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Generating primitive positive clones

JOHN W. SNOW

Abstract. SupposeF is a set of operations on a finite sét Define PPCF) to be the smallest primitive
positive clone onA containingF. For any finite algebrd\, let PPC#A) be the smallest number for which
PPQCIloA) = PPQClo,A). S. Burris and R. Willard [2] conjectured that PR@# < |A| when CIA is

a primitive positive clone angA| > 2. In this paper, we look at how large PR®@# can be when special
conditions are placed on the finite algelfra We show that PPG#) < |A| holds when the variety generated
by A is congruence distributive, Abelian, or decidable. We also show that PBG# |A| + 2 if A generates a
congruence permutable variety and every subalgebfaisfthe product of a congruence neutral algebra and an
Abelian algebra. Furthermore, we give an example in which RRC# (|A| — 1)2 so that these results are not
vacuous.

1. Introduction

A primitive positive formula is a first order formula of the forra A (atomig. A clone
C on a setA is aprimitive positive clone if every operation om defined from operations
in C using a primitive positive formula is alreadyéh S. Burris and R. Willard proved in
[2] that there are finitely many primitive positive clones on any finite set. They also claim
that every primitive positive clone on a finite sétis generated using primitive positive
definitions from its members of rand|!'4!. They conjecture that every such primitive
positive clone is actually generated from its members of tankf A has more than two
elements.

Suppose thaf is a set of operations on a finite skt Define PPCF) to be the smallest
primitive positive clone oM containingF. For any finite algebra, let

PPC#A) = min{n : PPGQCloA) = PPQClo,A)}.

The Burris-Willard conjecture is that PPG¥% < |A| when CIA is a primitive positive
clone and|A| > 2. In this paper we look at how large PP@#4 can be when special
conditions are placed on the finite algebra
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It follows from Burris [1] that PPC#A) < |A| whenA is a hereditarily subdirectly
irreducible algebra in a congruence distributive variety or an algebra which has a linearly
ordered lattice as areduct. We show that this inequality also holds when the variety generate
by A is congruence distributive, Abelian, or decidable. We also show that PBC#
|A| + 2 if A generates a congruence permutable variety and every subalgebiia tife
product of a congruence neutral algebra and an Abelian algebra. Furthermore, we give a
example in which PPQ#A) > (JA| — 1)2 so that these results are not vacuous.

2. Preliminaries

If A andB are similar algebras, let HofA, B) be the set of all homomorphisms from
A toB. For any algebrd, letZ(A) denote the clone;? ;Hom(A", A). This is called the
centralizer clone of A, and the operations id(A) are said tacentralize the operations
of A. For any finite set4, the primitive positive clones oA correspond to the centralizer
clones onA. In fact, PPCCIoA) = Z(Z(A)).

Supposef is ann-ary operation on a set andt is any operation om. We say thatf
respectsor preservest if f is a homomorphism fromA, 7)" to (A, ¢).

The following theorem and lemma will be essential throughout the paper. Theorem 2.1
is due to Kuznecov (see [3] and [16]). The Proof of Lemma 2.2 was inspired by the
Proof of Theorem 2 of [2].

THEOREM 2.1. ([3] and [16])SupposeF; and F» are sets of operations on a finite
setA.
PPC(F1) = PPC(Fp) if and only if Z((A, F1)) = Z((A, F2)).

LEMMA 2.2. (see [2])Suppose thaA is a finite algebra wittk membersy is a positive
integer, andf : A" — A is anyn-ary operation onA. Thenf € Hom(A", A) if and only
if ker f € ConA” and f respects thé&-ary term operations oA.

Proof. If f € Hom(A", A), then kerf € A" and f respects thé-ary term operations
of A. Suppose then thgt ¢ Hom(A”, A) but that kerf € ConA”. We show thajf fails to
respect somg-ary term operation of\. Since kerf € ConA”, the algebra\” induces the
natural algebraic structure &'/ ker f and the canonical surjection: A" — A" /Kker f
is a homomorphism. Lef : A"/ker f — A be the unique map for whicli = f o 7.
Sincef is not a homomorphism, the functighis not a homomorphism. This means there
is aterms(x1, ..., x;) in the language of and elementsy, ..., a,, of A"/ ker f so that

Far ¥ ay, . aw)) # A (flar), ..., flam)).

Since kerr = ker £, the functionf is injective. Therefore, by identifying variables we can
assume that: < k. On the other hand, by repeating variables if necessary, we can assume
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thatk < m. Thus we can assume that=k. Fori = 1,..., m =k, selecth; € A" so that
7 (b;) = a;. The inequality above along with the choice ofjives

F@ b1 b)) # (B f B)-

Thus f fails to respect thé-ary term operation” of A. O

We will also need this fact (which was brought to our attention by R. McKenzie):

LEMMA 2.3. The congruences ofiaelement algebra are determined by#tary term
operations.

