπ = kerf , the functionf̄ is injective. Therefore, by identifying variables we can
assume thatm ≤ k. On the other hand, by repeating variables if necessary, we can assume
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thatk ≤ m. Thus we can assume thatm = k. Fori = 1, . . . , m = k, selectbi ∈ An so that
π(bi) = ai . The inequality above along with the choice off̄ gives

f (tA
n

(b1, . . . , bk)) 6= tA(f (b1), . . . , f (bk)).

Thusf fails to respect thek-ary term operationtA of A. ¨

We will also need this fact (which was brought to our attention by R. McKenzie):

LEMMA 2.3. The congruences of ak-element algebra are determined by itsk-ary term
operations.

Proof. SupposeA is ak element algebra. We show that the principal congruences ofA
are determined by ClokA. Let a, b ∈ A and letθ be the principal congruence generated by
〈a, b〉. Supposep is any unary polynomial ofA. We usek-ary term operations to witness
that〈p(a), p(b)〉 ∈ θ . This will suffice. There is some term operationt of A so thatp(x) =
t (x, c̄) for some tuplēc of elements ofA. We can assume thatc̄ is ak-tuple and that the first
two members of the tuple area andb. Hencep(x) = t (x, a, b, d̄) for an appropriatēd.
Let g(x) = t (a, a, x, d̄) andh(x) = t (x, a, x, d̄), so thatg andh are unary polynomials
derived fromk-ary term operations. Since〈a, b〉 ∈ θ , h(〈a, b〉) = 〈h(a), p(b)〉 ∈ θ and
g(〈b, a〉) = 〈p(a), g(a)〉 ∈ θ . But,h(a) = g(a), so

〈p(a), p(b)〉 = 〈p(a), g(a)〉 ◦ 〈h(a), p(b)〉 ∈ θ.
¨

Finally, we note that ifn ≤ k are integers andA is any algebra, then ClokA completely
determines ClonA. In particular, ifA′ is another algebra with the same universe asA and
ClokA = ClokA′, then ClonA = ClonA′.

3. A large example

We now turn our attention to determining how large PPC#(A) can be. We show that in
general PPC#(A) < (|A| − 1)2 does not always hold. This example is an extension of an
example shown to us by R. McKenzie.

THEOREM 3.1. For any integerk > 2 and anyk element setA, there is a(k− 1)2-ary
operationT and a binary operation∧ onA so that∧ is not in the centralizer ofA = 〈A, T 〉,
but∧ is in the centralizer of〈A,Clo(k−1)2−1A〉.

Proof. LetA = {0,1, . . . , k−1}, and let∧ be the meet associated with the flat semilattice
onA with least element 0. Define the following(k − 1)2-tuples of elements ofA:

f = 〈1,2, . . . , k − 1,1,2, . . . , k − 1, . . . ,1,2 . . . , k − 1〉
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g = 〈1,1, . . . ,1,2,2, . . . ,2 . . . , k − 1, k − 1, . . . , k − 1〉.
(There arek − 1 repetitions of 1,2, . . . , k − 1 in f , and each constant subsequence ofg is
of lengthk − 1.) LetT be given by:

T (x1, . . . , x(k−1)2) =
{

1 〈x1, . . . , x(k−1)2〉 ∈ {f, g}
0 else

The operation∧ clearly does not centralizeT for

T (f ) ∧ T (g) = 1 6= 0 = T (f ∧ g).
To make things simpler, letn = (k−1)2. Suppose thatq is an(n−1)-ary term operation

derived fromT . We show by induction on the complexity ofq that q(x1, . . . , xn−1) =
q(y1, . . . , yn−1) 6= 0 implies that the〈x1, . . . , xn−1〉 and〈y1, . . . , yn−1〉 coincide in the
coordinates essential toq. It will then follow easily that∧ centralizesq. Suppose first that
q = T (p1, . . . , pn) wherep1, . . . , pn are projections. Assume thatx̄ = 〈x1, . . . , xn−1〉 ∈
An−1, ȳ = 〈y1, . . . , yn−1〉 ∈ An−1, and

q(x1, . . . , xn−1) = q(y1, . . . , yn−1) 6= 0.

It must be thatq(x̄) = q(ȳ) = 1 since the image ofT is {0,1}. Becauseq(x̄) = q(ȳ) = 1,
it is necessary that

〈p1(x̄), . . . , pn(x̄)〉, 〈p1(ȳ), . . . , pn(ȳ)〉 ∈ {f, g}.
Since we only haven − 1 projections to work with, there must bei 6= j so thatpi = pj .
Eitherfi 6= fj or gi 6= gj (if we treatf andg as functions their kernels intersect to the
identity). Without loss of generality, assumefi 6= fj . Then it must be that

〈p1(x̄), . . . , pn(x̄)〉 = g = 〈p1(ȳ), . . . , pn(ȳ)〉.
If q depends on thelth coordinate, then for somei the operationpi is the projection to the
lth coordinate. Therefore:

xl = pi(x̄) = gi = pi(ȳ) = yl.

