
Algebra univers. 54 (2005) 65–71
0002-5240/05/010065 – 07
DOI 10.1007/s00012-005-1922-4
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Subdirect products of hereditary congruence lattices

John W. Snow

Abstract. A congruence lattice L of an algebra A is called power-hereditary if every 0-1
sublattice of Ln is the congruence lattice of an algebra on An for all positive integers n.
Let A and B be finite algebras. We prove
• If ConA is distributive, then every subdirect product of ConA and ConB is a congru-

ence lattice on A × B.
• If ConA is distributive and ConB is power-hereditary, then (ConA)×(ConB) is power-

hereditary.
• If ConA ∼= N5 and ConB is modular, then every subdirect product of ConA and ConB

is a congruence lattice.
• Every congruence lattice representation of N5 is power-hereditary.

1. Introduction

A finite lattice is representable if it is isomorphic to the congruence lattice of
a finite algebra. If L is the congruence lattice of a finite algebra A and every 0-1
sublattice of L is also the congruence lattice of an algebra with the same universe
as A, then L is called a hereditary congruence lattice. Furthermore, if every 0-1
sublattice of Ln is the congruence lattice of an algebra on An for every positive
integer n, then L is a power-hereditary congruence lattice.

In [6] the author proves that the lattice of equivalence relations on a three element
set (which is isomorphic to M3) is a power-hereditary congruence lattice thereby
proving that every finite lattice in the variety generated by M3 is representable.
Hegedűs and Pálfy in [2] improve upon this result by proving that every finite lattice
in the variety generated by all finite lattices formed by gluing together copies of
M3 in certain ways is representable. They then introduce the notion of a (power-)
hereditary congruence lattice and give examples of congruence lattices which are
power-hereditary, hereditary but not power-hereditary, and not hereditary. In this
paper we investigate subdirect products of congruence lattices in which one of the
lattices is distributive or is isomorphic to N5.
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2. Preliminaries

If α is a binary relation on a set A and β is a binary relation on a set B, then
the relation 〈α, β〉 is a binary relation on A×B defined so that 〈a1, b1〉〈α, β〉〈a2, b2〉
if and only if a1αa2 and b1βb2. If L is a lattice of equivalence relations on a set A

and M is a lattice of equivalence relations on a set B, then L× M is the set of all
equivalence relations on A × B of the form 〈α, β〉 where α ∈ L and β ∈ M. These
definitions extend naturally to direct powers Ln of lattices of equivalence relations.
If L is the congruence lattice of a finite algebra A and every 0-1 sublattice of L is
also the congruence lattice of an algebra with the same universe as A, then L is
called a hereditary congruence lattice. Furthermore, if every 0-1 sublattice of Ln is
the congruence lattice of an algebra on An for all positive integers n, then L is a
power-hereditary congruence lattice.

By a representation or a congruence representation of a finite lattice L we will
mean the congruence lattice ConA of a finite algebra such that ConA ∼= L. If ConA
is a representation of L and ConA is a (power-)hereditary congruence lattice, then
we will say that ConA is a (power-)hereditary representation.

A primitive positive formula is a formula of the form ∃ ∧ (atomic). If Φ is a
primitive positive formula employing binary relation symbols r1, . . . , rn and if Φ
has two free variables, then Φ naturally induces an operation on the set of binary
relations of any set. If θ1, . . . , θn are binary relations on a set A, then we will use
Φ(θ1, . . . , θn) to represent the binary relation on A defined by interpreting each ri

in Φ as θi. The operation 〈θ1, . . . , θn〉 �→ Φ(θ1, . . . , θn) is order preserving, and
when it is applied to products of relations can be applied coordinate-wise.

In [5] the author proves that the set of all representable finite lattices is closed
under certain lattice theoretic operations. We will employ some of those results
here. The main tool exploited there is the following lemma which follows from the
fact that a set of relations on a finite set is the set of all relations compatible with
an algebra on the set if and only if the relations are closed under primitive positive
definitions [1, 3].