Proof. Suppose is ak element algebra. We show that the principal congruencés of
are determined by Clé\. Leta, b € A and letd be the principal congruence generated by
(a, b). Suppose is any unary polynomial oA. We usek-ary term operations to witness
that(p(a), p(b)) € 6. Thiswill suffice. There is some term operatioof A so thatp(x) =
t(x, ¢) for some tuple of elements ofA. We can assume thats ak-tuple and that the first
two members of the tuple areandb. Hencep(x) = t(x, a, b, d) for an appropriatel.

Let g(x) = t(a, a, x,d) andh(x) = t(x, a, x, d), so thatg andh are unary polynomials
derived fromk-ary term operations. Sinde, b) € 0, h({a, b)) = (h(a), p(b)) € 6 and
8((b,a)) = (p(a), g(a)) € 6. But,h(a) = g(a), SO

(p@@), p(b)) = (p(a), g(@)) o (h(a), p(b)) € 6.
O

Finally, we note that if: < k are integers and is any algebra, then Clé completely
determines ClgA. In particular, ifA’ is another algebra with the same universé\aand
ClogA = CloiA’, then Clg A = Clo,A’.

3. Alarge example

We now turn our attention to determining how large PR&#can be. We show that in
general PPC¢A) < (JA| — 1)? does not always hold. This example is an extension of an
example shown to us by R. McKenzie.

THEOREM 3.1. For any integelk > 2 and anyk element sefi, there is a(k — 1)2-ary
operationT and a binary operatiom on A so thata is notin the centralizeroh = (A, T'),
but A is in the centralizer ofA, Clog_q)2_1A).

Proof. LetA = {0, 1, ..., k—1}, and letA be the meet associated with the flat semilattice
on A with least element 0. Define the followirg — 1)-tuples of elements oA:

f=2.. . k=112 ... k—1,..,12. .. k-1
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e=(11...,1,22...,2.. k—Lk—1... k—1).

(There aréc — 1 repetitions of 12, ...,k — 1 in f, and each constant subsequencg isf
of lengthk — 1.) LetT be given by:

1 <x1, ey )C(k_l)Z) (S {f, g}

T(x1,..., x(k_l)z) = { 0 else

The operatiom clearly does not centralizE for

T(HAT@)=1#0=T(f rg.

To make things simpler, let= (k —1)2. Suppose that is an(n — 1)-ary term operation
derived from7T. We show by induction on the complexity gfthatg(x1, ..., x,—1) =
q(O¥1, ..., yu—1) # 0 implies that the(x1, ..., x,—1) and(y1, ..., y,—1) coincide in the
coordinates essential &o It will then follow easily thata centralizeg;. Suppose first that
q=T(p1,..., pn) Whereps, ..., p, are projections. Assume that= (x1, ..., x,—1) €
AL 5 =(y1,..., yp—1) € A" and

g(x1, ..., xp-1) = q(1, ..., yu—1) # 0.

It must be that; (x) = ¢(¥) = 1 since the image df is {0, 1}. Because (x) = ¢(y) = 1,
it is necessary that

(P1(X), ., pu(X)), (P1(¥), ..., (M) € {f. g}

Since we only havea — 1 projections to work with, there must be# j so thatp; = p;.
Either f; # f; org; # g; (if we treat f andg as functions their kernels intersect to the
identity). Without loss of generality, assunfie# f;. Then it must be that

(P1(x), ..., pn(X)) = g = (p1(}), ..., P (D).

If ¢ depends on th&" coordinate, then for somethe operatiorp; is the projection to the
" coordinate. Therefore:

xp=pi(X) =g =pi(y) = .

Thus we see that if relies on itg" coordinate, them; = y,. This establishes the base of
our induction.

Now suppose tha = T(q1, . - ., g,) Where eacly; is (n — 1)-ary. Assume also that
for eachg; and eacht = (x1,...,x,_1) € A" LTandy = (y1,...,yu_1) € A" Lif
qi(Xx) = q;(y) # 0thenx andy agree in the coordinates essentialjfo Suppose that
q(x) = q(y) # 0. Again, it is necessary thatx) = ¢(y) = 1 and that

(q1(x), .- gn (X)), (q1(3), . ... qn(¥)) € {f. &}
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If (g1(%), ..., q. (X)) = (q1(}), ..., g.(})), then it follows by induction that the variables
in X andy essential tg; are equal. We show that this is the only possibility.
Assume by way of contradiction that

(q1(%), ..., q.(3)) = f and(q1(y), ..., q.(y)) = g.