Thus we see that ifq relies on itslth coordinate, thenxl = yl . This establishes the base of
our induction.

Now suppose thatq = T (q1, . . . , qn) where eachqi is (n − 1)-ary. Assume also that
for eachqi and eachx̄ = 〈x1, . . . , xn−1〉 ∈ An−1 and ȳ = 〈y1, . . . , yn−1〉 ∈ An−1 if
qi(x̄) = qi(ȳ) 6= 0 thenx̄ and ȳ agree in the coordinates essential toqi . Suppose that
q(x̄) = q(ȳ) 6= 0. Again, it is necessary thatq(x̄) = q(ȳ) = 1 and that

〈q1(x̄), . . . , qn(x̄)〉, 〈q1(ȳ), . . . , qn(ȳ)〉 ∈ {f, g}.
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If 〈q1(x̄), . . . , qn(x̄)〉 = 〈q1(ȳ), . . . , qn(ȳ)〉, then it follows by induction that the variables
in x̄ andȳ essential toq are equal. We show that this is the only possibility.

Assume by way of contradiction that

〈q1(x̄), . . . , qn(x̄)〉 = f and〈q1(ȳ), . . . , qn(ȳ)〉 = g.

For i > 1 eitherqi(x̄) or qi(ȳ) fails to be 0 or 1. This means thatqi must be a projection for
i > 1 (any term operation more complicated than a projection can output only 0 or 1). If for
somei 6= j > 1 we hadqi = qj , then our previous observation about the kernels off and
g will again show that〈q1(x̄), . . . , qn(x̄)〉 and〈q1(ȳ), . . . , qn(ȳ)〉 must both bef or both
beg - contrary to our assumption. Assume then that fori > 1 theqi are distinct projections.
If q1 is a projection, we are in the base case of our induction. Suppose then thatq1 is not a
projection. Sinceq1 is not a projection andq1(x̄) = q1(ȳ) = 1, q1 must depend on at least
k − 1 variables. We claim thatq1 must depend on some coordinatej for which xj 6= yj .
From the way in whichf andg were defined, we know there are exactlyk−2 indicesi > 1
whereqi(x̄) = fi = gi = qi(ȳ). Sinceq2, . . . , qn account for alln− 1 of the(n− 1)-ary
projections, this means that there are exactlyk − 2 coordinatesi wherexi = yi . Since
q1 depends on at leastk − 1 coordinates,q1 depends on one of the coordinatesj where
xj 6= yj . However, we knowq1(x̄) = q1(ȳ) = 1, so by induction̄x andȳ must agree in
the coordinates essential toq1 - and hence at thej th coordinate. This contradiction refutes
the assumption that〈q1(x̄), . . . , qn(x̄)〉 6= 〈q1(ȳ), . . . , qn(ȳ)〉 and completes the argument
that if q(x̄) = q(ȳ) 6= 0, thenx̄ andȳ agree in the coordinates essential toq.

By induction then, for any(n − 1)-ary term operationq derived fromT and for any
a 6= 0 there is at most one way to chose the variables inx̄ essential toq so thatq(x̄) = a.
From this it is easy to prove that∧ centralizesq. ¨

In this theorem,Z(A) is not determined by the operations ofA with rank less than
(|A| − 1)2. Hence PPC#(A) is at least(|A| − 1)2. Thus:

COROLLARY 3.2. SupposeA is a finite set with at least three elements. There is an
algebraA onA for which PPC#(A) ≥ (|A| − 1)2.

4. When PPC#(A) is small

We now turn our attention to situations in which PPC#(A) can be shown to be “small”.
We begin by looking at the primitive positive clone generated by the term operations of an
algebra in a congruence distributive variety.

THEOREM 4.1. Suppose thatA is a finite algebra with at least three elements that
generates a congruence distributive variety.

PPC#(A) ≤ |A|.
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Proof. Suppose that|A| = k, and letA′ = 〈A,Clok(A)〉. SinceA andA′ have the
samek-ary term operations, it follows from Lemma 2.3 thatA andA′ have precisely the
same congruences. Sincek ≥ 3 andA andA′ have the samek-ary term operations,A′
shares the ternary Jónnson terms ofA which witness to congruence distributivity. Hence
the variety generated byA′ is congruence distributive. We show thatZ(A) = Z(A′).
Suppose thatn is a positive integer andf is a homomorphism from(A′)n to A′. We will
show thatf is a homomorphism fromAn to A. We first show that kerf ∈ ConAn. For
i = 1, . . . , n let πi be the projection ofAn to the ith coordinate and letηi = kerπi .
By the Correspondence Theorem, kerf ∨ ηi = π−1

i (πi(kerf ∨ ηi)) for eachi. Since
πi(kerf ∨ ηi) ∈ ConA′ = ConA, this means that kerf ∨ ηi is a congruence onAn. By
the congruence distributivity ofV(A′):

kerf = kerf ∨ 0An

= kerf ∨
(

n⋂
i=1

ηi

)

=
n⋂
i=1

(kerf ∨ ηi) .