Lemma 2.1. ([5] Corollary 2.2) Suppose L is a 0-1 lattice of equivalence relations
on a finite set A. There is an algebra A on A with ConA = L if and only if
every equivalence relation on A which can be defined from L by a primitive positive
formula is already in L.

If A and X are sets, then we will use AX to represent the set of all functions
from X to A. If P and Q are posets, then PQ is the set of all order preserving
maps from Q to P. Since the operations induced on binary relations by primitive
positive formulas are order preserving and apply coordinate-wise, an immediate
consequence of Lemma 2.1 is
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Corollary 2.2. Suppose that A is a finite algebra and P is a finite poset. Then
(ConA)P is a congruence lattice on the set AP .

Taking P to be {0, 1} with the usual order, we get

Corollary 2.3. Suppose that N is the congruence lattice of a finite algebra and let
L = {〈u, v〉 ∈ N2 : u ≤ v}. Then L is a congruence lattice.

Among the constructions from [5] we will need the following.

Lemma 2.4. ([5] Lemma 3.2) Suppose A is a finite algebra and α and β are
equivalence relations on A. There is an algebra A′ on A with

ConA′ = {x ∈ ConA : x ≤ α or x ≥ β}.
In [2] Hegedűs and Pálfy give the following characterization of sublattices of

products of lattices as intersections of sublattices of a special form.

Lemma 2.5. ([2] Lemma 4.7) Let L1 and L2 be arbitrary lattices and L ⊆ L1×L2

a sublattice. Let us define

L′
1 = {x ∈ L1 : (∃b ∈ L2)〈x, b〉 ∈ L}

L′
2 = {y ∈ L2 : (∃a ∈ L1)〈a, y〉 ∈ L}

L∗
1 = {〈x, y〉 ∈ L1 × L2 : (∃〈a, b〉 ∈ L)(x ≤ a and b ≤ y)}

L∗
2 = {〈x, y〉 ∈ L1 × L2 : (∃〈a, b〉 ∈ L)(x ≥ a and b ≥ y)}

Then L = (L′
1 ×L2)∩ (L1 ×L′

2)∩L∗
1 ∩L∗

2. Moreover, if L is a 0-1 sublattice, then
L∗

1 and L∗
2 are subdirect products in L1 × L2 with 〈0, 1〉 ∈ L∗

1 and 〈1, 0〉 ∈ L∗
2.

Using this lemma and the fact that lattices have a majority term, Hegedűs and
Pálfy prove (Eq(X) is the lattice of all equivalence relations on the set X):

Lemma 2.6. ([2] Theorem 4.8) Let X be a finite set and L ⊆ Eq(X) a 0-1 sublat-
tice. If every subdirect product L′′ ⊆ L×L ⊆ Eq(X2) containing ({0}×L)∪(L×{1})
is a congruence lattice, then L ⊆ Eq(X) is a power hereditary congruence lattice.

3. Products with Distributive Lattices

Every 0-1 distributive lattice of equivalence relations on a finite set is a congru-
ence lattice [4], so every distributive congruence lattice is power-hereditary. In this
section we will consider sublattices of direct products of distributive congruence
lattices with other congruence lattices. Let N and M be finite lattices and L a
subdirect product of N and M. For any x ∈ N, let

x↑ = ∨{y ∈ M : 〈x, y〉 ∈ L} and

x↓ = ∧{y ∈ M : 〈x, y〉 ∈ L}.
The following lemma is not difficult and will be used frequently without reference.
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Lemma 3.1. Let N and M be finite lattices and L a subdirect product of N and
M.

(1) For any x ∈ N and y ∈ M, 〈x, y〉 ∈ L if and only if x↓ ≤ y ≤ x↑.
(2) The map x �→ x↓ is a join homomorphism.
(3) The map x �→ x↑ is a meet homomorphism.

Suppose that L is a finite distributive lattice. Denote the set of meet prime
elements of L as M(L). For any x ∈ M(L), let x̄ = ∧{y ∈ L : y �≤ x}. Then x̄ is
join prime and L is the disjoint union of the intervals [0, x] and [x̄, 1].

Theorem 3.2. Suppose that D = ConA and M = ConB are congruence lattices
of finite algebras with D distributive. Then every subdirect product of D and M is
the congruence lattice of an algebra on A × B.