Fori > 1 eitherg; (x) or ¢; (y) fails to be 0 or 1. This means thgtmust be a projection for
i > 1 (any term operation more complicated than a projection can output only 0 or 1). If for
somei # j > 1we hady; = ¢;, then our previous observation about the kernelg ahd
g will again show thatq1(x), ..., g,(x)) and{g1(¥), ..., g.(¥)) must both bef or both
beg - contrary to our assumption. Assume then that fer1 theg; are distinct projections.
If g1 is a projection, we are in the base case of our induction. Suppose themn thait a
projection. Sinceys is not a projection angs (x) = g1(y) = 1, g1 must depend on at least
k — 1 variables. We claim that; must depend on some coordingtéor whichx; # y;.
From the way in whichf andg were defined, we know there are exaétly 2 indices > 1
whereg; (x) = f; = gi = q;(y). Sincegqo, ..., g, account for alkh — 1 of the(n — 1)-ary
projections, this means that there are exaktly 2 coordinates wherex; = y;. Since
g1 depends on at leagt— 1 coordinatesg; depends on one of the coordinatesvhere
xj # y;. However, we know;1(X) = g1(y) = 1, so by inductiont andy must agree in
the coordinates essentialge - and hence at th¢!" coordinate. This contradiction refutes
the assumption thaty1 (%), ..., g, (X)) # (q1(), ..., g.(¥)) and completes the argument
thatifg(x) = q(¥) # 0, thenx andy agree in the coordinates essentiajto

By induction then, for anyn — 1)-ary term operatiory derived fromT and for any
a # 0 there is at most one way to chose the variableséssential tg; so thatg(x) = a.
From this it is easy to prove that centralizes;. O

In this theorem,Z(A) is not determined by the operations Afwith rank less than
(JA| — 1)2. Hence PPCA) is at least|A| — 1)2. Thus:

COROLLARY 3.2. Supposé is a finite set with at least three elements. There is an
algebraA on A for which PPGHA) > (|A| — 1)2.

4. When PPG#(A) is small

We now turn our attention to situations in which PR&#can be shown to be “small”.
We begin by looking at the primitive positive clone generated by the term operations of an
algebra in a congruence distributive variety.

THEOREM 4.1. Suppose thah is a finite algebra with at least three elements that
generates a congruence distributive variety.

PPCHA) < |A].
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Proof. Suppose thatA| = k, and letA’ = (A, Cloi(A)). SinceA andA’ have the
samek-ary term operations, it follows from Lemma 2.3 theiand A’ have precisely the
same congruences. Sinke> 3 andA andA’ have the samé-ary term operationsd’
shares the ternarypdnson terms ofA which witness to congruence distributivity. Hence
the variety generated b#’ is congruence distributive. We show thatA) = Z(A').
Suppose thai is a positive integer ang is a homomorphism frondA’)" to A’. We will
show thatf is a homomorphism from” to A. We first show that kef € CorA”. For
i = 1,...,n let ; be the projection ofA” to the " coordinate and lej; = kerx;.
By the Correspondence Theorem, Wev n; = ni‘l(n,-(kerf Vv n;)) for eachi. Since
w;(ker f v n;) € ConA’ = ConA, this means that kef v 5; is a congruence oA”". By
the congruence distributivity af(A"):

kerf = kerf v Oyn

ker f v (ﬁ ’71‘)
i=1

‘ﬂl (ker f v ;).

Thus kerf is the intersection of members of G@t'), so kerf is also a congruence

on A", SinceA andA’ have the same-ary term operations, we already know that
preserves thé-ary term operations oA. It follows from Lemma 2.2 thayf : A" — A

is a homomorphism. Thug(A") € Z(A). Since the reverse inclusion is trivi#l,andA’

have the same centralizer clone and thus determine the same primitive positive clone b
Theorem 2.1. O

We next show that in almost all casesAfis a finite algebra generating an Abelian
variety then PPCEA) < |A|. We first need to note some results and definitions from the
literature. An algebrd is calledHamiltonian if and only if every subalgebra & is an
equivalence class of a congruence/n An algebraA is said to have theongruence
extension propertyif and only if for every subalgebr of A and for any congruenaeon
B there is a congruenag on A so thaty N B2 = 6.