Thus kerf is the intersection of members of Con(An), so kerf is also a congruence
on An. SinceA and A′ have the samek-ary term operations, we already know thatf
preserves thek-ary term operations ofA. It follows from Lemma 2.2 thatf : An → A
is a homomorphism. ThusZ(A′) ⊆ Z(A). Since the reverse inclusion is trivial,A andA′
have the same centralizer clone and thus determine the same primitive positive clone by
Theorem 2.1. ¨

We next show that in almost all cases ifA is a finite algebra generating an Abelian
variety then PPC#(A) ≤ |A|. We first need to note some results and definitions from the
literature. An algebraA is calledHamiltonian if and only if every subalgebra ofA is an
equivalence class of a congruence onA. An algebraA is said to have thecongruence
extension propertyif and only if for every subalgebraB of A and for any congruenceθ on
B there is a congruenceψ onA so thatψ ∩ B2 = θ .

Supposeτ is the type of a universal algebra. Aprincipal congruence formula of type
τ is a first order formulaπ(x, y, u, v) of the form

∃w̄
(
x ≈ p1(z1, w̄) ∧

[
n−1∧
i=1

pi(z
′
i , w̄) ≈ pi+1(zi+1, w̄)

]
∧ pn(z′n, w̄) ≈ y

)

where{zi, z′i} = {u, v} andpi is aτ -term for eachi. It follows from the familiar theorem
of Maltsev that for any algebraA of type τ and anya, b, c, d ∈ A it is the case that
〈a, b〉 ∈ CgA(〈c, d〉) (the principal congruence onA generated by〈c, d〉) if and only if
A |= π(a, b, c, d) for some principal congruence formulaπ of typeτ .
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The congruence extension property gives a means of limiting the rank of terms occurring
in the principal congruence formulas necessary to define all principal congruences. This
follows from the following theorem of A. Day:

THEOREM 4.2. [4]For any algebraA, the following are equivalent:

1. A satisfies the congruence extension property.
2. For all a, b, c, d ∈ A, if B = SgA({a,b, c,d}) then〈a, b〉 ∈ CgA(〈c, d〉) if and only

if 〈a, b〉 ∈ CgB(〈c, d〉).
Thus to determine if〈a, b〉 ∈ CgA(c, d), it is enough to know thatB |= π(a,b, c,d) for

some principal congruence formulaπ in the type ofA. SinceB is generated by{a, b, c, d},
it is enough to consider principal congruence formulas which employ only 5-ary terms.

E. Kiss has shown:

THEOREM 4.3. [9] Every Hamiltonian variety satisfies the congruence extension
property.

E. Kiss and M. Valeriote give us:

THEOREM 4.4. [8]SupposeV is a locally finite variety.V is Hamiltonian if and only
if V is Abelian.

We are almost ready for our theorem. We need one more background result. We will
need that the variety generated by a reduct of an algebra which generates a Hamiltonian
variety is also Hamiltonian. The next theorem insures this as long as the reduct contains all
ternary term operations ofA:

THEOREM 4.5. [11]A varietyV is Hamiltonian if and only if for every(n + 1)-ary
termt of V there is a ternary terms of V so that

V |= s(x, y, t (x, z1, . . . , zn)) ≈ t (y, z1, . . . , zn).

THEOREM 4.6. SupposeA is a finite algebra withk elements. IfA generates an Abelian
variety, then PPC#(A) ≤ max(5, |A|).

Proof. Let n = max(5, |A|). SupposeA generates an Abelian variety. By Theorem 4.4,
every algebra in the variety generated byA is Hamiltonian. LetA′ = 〈A,ClonA〉.
By Theorem 4.5 every algebra in the variety generated byA′ is also Hamiltonian. By
Theorem 4.3 both of these varieties also satisfy the congruence extension property. By
Theorem 4.2, the principal congruence formulas derived from 5-ary terms of each of these
varieties are adequate to define all principal congruences on all algebras in the varieties.
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SinceA andA′ have the same 5-ary term operations, we can conclude thatAm and(A′)m
have the same 5-ary term operations and hence the same principal congruences for anym.
Therefore, they also have the same congruences. Suppose thatf : (A′)m → A′ is a homo-
morphism. Then kerf ∈ ConAm. SinceA andA′ share the samen-ary term operations,
f respects these. Thusf is a homomorphism fromAm to A by Lemma 2.2. Since every
homomorphism fromAm to A is also a homomorphism from(A′)m to A′, we see thatA
andA′ have the same centralizer clone. The result follows from Theorem 2.1. ¨

An algebra isaffine if it has a Maltsev term and is Abelian. It is a simple matter to show
that the clone of an affine algebra is generated by its term operations with rank at most three.
Since the ternary term operations of an algebra completely determine the unary and binary
term operations, the clone of an affine algebra is generated by its ternary term operations.
Thus the centralizer clone of an affine algebra is determined by its term operations of rank
three. The next theorem is now immediate.