Proof. Let L be a subdirect product of D and M. Let

N =
⋂

x∈M(D)

{〈u, v〉 ∈ D× M : 〈u, v〉 ≤ 〈x, x↑〉 or 〈u, v〉 ≥ 〈x̄, x̄↓〉}

We claim that L = N. It will then follow that L is a congruence lattice by Lemma
2.4. Let 〈u, v〉 ∈ L and x ∈ M(D). Either u ≤ x — in which case v ≤ x↑ by
Lemma 3.1 — or u ≥ x̄ — in which case x̄↓ ≤ v. Thus, either 〈u, v〉 ≤ 〈x, x↑〉 or
〈u, v〉 ≥ 〈x̄, x̄↓〉. This is true for all x ∈ M(D), so 〈u, v〉 ∈ N.

Next, let 〈u, v〉 ∈ N. Since u ∈ D and since D is a finite distributive lattice,
there exist m1, . . . , ms ∈ M(D) with u = m1 ∧ m2 ∧ · · · ∧ ms. Also, there are
n1, n2, . . . , nt ∈ M(D) so that u = n̄1 ∨ n̄2 ∨ · · · ∨ n̄t. Since 〈u, v〉 ∈ N, for each i =
1, 2, . . . , s it must be that 〈u, v〉 ≤ 〈mi, mi

↑〉 (since u ≤ mi). Also, for i = 1, 2, . . . , t

we have 〈u, v〉 ≥ 〈n̄i, n̄i
↓〉 (since u ≥ n̄i). Therefore

u↓ = n̄1
↓ ∨ n̄2

↓ ∨ · · · ∨ n̄t
↓ ≤ v ≤ m1

↑ ∧ m2
↑ ∧ · · · ∧ ms

↑ = u↑.

Hence 〈u, v〉 ∈ L, and we have L = N. It follows now from Lemma 2.4 that L is
indeed a congruence lattice. �

Note that this proof only required that M be a congruence lattice, not a hered-
itary congruence lattice.

Theorem 3.3. Suppose that A and B are finite algebras with ConA distributive
and ConB power-hereditary. Then ConA×ConB is a power-hereditary congruence
lattice.

Proof. Let D = ConA and M = ConB. By Lemma 2.6, it suffices to show that
every subdirect product L ⊆ (D×M)× (D×M) is a congruence lattice. Let L be
such a lattice. L is a lattice of equivalence relations on the set (A ×B)× (A× B).
There is a natural bijection between (A × B) × (A × B) and A2 × B2. Under
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this bijection, L corresponds to a sublattice L′ of D2 × M2. L is a congruence
lattice if and only if L′ is. The projection L′

D of L′ to D2 is a distributive lattice
of equivalence relations and is therefore a congruence lattice on A2. On the other
hand, the projection L′

M of L′ to M2 is a congruence lattice on B2 because M is
power-hereditary. L′ is then a subdirect product of a distributive congruence lattice
L′

D and another congruence lattice L′
M . By Theorem 3.2, L′ is a congruence lattice,

and then so is L. It now follows from Lemma 2.6 that D×M is a power-hereditary
congruence lattice. �

4. Representations of N5

In this section, we will consider subdirect products of representations of N5 and
representations of other finite lattices. Assume that N = ConA and M = ConB
are congruence lattices of finite algebras with N ∼= N5. Let L ⊆ N × M be a
subdirect product. Assume that N = {0, 1, a, b, c} with 0 and 1 the minimal and
maximal elements and c ≺ b the critical cover. We will also refer to the minimal
and maximal elements of M as 0 and 1.

Lemma 4.1. If L contains {0}×M and N×{1} and if a↓ and b↓ are comparable
or c↓ = b↓ then L is the congruence lattice of an algebra on A × B.

Proof. Suppose first that c↓ = b↓. Then L = X ∩ Y where

X = {〈u, v〉 : 〈u, v〉 ≥ 〈a, a↓〉 or 〈u, v〉 ≤ 〈b, 1〉} and
Y = {〈u, v〉 : 〈u, v〉 ≥ 〈c, c↓〉 or 〈u, v〉 ≤ 〈a, 1〉}.