Suppose is the type of a universal algebra. pkincipal congruence formula of type
t is a first order formular (x, y, u, v) of the form

n—1
dw (x ~ p1(z1, w) A |:/\ pi(z;, W) ~ pi+1(zit1, li))i| A pn (2, W) ~ Y>

i=1

where{z;, z;} = {u, v} andp; is at-term for each. It follows from the familiar theorem
of Maltsev that for any algebra of type ¢t and anya, b,c,d € A it is the case that
(a,b) € Cgp((c, d)) (the principal congruence o generated by, d)) if and only if
A = 7 (a, b, ¢, d) for some principal congruence formutaof typer.
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The congruence extension property gives a means of limiting the rank of terms occurring
in the principal congruence formulas necessary to define all principal congruences. This
follows from the following theorem of A. Day:

THEOREM 4.2. [4]For any algebraA, the following are equivalent:

1. A satisfies the congruence extension property.
2. Foralla,b,c,d € A, if B=Sg,({a, b, c,d}) then(a, b) € Cg({c, d)) if and only
if (a, b) € Cog({c, d)).

Thus to determine ifa, b) € Cg,(c, d), itis enough to know theB = w(a, b, c, d) for
some principal congruence formutan the type ofA. SinceB is generated byu, b, ¢, d},
it is enough to consider principal congruence formulas which employ only 5-ary terms.
E. Kiss has shown:

THEOREM 4.3. [9] Every Hamiltonian variety satisfies the congruence extension
property.

E. Kiss and M. Valeriote give us:

THEOREM 4.4. [8]Supposé’ is a locally finite variety.) is Hamiltonian if and only
if V is Abelian.

We are almost ready for our theorem. We need one more background result. We will
need that the variety generated by a reduct of an algebra which generates a Hamiltonia
variety is also Hamiltonian. The next theorem insures this as long as the reduct contains a
ternary term operations &:

THEOREM 4.5. [11]A varietyV is Hamiltonian if and only if for everyn + 1)-ary
termz of V there is a ternary term of V so that

VEsx, y,t(x,21,...,20) ®t(y, 21, -, 2n)-

THEOREM 4.6. Suppos@ is afinite algebra wittt elements. IA generates an Abelian
variety, then PP&(A) < max5, |A)).

Proof. Letn = max(5, |A]). Supposé\ generates an Abelian variety. By Theorem 4.4,
every algebra in the variety generated Ayis Hamiltonian. LetA’ = (A, Clo,A).
By Theorem 4.5 every algebra in the variety generated\bis also Hamiltonian. By
Theorem 4.3 both of these varieties also satisfy the congruence extension property. B
Theorem 4.2, the principal congruence formulas derived from 5-ary terms of each of these
varieties are adequate to define all principal congruences on all algebras in the varietie:
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SinceA andA’ have the same 5-ary term operations, we can concludéthaind (A’)"

have the same 5-ary term operations and hence the same principal congruencesifor any
Therefore, they also have the same congruences. Suppoge:that)” — A’ is a homo-
morphism. Then kef € ConA™. SinceA andA’ share the same-ary term operations,

f respects these. Thysis a homomorphism frorA™ to A by Lemma 2.2. Since every
homomorphism fromA™ to A is also a homomorphism froA")™ to A’, we see thaf
andA’ have the same centralizer clone. The result follows from Theorem 2.1. [

An algebra isaffine if it has a Maltsev term and is Abelian. Itis a simple matter to show
that the clone of an affine algebra is generated by its term operations with rank at most three
Since the ternary term operations of an algebra completely determine the unary and binar
term operations, the clone of an affine algebra is generated by its ternary term operation:
Thus the centralizer clone of an affine algebra is determined by its term operations of ranl
three. The next theorem is now immediate.

THEOREM 4.7.If A is a finite affine algebra, then PRICA) < 3.

We say that varietie¥y, ..., V, in the same type ai@dependentif and only if there
is ann-ary termz in the language of the varieties so that

Vi E=t(xy, ..., xp) R X

fori = 1,...,n. If Vq,...,V, are independent, then every algebra in the variety
generated by J;_; V; is isomorphic to a produdt];_; A; where eact\; € V;. In this case

wewriteV =V1®---®V,. WheneveA = A1 x --- x A, in V in this manner, we write
A=A1® ---®A,. If V1,V,, andV; are independent, tha and), are independent.
Also, V1 ® Vo andVs are independent and ® V> ® V3 = (V1 ® V2) ® V3. The operator

PPC# interacts nicely witt®:

LEMMA 4.8. Supposéh = A1 ® --- ® A,. If for some integem PPCH#(A;) < m for
i=1...,n then PPGA) < m.