THEOREM 4.7. If A is a finite affine algebra, then PPC#(A) ≤ 3.

We say that varietiesV1, . . . ,Vn in the same type areindependentif and only if there
is ann-ary termt in the language of the varieties so that

Vi |= t (x1, . . . , xn) ≈ xi

for i = 1, . . . , n. If V1, . . . ,Vn are independent, then every algebra in the varietyV
generated by

⋃n
i=1 Vi is isomorphic to a product

∏n
i=1 Ai where eachAi ∈ Vi . In this case

we writeV = V1 ⊗ · · · ⊗ Vn. WheneverA = A1 × · · · × An in V in this manner, we write
A = A1 ⊗ · · · ⊗ An. If V1,V2, andV3 are independent, thenV1 andV2 are independent.
Also, V1 ⊗ V2 andV3 are independent andV1 ⊗ V2 ⊗ V3 = (V1 ⊗ V2)⊗ V3. The operator
PPC# interacts nicely with⊗:

LEMMA 4.8. SupposeA = A1 ⊗ · · · ⊗ An. If for some integerm PPC#(Ai ) ≤ m for
i = 1, . . . , n, then PPC#(A) ≤ m.

Proof. It is not too difficult to see that a functionf : Ak → A is a homomorphism from
Ak to A if and only if there are homomorphismsfi : Aki → Ai for i = 1, . . . , n so that

f (〈x1
1, x

1
2, . . . , x

1
n〉, 〈x2

1, x
2
2, . . . , x

2
n〉, . . . , 〈xk1, xk2, . . . , xkn〉)

= 〈f1(x
1
1, x

2
1, . . . , x

k
1), f2(x

1
2, x

2
2, . . . , x

k
2), . . . , fn(x

1
n, x

2
n, . . . , x

k
n)〉.

ThusZ(A) = Z(A1) × · · · × Z(An). For eachi, PPC#(Ai ) ≤ m implies thatZ(Ai ) is
determined by ClomAi . Thus Z(A) is determined by the collection{ClomAi}ni=1.
This collection is determined by ClomA. By Theorem 2.1 it follows that PPC#(A) is
at mostm. ¨
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Applying this lemma to Theorems 4.1 and 4.6, we get the following corollary:

COROLLARY 4.9. SupposeA is a finite algebra andA = A1 ⊗ A2 whereA1 is in an
Abelian variety,A2 is in a congruence distributive variety, and|A2| ≥ 3. PPC#(A) ≤
max(5, |A|).

We say that a varietyV is decidable if and only if there is an algorithm which, given
any sentence in the language ofV, decides if that sentence holds in every algebra inV. In
[14], R. McKenzie and M. Valeriote give the following characterization of decidable locally
finite varieties:

THEOREM 4.10. [14]Let V be any decidable locally finite variety. There exists a
strongly Abelian varietyV1, an affine varietyV2, and a discriminator varietyV3 so that
V = V1 ⊗ V2 ⊗ V3.

All we need to know about these varieties is thatV1⊗V2 will be Abelian sinceV1 andV2

are, and thatV3 is congruence distributive (as a discriminator variety). Thus if an algebra
A is contained in a decidable variety, that algebra is always isomorphic to

A1 ⊗ A2 ⊗ A3 ∼= (A1 ⊗ A2)⊗ A3

where(A1 ⊗ A2) is in an Abelian variety andA3 is in a congruence distributive variety.
Hence:

THEOREM 4.11.SupposeA is a finite algebra in a decidable variety. PPC#(A) ≤
max(5, |A|).

In order to discuss the next class of algebras we would like to address, we need some
definitions. Supposeα, β, andγ are congruences on an algebraA. We say thatα centralizes
β moduloγ and writeC(α, β; γ ) if and only if for all term operationst of A and for all
elementsa, b, x1, . . . , xn, y1, . . . , yn of A if aαb andxiβyi for i = 1, . . . , n, then

t (a, x1, . . . , xn) γ t (a, y1, . . . , yn)

m
t (b, x1, . . . , xn) γ t (b, y1, . . . , yn)

We will write C2(α, β; γ ) if the above equivalence holds when it is also assumed that
xi = yi for i = 2, . . . , n. Thecommutator of α andβ - denoted by [α, β] - is the smallest
congruenceδ on A satisfyingC(α, β; δ). If [α, β] = α ∩ β for all α andβ in ConA, we
sayA is congruence neutralor simplyneutral.

