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Abstract

We present the basic theory of commutators of congruences in congruence modular
varieties (or equationally defined classes) of algebras. The theory we present was first
introduced to the mathematical world in a 1976 monograph of J.D.H. Smith, devoted to
varieties with permuting congruences. It was extended to congruence modular varieties
in a 1979 paper by J. Hagemann and C. Herrmann, and has since been elaborated into an
impressive machinery for attacking diverse problems in the domain of congruence modular
varieties. Three notable applications of this commutator theory are presented in detail,
and others are described.
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1 Introduction

The commutator in group theory is a natural operation defined on the lattice of normal
subgroups of any group which plays a basic role in the definition and study of solvable and
Abelian groups. This commutator has a companion operation in the theory of rings, defined
on any lattice of ideals. These two operations share many common properties, including the
ability to capture the notion of Abelian-ness.

In [43], J.D.H. Smith used category theory to extend structural properties of groups
and rings to varieties with permuting congruences. In doing so, he laid the framework for
generalizing the commutator from groups and rings to an operation on the congruence lattices
of algebras in congruence permutable varieties.

J. Hagemann and C. Herrmann in [19] extended some of Smith’s results to congru-
ence modular varieties. Their techniques include subtle and difficult calculations in ConA,
ConA2, and ConA3 using modular arithmetic. In their work, they mentioned the term
condition which would later become the basis for what seems to be the most useful defini-
tion of the commutator in congruence modular varieties. H.-P. Gumm [17] further extended
these structural results for congruence modular varieties by viewing the structure imposed
on algebras by congruence relations geometrically. R. Freese and R. McKenzie [12] developed
the commutator for congruence modular varieties based on the term condition mentioned by
Hagemann and Herrmann.

In this manuscript, we give a gentle introduction to the commutator theory presented in
[12]. We then present several applications of the commutator along with some open problems
which may involve commutator theory. In Section 2 we review the classical commutator in
groups and demonstrate how the term condition arises naturally in this environment. In
Section 3 we lay out some basic notation which will be pervasive throughout the manuscript.
In Section 4 we use the notion of centrality to define the commutator and prove a few
properties of the commutator which hold in any environment. In Section 5 we give examples
of the commutator in some familiar environments including rings, lattices, and modules. In
Section 6 we give the classical Maltsev type characterizations of congruence permutability,
distributivity, and modularity due to Maltsev, Jónsson, and Day. These characterizations are
exploited heavily in the development of commutator theory for congruence modular varieties.
In Section 7 we use Jónsson’s characterization of congruence distributivity to prove that in a
congruence distributive variety the commutator is nothing other than congruence intersection.
In Section 8 we extend all of the properties of the group commutator mentioned in Section 2
to the commutator in congruence modular varieties. In Section 9 we prove the Fundamental
Theorem of Abelian Algebras that every Abelian algebra (in a congruence modular variety) is
affine (polynomially equivalent to a module). In Section 10 we extend the ideas of solvability
and nilpotence using the commutator. We prove that every nilpotent or solvable algebra
in a congruence modular variety has a Maltsev term and use this to give some structural
results about nilpotent algebras. In Section 11 on applications, we briefly discuss seven
outstanding instances of basic problems that have been solved, for modular varieties, with
the aid of commutator theory. In the following sections, we present three of these applications
in detail: In Section 12 we prove that every finitely generated, residually small, congruence
modular variety has a finite residual bound, and that such varieties are characterized by a
commutator equation. In Section 13 we characterize directly representable varieties—i.e.,
those finitely generated varieties that possess only a finite number of non-isomorphic finite,
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directly indecomposable, algebras—and we characterize the larger family of finitely generated
varieties whose spectrum is contained in a finitely generated monoid of positive integers. All
of these varieties are shown to be congruence modular. In Section 14 we characterize the
locally finite congruence modular varieties for which the function giving the number of non-
isomorphic n-generated algebras is dominated by a polynomial in n. They are precisely the
directly representable Abelian varieties. In Section 15 we survey some problems which either
involve the commutator or for which there is evidence that the commutator might prove
useful. We note that the results herein are not original. Excepting the results of Sections
13–14, almost all of them appear with proofs in [12].

2 The Commutator in Groups

In this section, we discuss the group commutator and some of its most basic properties, and
we illustrate how the term condition arises naturally in this environment.