Proof. It is not too difficult to see that a functiofi : AK — A is a homomorphism from
A to A if and only if there are homomorphisnys : A{F — A;fori =1,...,nsothat

1 .1 1 2 .2 2 k _k k
FUXT x5, X)), (X X5, o X0 ), (X Xy, o, X))
1.2 k 1 .2 k 1 .2 k
= (falxy, x1, ..., x7), f2(x5, x5, oo, x5), ooy fu G, X5, oo X))

ThusZ(A) = Z(A1) x --- x Z(A,). For eachi, PPC#A;) < m implies thatZ(A;) is
determined by CIgA;. Thus Z(A) is determined by the collectiofClo,A;}"_;.
This collection is determined by GJ&A. By Theorem 2.1 it follows that PPCA) is
at mostm. O
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Applying this lemma to Theorems 4.1 and 4.6, we get the following corollary:

COROLLARY 4.9. Supposd is a finite algebra and\ = A1 ® Ax whereA; isin an
Abelian variety,Az is in a congruence distributive variety, and,| > 3. PPCG#A) <
max(®, [A]).

We say that a variety is decidableif and only if there is an algorithm which, given
any sentence in the languagelafdecides if that sentence holds in every algebrg.itin
[14], R. McKenzie and M. Valeriote give the following characterization of decidable locally
finite varieties:

THEOREM 4.10. [14]Let V be any decidable locally finite variety. There exists a
strongly Abelian variety/1, an affine variety),, and a discriminator variety/s so that
V=V1®V2Q Vs.

Allwe need to know about these varieties is tha V> will be Abelian sinceé/; and)
are, and thaVs is congruence distributive (as a discriminator variety). Thus if an algebra
A is contained in a decidable variety, that algebra is always isomorphic to

A1RA2®A3=(A1®A2) ®A3

where(A1 ® Ay) is in an Abelian variety ands is in a congruence distributive variety.
Hence:

THEOREM 4.11. SupposéA is a finite algebra in a decidable variety. PBQ@\) <
max(, |A]).

In order to discuss the next class of algebras we would like to address, we need som
definitions. Suppose, 8, andy are congruences on an algeBraWe say thad centralizes
B moduloy and writeC («, 8; y) if and only if for all term operations of A and for all
elements, b, x1, ..., x4, y1, ..., o Of Aif aab andx; By; fori =1, ..., n, then

ta,x1,..., %) y t(@ yi, ..., yn)
¢
th,x1,...,x5) v t(b,y1,...,¥n)

We will write C%(«, B; y) if the above equivalence holds when it is also assumed that
x; = y; fori =2,..., n. Thecommutator of « andg - denoted by, 8] - is the smallest
congruence on A satisfyingC(«, 8; 8). If [a, 8] = « N g for all « and B in ComA, we
sayA is congruence neutralor simplyneutral.

The commutator is particularly well-behaved for algebras in congruence modular varie-
ties. For a thorough discussion of the commutator in congruence modular varieties, see [6
If {A;}!_, are congruence neutral in a congruence modular variety, then all finite subdirect
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products of{A;}?_; have distributive congruence lattices. In a congruence modular
variety, A is Abelian if and only if [14,14] = 04. If ¥ : A — B is a surjective
homomorphism in a congruence modular variety @aaahdg are congruences above kigr
theny ([ (@), ¥ (B)]) = [«, B] v kery. From this, it follows that ifA is Abelian (or
neutral), then so iB. Recall that a congruence permuting variety is also congruence modu-
lar. The notion of centralization can be captured with @ferelation in the presence of a
Maltsev term:

LEMMA 4.12. If an algebraA has a Maltsev term, the@(«, 8; y) is equivalent to
C2(a, B; y) for all congruences, B, andy of A.

This lemma follows from Lemma 2.8 of [10]. We are now ready to define the next
class of algebras with which we will be working. An algeBras hereditarily (neutral x
Abelian) if and only if every subalgebra oA is the product of a neutral algebra and
an Abelian algebra. We will show here that the term operations of a hereditarily (neutral
Abelian) algebra with a Maltsev term are generated by Glg2A. This willimmediately
give us a result concerning PP@%. We first need a structure theory which will allow us
to discuss subdirect products of congruence neutral algebras with Maltsev operations. W
will extend a familiar lemma of I. Fleischer. We will be using the following rather technical
notation in the next few pages. For a subdirect product (of #t)[[;.; Ai, definenl.B
to be the projection of B to thd" coordinate ang? = ker(z?) fori e 1. Fori # j e I,
let 85’1.} :B— B/ v nf) be the canonical map, and tef] :Aj > B/(nB v nf) be
the unique function defined b%ﬁ,j}(X) = afjnig(x) (we know this exists since ker® <
kersgl ).

LEMMA 4.13. (Fleischer’'s Lemma [5]puppose that C Aj; x A is a subdirect
product (of sets) in which the projection kernels permute. Then

A = {(x1, x2) € A1 x Ap @ af'5(x1) = ag 1(x2)}.