The commutator is particularly well-behaved for algebras in congruence modular varie-
ties. For a thorough discussion of the commutator in congruence modular varieties, see [6].
If {Ai}ni=1 are congruence neutral in a congruence modular variety, then all finite subdirect
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products of{Ai}ni=1 have distributive congruence lattices. In a congruence modular
variety, A is Abelian if and only if [1A,1A] = 0A. If ψ : A → B is a surjective
homomorphism in a congruence modular variety andα andβ are congruences above kerψ ,
thenψ−1([ψ(α), ψ(β)]) = [α, β] ∨ kerψ . From this, it follows that ifA is Abelian (or
neutral), then so isB. Recall that a congruence permuting variety is also congruence modu-
lar. The notion of centralization can be captured with theC2 relation in the presence of a
Maltsev term:

LEMMA 4.12. If an algebraA has a Maltsev term, thenC(α, β; γ ) is equivalent to
C2(α, β; γ ) for all congruencesα, β, andγ of A.

This lemma follows from Lemma 2.8 of [10]. We are now ready to define the next
class of algebras with which we will be working. An algebraA is hereditarily (neutral ×
Abelian) if and only if every subalgebra ofA is the product of a neutral algebra and
an Abelian algebra. We will show here that the term operations of a hereditarily (neutral×
Abelian) algebraA with a Maltsev term are generated by Clo|A|+2A. This will immediately
give us a result concerning PPC#(A). We first need a structure theory which will allow us
to discuss subdirect products of congruence neutral algebras with Maltsev operations. We
will extend a familiar lemma of I. Fleischer. We will be using the following rather technical
notation in the next few pages. For a subdirect product (of sets)B ⊆ ∏

i∈I Ai , defineπBi
to be the projection of B to theith coordinate andηBi = ker(πBi ) for i ∈ I . For i 6= j ∈ I ,
let δB{i,j} : B → B/(ηBi ∨ ηBj ) be the canonical map, and letαBi,j : Ai → B/(ηBi ∨ ηBj ) be

the unique function defined byδB{i,j}(x) = αBi,jπ
B
i (x) (we know this exists since kerπBi ⊆

kerδB{i,j}).

LEMMA 4.13. (Fleischer’s Lemma [5])Suppose thatA ⊆ A1 × A2 is a subdirect
product (of sets) in which the projection kernels permute. Then

A = {〈x1, x2〉 ∈ A1 × A2 : αA1,2(x1) = αA2,1(x2)}.
We extend this lemma to subdirect products of any finite number of factors. We first

need to know how theα’s interact with projections.

LEMMA 4.14. SupposeB ⊆ ∏
i∈I Ai is a subdirect product (of sets). IfJ ⊆ I and

C ⊆ ∏
i∈J Ai is the projection ofB to the coordinates inJ , then for alli, j ∈ J and for

all a ∈ Ai andb ∈ Aj

αBi,j (a) = αBj,i(b) if and only ifαCi,j (a) = αCj,i(b).

Proof. Denote the projection ofB ontoC by π . Selecta ∈ Ai andb ∈ Aj so that
αBi,j (a) = αBj,i(b). There exist̄x, ȳ ∈ B so thatπBi (x̄) = a andπBj (ȳ) = b. Since

δB{i,j}(x̄) = αBi,jπ
B
i (x̄) = αBi,j (a) = αBj,i(b) = αBj,iπ

B
j (ȳ) = δB{j,i}(ȳ)
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we have〈x̄, ȳ〉 ∈ kerδB{i,j} = ηBi ∨ ηBj . Therefore,

〈π(x̄), π(ȳ)〉 ∈ π(ηBi ∨ ηBj ) = π(ηBi ) ∨ π(ηBj ) = ηCi ∨ ηCj = kerδC{i,j}.

This means:
αCi,j (a) = αCi,j (π

C
i (π(x̄)))

= δC{i,j}(π(x̄))
= δC{j,i}(π(ȳ))
= αCj,i(π

C
j (π(ȳ)))

= αCj,i(b)

Next, supposea ∈ Ai , b ∈ Aj andαCi,j (a) = αCj,i(b). There existū, v̄ ∈ C so that

πCi (ū) = a andπCj (v̄) = b. Also, there exist̄x, ȳ ∈ B so thatπ(x̄) = ū andπ(ȳ) = v̄.

Just as in the reverse direction, our assumptions require〈ū, v̄〉 ∈ ηCi ∨ ηCj . Therefore,

〈π(x̄), π(ȳ)〉 = 〈ū, v̄〉 ∈ ηCi ∨ ηCj = π(ηBi ) ∨ π(ηBj ) = π(ηBi ∨ ηBj ).

Thus
〈x̄, ȳ〉 ∈ π−1(π(ηBi ∨ ηBj )) = ηBi ∨ ηBj = kerδB{i,j}

(where the second to the last equality follows from the Correspondence Theorem). Now

αBi,j (a) = αBi,j (π
B
i (x̄))

= δB{i,j}(x̄)
= δB{j,i}(ȳ)
= αBj,i(π

B
i (ȳ))

= αBj,i(b).