By Lemma 2.4 X and Y are congruence lattices of algebras on A × B. Since
L = X ∩ Y , L is also a congruence lattice.

From now on suppose that c↓ �= b↓. Assume a↓ ≤ b↓, then L = X ∩ Y where

X = {〈u, v〉 : 〈u, v〉 ≥ 〈c, c↓〉 or 〈u, v〉 ≤ 〈a, 1〉} and
Y = {〈u, v〉 : 〈u, v〉 ≥ 〈0, a↓〉 or 〈u, v〉 ≤ 〈c, 1〉}.

(Note here that since a∨ c = a∨ b, then a↓ ∨ c↓ = a↓ ∨ b↓ = b↓.) Finally, if a↓ > b↓,
then L = X ∩ Y ∩ Z where

X = {〈u, v〉 : 〈u, v〉 ≥ 〈a, a↓〉 or 〈u, v〉 ≤ 〈b, 1〉},
Y = {〈u, v〉 : 〈u, v〉 ≥ 〈0, c↓〉 or 〈u, v〉 ≤ 〈0, 1〉}, and
Z = {〈u, v〉 : 〈u, v〉 ≥ 〈0, b↓〉 or 〈u, v〉 ≤ 〈c, 1〉}.

In all cases, L is a congruence lattice. �

A similar argument shows

Lemma 4.2. If L contains {1}×M and N×{0} and if a↑ and c↑ are comparable
or c↑ = b↑ then L is the congruence lattice of an algebra on A × B.
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Corollary 4.3. If B = A (so M = N ∼= N5), then every 0-1 sublattice of N × N
containing {0} × N and N× {1} is the congruence lattice of an algebra on A2.

Proof. By Lemma 4.1, we need only address the case when a↓ is not comparable
to b↓ and c↓ �= b↓. We have that a↓ ∨ b↓ = a↓ ∨ c↓ = 1↓, that 1↓ �= a↓, b↓, and that
c↓ < b↓. Therefore, it must be that case that c↓ is also not comparable to a↓. The
only way to have this arrangement (since N ∼= N5) is if x↓ = x for all x ∈ N. This
means that L = {〈u, v〉 ∈ N2 : u ≤ v}. Applying Corollary 2.3 now tells us that L
is a congruence lattice. �

This and Lemma 2.6 now give us

Theorem 4.4. Every representation of N5 as the congruence lattice of a finite
algebra is a power-hereditary representation.

Lemmas 4.1 and 4.2 also give

Corollary 4.5. If M is modular and if L contains either ({0} × M) ∪ (N × {1})
or (N× {0}) ∪ ({1} × M)) then L is a congruence lattice.

Proof. Suppose that L contains ({0}×M)∪(N×{1}). As in the proof of Corollary
4.3, we can assume that a↓ is not comparable to either b↓ or c↓ and that c↓ < b↓.

Since M is modular, it cannot be that a↓ ∧ b↓ = a↓ ∧ c↓ (this would give us a
copy of N5 in M). Also by modularity, it must be that (a↓ ∧ b↓) ∨ c↓ = b↓. It now
follows that L = X ∩ Y ∩ Z where

X = {〈u, v〉 : 〈u, v〉 ≥ 〈a, a↓〉 or 〈u, v〉 ≤ 〈b, 1〉},
Y = {〈u, v〉 : 〈u, v〉 ≥ 〈c, c↓〉 or 〈u, v〉 ≤ 〈a, 1〉}, and
Z = {〈u, v〉 : 〈u, v〉 ≥ 〈0, a↓ ∧ b↓〉 or 〈u, v〉 ≤ 〈c, 1〉}.

The proof of the other half of the lemma is similar. �

Together with Lemma 2.5, this proves

Theorem 4.6. If A and B are finite algebras with ConA ∼= N5 and ConB modular,
then every subdirect product of ConA and ConB is the congruence lattice of an
algebra on A × B.

Note that we did not need for ConB to be hereditary here.

References
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