We extend this lemma to subdirect products of any finite number of factors. We first
need to know how the’s interact with projections.

LEMMA 4.14. SupposeB C [][;.; Ai is a subdirect product (of sets). Jf € I and
C C [];e, Ai is the projection ofB to the coordinates iy, then for alli, j € J and for
alla e A;andb € A;

af (@) = of (b ifand only ifaf ; (a) = o, (b).

Proof. Denote the projection oB onto C by n. Selecta € A; andb € A; so that
afj(a) = afl.(b). There exisk, j € B so thatr? () = a andnf(y) = b. Since

88 () =l 7l () =af (@) =abfi(b) =i 7P (5) =] ()
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we have(x, y) € kersB .. = n8 v 8. Theref
, V) € eré{i’/} =n; V. Therefore,
(r(®), 7(3) e wf vy =a@f) v ) =nf v§ =kersg ;.

This means:

af (@) = af;(xf (r (%))
86 jy(m (@)
86 5 ()
of (rf (7))
= O‘fi (b)

Next, suppose € A;, b € A; andoefj(a) = aﬁi (b). There existi, ? € C so that
7 @) = a andnjc(ﬁ) = b. Also, there exisk, y € B so thatr(x) = i andn(y) = 1.
Just as in the reverse direction, our assumptions requirg € n v 1¢. Therefore,

(@), () = (@, 0) € nf v 1§ =7 @f) v mf) =nmf v k).
Thus
&5 entam? vl =nf vnl =kersf

(where the second to the last equality follows from the Correspondence Theorem). Now

afj(a) = al{}j(”iB()E))
@
5{j,i}(y) )
Olfi(ﬂiB(y))
= of,(b).

We are now ready to prove our extension of Fleischer's Lemma:
LEMMA 4.15. (Extension of Fleischer's Lemm#)B < []/_; A; is a subdirect pro-

duct (of sets) in which the projection kernels generate a distributive lattice of permuting
equivalence relations, then

n
B=1{(x1,....xa) e [[Airafji) =af (xp)Vi £ j¢.
i=1

Proof. Let B be such a subdirect product. We prove this by induction.ofihe case of
n = 1is vacuous and the caserof= 2 is proven by Fleischer’'s Lemma. Assume then that
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n > 2 and that the result holds for subdirect products of fewer thafthe A;'s. Letz be
the projection ofB onto the first: — 1 coordinates and let

n—1
n=kerr) = /\ nf.
i=1
Also, letC = = (B). From the induction hypothesis,
n—1
C = :<x1, o) e [ el i) = afGg)vi £ < n} :
i=1
By the previous lemma, this means
n—1
C= {m, e Xp_1) € l_[Al- ol ) = o (Vi £ < n}
i=1

Let B’ be the set in the statement of the lemma which we hope t®belLet ¥ =

(x1,...,x,) € B'. First, note thatxy, ..., x,_1) € C. Therefore, we can selegtc A,
so that(x1, ..., x,—1,y) € B. We can also seledt, ...,z,—1) € [['Z; A; so that
(z1,...,2n—1, X») € B. By our assumption,

80 (X1, o X1, Y)) = P () = e () = 80}, (220 - Zn-1. X))

foralli < n (the middle equality follows fron € B’). Thus

n—1
(X1 X1, ), (200 Zae X)) €\ ker(8f )

i=1

= NiZit@f va?)

= BV (NI 9B) (distributivity)

=0,V

= 1500 (permutability)

Thus there is som& € B so that

B —
(22, s Zn—1s X)) X' N(X1, + ooy Xn—1, ).

By the definitions of these kernels, this simply me&ns ¥’ € B. This givesB’ C B.
Since the reverse inclusion is cle& = B’ as desired. O

The next lemma exposes the structure of hereditarily (neutrabelian) algebras in a
Maltsev variety which we will exploit:
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LEMMA 4.16. SupposeéA is a finite hereditarily (neutralx Abelian) algebra in a
Maltsev variety.CIoA is generated b¥loj 4|4 2A.

Proof. Write A for A, and letc = |A|. LetA be the algebra oA whose basic operations
are the(k + 2)-ary term operations oA. We want to show thah andA have the same
term operations. We need to make several observations:

Because the subuniverses df-alement algebra are completely determined by-igsy
term operations:

CLAIM 1. A subsetC C A is a subuniverse of if and only if it is a subuniverse
of A.

For any subuniverse€ of A, let C denote the subalgebraafwith universeC, and letC
denote the corresponding subalgebréofAssume tha€ is a subalgebra o&. Trivially,
Clog,2C = Clog42C. It follows from Lemma 2.3 that

CLAIM 2. C andC have the same congruences.