¨

We are now ready to prove our extension of Fleischer’s Lemma:

LEMMA 4.15. (Extension of Fleischer’s Lemma)If B ⊆ ∏n
i=1Ai is a subdirect pro-

duct (of sets) in which the projection kernels generate a distributive lattice of permuting
equivalence relations, then

B =
{

〈x1, . . . , xn〉 ∈
n∏
i=1

Ai : αBi,j (xi) = αBj,i(xj )∀i 6= j

}
.

Proof. LetB be such a subdirect product. We prove this by induction onn. The case of
n = 1 is vacuous and the case ofn = 2 is proven by Fleischer’s Lemma. Assume then that
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n > 2 and that the result holds for subdirect products of fewer thann of theAi ’s. Letπ be
the projection ofB onto the firstn− 1 coordinates and let

η = ker(π) =
n−1∧
i=1

ηBi .

Also, letC = π(B). From the induction hypothesis,

C =
{

〈x1, . . . , xn−1〉 ∈
n−1∏
i=1

Ai : αCi,j (xi) = αCj,i(xj )∀i 6= j < n

}
.

By the previous lemma, this means

C =
{

〈x1, . . . , xn−1〉 ∈
n−1∏
i=1

Ai : αBi,j (xi) = αBj,i(xj )∀i 6= j < n

}
.

Let B ′ be the set in the statement of the lemma which we hope to beB. Let x̄ =
〈x1, . . . , xn〉 ∈ B ′. First, note that〈x1, . . . , xn−1〉 ∈ C. Therefore, we can selecty ∈ An
so that〈x1, . . . , xn−1, y〉 ∈ B. We can also select〈z1, . . . , zn−1〉 ∈ ∏n−1

i=1 Ai so that
〈z1, . . . , zn−1, xn〉 ∈ B. By our assumption,

δB{i,n}(〈x1, . . . , xn−1, y〉) = αBi,n(xi) = αBn,i(xn) = δB{i,n}(〈z1, . . . , zn−1, xn〉)
for all i < n (the middle equality follows from̄x ∈ B ′). Thus

(〈x1, . . . , xn−1, y〉, 〈z1, . . . , zn−1, xn〉) ∈
n−1∧
i=1

ker(δB{i,n})

= ∧n−1
i=1 (η

B
i ∨ ηBn )

= ηBn ∨ (∧n−1
i=1 η

B
i ) (distributivity)

= ηBn ∨ η
= ηBn ◦ η (permutability).

Thus there is somēx′ ∈ B so that

〈z1, . . . , zn−1, xn〉ηBn x̄′η〈x1, . . . , xn−1, y〉.
By the definitions of these kernels, this simply meansx̄ = x̄′ ∈ B. This givesB ′ ⊆ B.
Since the reverse inclusion is clear,B = B ′ as desired. ¨

The next lemma exposes the structure of hereditarily (neutral× Abelian) algebras in a
Maltsev variety which we will exploit:
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LEMMA 4.16. SupposeA is a finite hereditarily (neutral× Abelian) algebra in a
Maltsev variety.CloA is generated byClo|A|+2A.

Proof. Write Ā for A, and letk = |A|. LetA be the algebra onAwhose basic operations
are the(k + 2)-ary term operations of̄A. We want to show that̄A andA have the same
term operations. We need to make several observations:

Because the subuniverses of ak-element algebra are completely determined by itsk-ary
term operations:

CLAIM 1. A subsetC ⊆ A is a subuniverse of̄A if and only if it is a subuniverse
of A.

For any subuniverseC of Ā, let C̄ denote the subalgebra ofĀ with universeC, and letC
denote the corresponding subalgebra ofA. Assume that̄C is a subalgebra of̄A. Trivially,
Clok+2C̄ = Clok+2C. It follows from Lemma 2.3 that

CLAIM 2. C̄ andC have the same congruences.

Let θ be any congruence on̄C. Then Clok+2C̄/θ = Clok+2C/θ , so:

CLAIM 3. C̄/θ andC/θ have the same congruences and subuniverses.

Supposeα, β andγ are congruences on̄C/θ (and hence also onC/θ ). To determine if
C2(α, β; γ ) holds inC̄/θ (or C/θ ) it suffices to consider only(k+2)-ary operations - since
C̄/θ (andC/θ ) contains at mostk elements. SincēC/θ andC/θ have the same(k+ 2)-ary
term operations, it follows thatC2(α, β; γ ) holds inC̄/θ if and only if it holds inC/θ .
From Lemma 4.12,C(α, β; γ ) holds inC̄/θ if and only if it holds inC/θ . It follows that

CLAIM 4. C̄/θ is Abelian (or neutral) if and only ifC/θ is.

CLAIM 5. Suppose that̄D ∈ SubĀ andσ ∈ ConD̄. Letf : C/θ → D/σ be any set
map. Thenf is a homomorphism from̄C/θ to D̄/σ if and only if it is a homomorphism
from C/θ to D/σ .