Letd be any congruence dd. Then Clg,»>C/6 = Clog,2C/6, so:

CLAIM 3. C/6# andC/6 have the same congruences and subuniverses.

Supposer, B andy are congruences dd/6 (and hence also 08/6). To determine if
C2(a, B; ¥) holds inC/6 (or C/6) it suffices to consider onlgk + 2)-ary operations - since
C/6 (andC/6) contains at most elements. Sinc€/6 andC/6# have the samé + 2)-ary
term operations, it follows thaf?(«, 8; y) holds inC/@ if and only if it holds inC/6.
From Lemma 4.12C («, f; y) holds inC/# if and only if it holds inC/6 . It follows that

CLAIM 4. C/6 is Abelian (or neutral) if and only i€/6 is.

CLAIM 5. Suppose thad € SubA ando € CorD. Let f : C/0 — D/o be any set
map. Thenf is a homomorphism fror€/6 to D/o if and only if it is a homomorphism
fromC/6toD/o.

To see this, suppose thitis not a homomorphism fror& /6 to D/o. Then there is
some term operatiofi of A and elementsy, ..., x, of C/0 so that

SO e, ) # TP (@, f ).

Since each of these algebras has at mostements, we can, by identifying variables,
assume that < k. By our construction, there is a basic operatfoof A so thats4 = 74.
Thens¢/? = 17€/% ands2/c = TP/ Hencef does not preserve</?, so f fails to be a
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homomorphism fronC/6 to D/o. The reverse implication follows from the fact th@to
andD/o are reducts o€/6 andD /o respectively.

As aresult of what we know so fak,is also hereditarily (neutrat Abelian) in a Maltsev
variety.

In order to show thaf andA have the same term operations, we show that the subuni-
verses ofA” are the same as the subuniversed’dfor all positive integers. Suppose:
is a positive integer anB € SubA”. There are subalgebr&s, ..., S, of AsothaBis a
subdirect product of [_; S;. For each = 1,..., n, we can select congruencgsandz;
of S; so thatS; /6; is neutral S, /t; is Abelian, and_Sl. =S,/6; x S;/v. Let

foITs - (1‘[ Si/el-) x (]‘[ Si/ri)
i=1 i=1 i=1

be the canonical bijection. Thehprovides an |somorph|smﬂ 1S and(]‘[ lS/e)x
([Ti=1 S, /7). From Claims 2 and 5 it follows that ea&his |somorph|c taS; /6; x Si/1i
and thatf is also an isomorphism ¢f'_; S; and([/_; Si/6:) x ([T'—1 Si/7)- Let Py be
the projection of [ [;_; S, /6;) x ([[7_1 S; /i) onto[ ['_; S;/6;, and letP4 be the projection
onto[];_; S;/7i. LetBy = Pn(f(B)) andB, = P4(f(B)). (Note thatPy and P4 - as
projections - are also homomorphisms ouldf_; Si/6;) x ([T—, Si/=) onto[ [/_; Si /6
and[ [, Si/7i.) B

We claim that Cl¢[[/_; S;/7) = Clo([];_; Si/%). Since eacls;/7; is Abelian,
so is eachS;/z;. Since we are in the presence of a Maltsev term, these algebras are
actually affine. Hence the algebrg$’_; S/« and ]_[?zlé,-/rl- are affine. As such,
the clones of these two algebras are generated from their ternary term operations. |
order to show CIq[]/_; S;/zi) = Clo([} 13,/11) therefore, we simply need to show
Clos([1/.1 S;/%i) = Cloa([]} 1S,/rl) Supposer is a ternary term in the language of
A. We observe that the operatmﬂﬂ _151/% s a term operation of[;_; S;/7;. From the
manner in whichA was defined, there is a ternin the language oA so ghatSA = T4,
$4 induces an operation d’_; S;/7; in the usual way. Sinc§4 = T4, it should be
clear thatr [li=1 5/t = gllicaSi/% Thus

Clog (]‘[ §i/ri) 2 Clog (]‘[ S/n) :

i=1 i=1

The proofthatthe reverse inclusion holds is symmetric. Jificg S,/ and[[7_; S/t
have the same term operations, and siBgés a subuniverse df[;_; S;/1;, it follows that
By is also the universe of a subalgel@a of |t é,'/r[.

We now address the neutral factors. Note that smmojects onto eac@l, it follows

thatB, projects onto eacB; /6;. For alli # j <n, Ieta 1 S/6; — BN/(ﬂ, Ny an)
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be as in Lemma 4.15. We will write; ; for af;". Now, for eachi # j < n, we can find
Dy, j € SuUmA andoy; j; € ConDy; ;, so that there is an isomorphism

. B B
Biijy B/ v ) — Dy jy /o jy-

(If h © S — S;/6; is the canonical map, then it suffices to @} ;, = S; andoy; j; =
ker(oc,-,jh).) Let Vi,j - §i/9i — Q{i,j}/o{i»j} be given byyi,j = ﬂ{i,j}oli)j. With this
arrangement and Lemma 4.15.

By = !(xl, ceesXp) € nSi/Qi voy (X)) = aji(x;)Vi ?éj}~

i=1

But since eactsy; ;; is bijective, we can also write:

By = {(XL coXp) € l_[Si/@i cviLj () = v (x Vi #E j} .

i=1

Since eacly; ; is also a homomorphism fro® /6; ontoDy; j;/a(;.jy (Claim 5), By is the
universe of a subalgeby of [T'1 Si/6; (it is not difficult to show that any subset of a
product of algebras defined in this manner using homomorphisms is a subuniverse).

Letd = ker(Py f) v ker(P4 f). ThenB/6 is neutral and Abelian. TherefoByY6 must
be trivial, so

1=0 =ker(Py f) VvV ker(Psf)=ker(Pyf)oker(Paf).

Since it is also the case that kB f A ker P4 f = 0p, B = By x B, with Py f and P4 f
acting as the projection homomorphisms. This means that fox any”, x is in B if and
only if Py f(x) € By andPy f(x) € Ba. Thatis,B = (Py f)"X(By) N (P4 f)~L(Bn).
SincePy f : A" — []'_,Si/6; and P, f : A" — []'_, Si/% are surjective homomor-
phismes, it follows tha is a subuniverse o&”.

Thus, every subuniverse of a direct powerAfis a subuniverse of a direct power
of A. Since the reverse inclusion is trivial, we have that the subuniverses of direct powers
of A are identical to those oA. Because the clones of these algebras can be realized
as collections of certain subuniverses of direct powers in the familiar way, it follows that
CloA = CloA. m|

Since there are only finitely many possibilities for £leA whenA is finite, this lemma
has the following immediate corollary:

COROLLARY 4.17. There are finitely many hereditarily (neutral Abelian) algebras
with a Maltsev term on any finite set.
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If A is finite and hereditarily (neutrak Abelian) in a congruence permuting variety,
then the previous lemma tells us that the centralizer clodeistletermined by Cla42A.
Theorem 2.1 now gives:

THEOREM 4.18. Supposé\ is a finite hereditarily (neutrak Abelian) algebra with a
Maltsev term. PP&(A) < |A| + 2.

Of course, this class of algebras may seem a little artificial. The theorem gives us a
corollary for algebras in the following class of varieties. A varigtys directly repre-
sentableif and only if it is finitely generated and has up to isomorphism a finite set of
directly indecomposable members - all finite. In [12], R. McKenzie gives the following
characterization of when a finite set of finite algebras generates a directly representabl
variety:

THEOREM 4.19. [12]Let K be an arbitrary set of similar finite algebrasy(K) is
directly representable if and only if the following hold:

1. V(K) has permuting congruences.

2. Every member of &) is isomorphic to a direct product of simple algebras and
Abelian algebras.

3. The variety generated by the set of Abelian factors of member&®fis directly
representable.

Since the finite product of finite neutral (or Abelian) algebras in a congruence modular
variety is neutral (Abelian), and since a simple algebra is either neutral or Abelian, any finite
algebra which generates a directly representable variety is hereditarily (neuttsdlian).
Hence:

COROLLARY 4.20. Suppos#A is a finite algebra which generates a directly repre-
sentable variety. Then PRCA) < |A| + 2.

5. Closing remarks

In this paper we have seen how the structure of an alg@bcan influence the size
of the generating set of PRCloA). Theorem 3.1 insures that our observations about
this influence are not trivial. It would be interesting to further investigate the relationship
between the structure of a finite algelfxaand its primitive positive clone. For example,
every Maltsev condition satisfied by the variety generatedlpasses on to the variety
generated byA, PPQCloA)), while the reverse may not be true. What other properties of
A are passed on o1, PPQCloA))? Which properties ofA, PPQCloA)) are forced upon
A? In particular, it would be interesting to investigate the structurioPPGCIoA)) for
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a familiar algebraA. For example, ifA is a finite group or a lattice, what can be said about
(A, PPQCIoA))? What ifA is Abelian or even affine?

While investigating the relationship betwearand PPCA), it should be worthwhile to
includeZ (A), as this primitive positive clone also reflects the structurs.dfor example, it
is easy to see thatis idempotent if and only iZ (A) contains all of the constant operations.
Also, if A is a strictly simple Maltsev algebra, th&{A) determinesA up to categorical
equivalence [15].
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