To see this, suppose thatf is not a homomorphism from̄C/θ to D̄/σ . Then there is
some term operationT of Ā and elementsx1, . . . , xn of C/θ so that

f (T C̄/θ (x1, . . . , xn)) 6= T D̄/σ (f (x1), . . . , f (xn)).

Since each of these algebras has at mostk elements, we can, by identifying variables,
assume thatn ≤ k. By our construction, there is a basic operationS of A so thatSA = T Ā.
ThenSC̄/θ = T C/θ andSD/σ = T D̄/σ . Hencef does not preserveSC/θ , sof fails to be a
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homomorphism fromC/θ to D/σ . The reverse implication follows from the fact thatC/θ
andD/σ are reducts of̄C/θ andD̄/σ respectively.

As a result of what we know so far,A is also hereditarily (neutral× Abelian) in a Maltsev
variety.

In order to show that̄A andA have the same term operations, we show that the subuni-
verses ofĀn are the same as the subuniverses ofAn for all positive integersn. Supposen
is a positive integer andB ∈ SubAn. There are subalgebrasS1, . . . ,Sn of A so thatB is a
subdirect product of

∏n
i=1 Si . For eachi = 1, . . . , n, we can select congruencesθi andτi

of Si so thatSi/θi is neutral,Si/τi is Abelian, andSi ∼= Si/θi × Si/τi . Let

f :
n∏
i=1

Si →
(

n∏
i=1

Si/θi

)
×
(

n∏
i=1

Si/τi

)

be the canonical bijection. Thenf provides an isomorphism of
∏n
i=1 Si and(

∏n
i=1 Si/θi)×

(
∏n
i=1 Si/τi). From Claims 2 and 5 it follows that eachS̄i is isomorphic toS̄i/θi × S̄i/τi

and thatf is also an isomorphism of
∏n
i=1 S̄i and(

∏n
i=1 S̄i/θi)× (∏n

i=1 S̄i/τi). LetPN be
the projection of(

∏n
i=1 Si/θi)×(

∏n
i=1 Si/τi) onto

∏n
i=1 Si/θi , and letPA be the projection

onto
∏n
i=1 Si/τi . Let BN = PN(f (B)) andBA = PA(f (B)). (Note thatPN andPA - as

projections - are also homomorphisms out of(
∏n
i=1 S̄i/θi)×(∏n

i=1 S̄i/τi) onto
∏n
i=1 S̄i/θi

and
∏n
i=1 S̄i/τi .)

We claim that Clo(
∏n
i=1 Si/τi) = Clo(

∏n
i=1 S̄i/τi). Since eachSi/τi is Abelian,

so is eachS̄i/τi . Since we are in the presence of a Maltsev term, these algebras are
actually affine. Hence the algebras

∏n
i=1 Si/τi and

∏n
i=1 S̄i/τi are affine. As such,

the clones of these two algebras are generated from their ternary term operations. In
order to show Clo(

∏n
i=1 Si/τi) = Clo(

∏n
i=1 S̄i/τi), therefore, we simply need to show

Clo3(
∏n
i=1 Si/τi) = Clo3(

∏n
i=1 S̄i/τi). SupposeT is a ternary term in the language of

Ā. We observe that the operationT
∏n
i=1 S̄i /τi is a term operation of

∏n
i=1 Si/τi . From the

manner in whichA was defined, there is a termS in the language ofA so thatSA = T Ā.
SA induces an operation on

∏n
i=1 Si/τi in the usual way. SinceSA = T Ā, it should be

clear thatT
∏n
i=1 S̄i /τi = S

∏n
i=1 Si/τi . Thus

Clo3

(
n∏
i=1

Si/τi

)
⊇ Clo3

(
n∏
i=1

S̄i/τi

)
.

The proof that the reverse inclusion holds is symmetric. Since
∏n
i=1 Si/τi and

∏n
i=1 S̄i/τi

have the same term operations, and sinceBA is a subuniverse of
∏n
i=1 Si/τi , it follows that

BA is also the universe of a subalgebraB̄A of
∏n
i=1 S̄i/τi .

We now address the neutral factors. Note that sinceB projects onto eachSi , it follows

thatBN projects onto eachSi/θi . For all i 6= j ≤ n, let αBNi,j : Si/θi → BN/(η
BN
i ∨ ηBNj )
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be as in Lemma 4.15. We will writeαi,j for αBNi,j . Now, for eachi 6= j ≤ n, we can find
D{i,j} ∈ SubA andσ{i,j} ∈ ConD{i,j} so that there is an isomorphism

β{i,j} : BN/(η
BA
i ∨ ηBAj ) → D{i,j}/σ{i,j}.

(If h : Si → Si/θi is the canonical map, then it suffices to letD{i,j} = Si andσ{i,j} =
ker(αi,j h).) Let γi,j : Si/θi → D{i,j}/σ{i,j} be given byγi,j = β{i,j}αi,j . With this
arrangement and Lemma 4.15.

BN =
{

〈x1, . . . , xn〉 ∈
n∏
i=1

Si/θi : αi,j (xi) = αj,i(xj )∀i 6= j

}
.

But since eachβ{i,j} is bijective, we can also write:

BN =
{

〈x1, . . . , xn〉 ∈
n∏
i=1

Si/θi : γi,j (xi) = γj,i(xj )∀i 6= j

}
.

Since eachγi,j is also a homomorphism from̄Si/θi ontoD̄{i,j}/σ{i,j} (Claim 5),BN is the
universe of a subalgebrāBN of

∏n
i=1 S̄i/θi (it is not difficult to show that any subset of a

product of algebras defined in this manner using homomorphisms is a subuniverse).
Let θ = ker(PNf )∨ ker(PAf ). ThenB/θ is neutral and Abelian. ThereforeB/θ must

be trivial, so

1 = θ = ker(PNf ) ∨ ker(PAf ) = ker(PNf ) ◦ ker(PAf ).

Since it is also the case that kerPNf ∧ kerPAf = 0B , B ∼= BN × BA with PNf andPAf
acting as the projection homomorphisms. This means that for anyx ∈ An, x is inB if and
only if PNf (x) ∈ BN andPAf (x) ∈ BA. That is,B = (PNf )

−1(BN) ∩ (PAf )−1(BA).
SincePNf : Ān → ∏n

i=1 S̄i/θi andPAf : Ān → ∏n
i=1 S̄i/τi are surjective homomor-

phisms, it follows thatB is a subuniverse of̄An.
Thus, every subuniverse of a direct power ofA is a subuniverse of a direct power

of Ā. Since the reverse inclusion is trivial, we have that the subuniverses of direct powers
of Ā are identical to those ofA. Because the clones of these algebras can be realized
as collections of certain subuniverses of direct powers in the familiar way, it follows that
CloĀ = CloA. ¨

Since there are only finitely many possibilities for Clok+2A whenA is finite, this lemma
has the following immediate corollary:

COROLLARY 4.17. There are finitely many hereditarily (neutral× Abelian) algebras
with a Maltsev term on any finite set.
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If A is finite and hereditarily (neutral× Abelian) in a congruence permuting variety,
then the previous lemma tells us that the centralizer clone ofA is determined by Clo|A|+2A.
Theorem 2.1 now gives:

THEOREM 4.18.SupposeA is a finite hereditarily (neutral× Abelian) algebra with a
Maltsev term. PPC#(A) ≤ |A| + 2.

Of course, this class of algebras may seem a little artificial. The theorem gives us a
corollary for algebras in the following class of varieties. A varietyV is directly repre-
sentableif and only if it is finitely generated and has up to isomorphism a finite set of
directly indecomposable members - all finite. In [12], R. McKenzie gives the following
characterization of when a finite set of finite algebras generates a directly representable
variety:

THEOREM 4.19. [12]Let K be an arbitrary set of similar finite algebras.V(K) is
directly representable if and only if the following hold:

1. V(K) has permuting congruences.
2. Every member of S(K) is isomorphic to a direct product of simple algebras and

Abelian algebras.
3. The variety generated by the set of Abelian factors of members of S(K) is directly

representable.

Since the finite product of finite neutral (or Abelian) algebras in a congruence modular
variety is neutral (Abelian), and since a simple algebra is either neutral or Abelian, any finite
algebra which generates a directly representable variety is hereditarily (neutral× Abelian).
Hence:

COROLLARY 4.20. SupposeA is a finite algebra which generates a directly repre-
sentable variety. Then PPC#(A) ≤ |A| + 2.

5. Closing remarks

In this paper we have seen how the structure of an algebraA can influence the size
of the generating set of PPC(CloA). Theorem 3.1 insures that our observations about
this influence are not trivial. It would be interesting to further investigate the relationship
between the structure of a finite algebraA and its primitive positive clone. For example,
every Maltsev condition satisfied by the variety generated byA passes on to the variety
generated by〈A,PPC(CloA)〉, while the reverse may not be true. What other properties of
A are passed on to〈A,PPC(CloA)〉? Which properties of〈A,PPC(CloA)〉 are forced upon
A? In particular, it would be interesting to investigate the structure of〈A,PPC(CloA)〉 for
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a familiar algebraA. For example, ifA is a finite group or a lattice, what can be said about
〈A,PPC(CloA)〉? What ifA is Abelian or even affine?

While investigating the relationship betweenA and PPC(A), it should be worthwhile to
includeZ(A), as this primitive positive clone also reflects the structure ofA. For example, it
is easy to see thatA is idempotent if and only ifZ(A) contains all of the constant operations.
Also, if A is a strictly simple Maltsev algebra, thenZ(A) determinesA up to categorical
equivalence [15].
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