Definition 2.1 Suppose that G is a group and M and N are normal subgroups of G. The
group commutator of M and N is defined as

[M, N ] = SgG({m−1n−1mn : m ∈ M and n ∈ N}), (2.1)

Suppose that G is a group, that M , N , and {Ni : i ∈ I} are normal subgroups of G, and
that f : G → H is a surjective group homomorphism. Then the following properties of the
group commutator are easy exercises in any first class on group theory.

(1) [M, N ] ⊆ M ∩N .

(2) f([M,N ]) = [f(M), f(N)].

(3) [M, N ] = [N,M ].

(4) [M,
∨

i∈I Ni] =
∨

i∈I [M,Ni].

(5) For any normal subgroup K of G included in M ∩N , the elements of M/K commute
with the elements of N/K if and only if K ⊇ [M, N ].

(6) G is Abelian if and only if [G, G] = {1} (where 1 is the identity element of G).

When we generalize the commutator later to congruences in a congruence modular variety,
we will want an operation which will share these properties. Our operation will be defined
from a generalization of the condition (5). From this definition, we will get (1), (3), and (4)
directly and a slight modification of (2). We will take (6) to be our definition of Abelian.

The group commutator has one more property which is less transparent but which will
also carry over to the generalization (in fact, it also could be used to define the modular
commutator). This is

(7) The commutator operation is the largest binary operation defined across all normal
subgroup lattices of all groups which satisfies conditions (1) and (2).
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Suppose that C(x, y) is another binary operation defined on the normal subgroup lattice
of every group which satisfies (1) and (2). Let M and N be normal subgroups of a group G.
We will prove that C(M,N) ⊆ [M, N ]. To do so, we need to define four subgroups of G×G.

G(M) = {〈x, y〉 : x, y ∈ G and x−1y ∈ M} (2.2)

∆ = {〈x, y〉 : x ∈ N, y ∈ G, and x−1y ∈ [M, N ]} (2.3)

B = {〈x, 1〉 : x ∈ [M,N ]} (2.4)

M1 = {〈x, 1〉 : x ∈ M} . (2.5)

The subgroups ∆, B, and M1 are normal subgroups of G(M). Let π be the projection of
G(M) to the first coordinate. Then the reader can check that

π(G(M)) = G (2.6)

π(∆) = N (2.7)

π(B) = [M,N ] (2.8)

π(M1) = M. (2.9)

From property (1) we see that C(M1,∆) ⊆ M1 ∩∆ ⊆ B and by (2)

C(M, N) = π(C(M1, ∆)) ⊆ π(B) = [M, N ]. (2.10)

We would now like to state a condition equivalent to (5) which will be the basis for our
generalization of the commutator. Let K = [M, N ]. Suppose that t is an (n + m)-ary group
term. We will address here how t behaves in G/K when evaluated on elements of M/K and
N/K. For convenience in the following calculations, we will write ḡ for elements gK of G/K.
Suppose that a1, . . . , an, b1, . . . , bn ∈ M and x1, . . . , xm, y1, . . . , ym ∈ N and that

t(ā1, . . . , ān, x̄1, . . . , x̄m) = t(ā1, . . . , ān, ȳ1, . . . , ȳm) . (2.11)

Since K = [M, N ], we can permute some of the elements in this equation so that we have

t(ā1, . . . , ān, x̄1, . . . , x̄m) = āe1
j1

āe2
j2
· · · āeu

ju
x̄d1

l1
x̄d2

l2
· · · x̄dv

lv
(2.12)

where each ei and each di is either 1 or −1. Similarly

t(ā1, . . . , ān, ȳ1, . . . , ȳm) = āe1
j1

āe2
j2
· · · āeu

ju
ȳd1

l1
ȳd2

l2
· · · ȳdv

lv
. (2.13)

Combining these, we have

āe1
j1

āe2
j2
· · · āeu

ju
x̄d1

l1
x̄d2

l2
· · · x̄dv

lv
= āe1

j1
āe2

j2
· · · āeu

ju
ȳd1

l1
ȳd2

l2
· · · ȳdv

lv
. (2.14)

Suitable cancellation and multiplication by b’s now gives

b̄e1
j1

b̄e2
j2
· · · b̄eu

ju
x̄d1

l1
x̄d2

l2
· · · x̄dv

lv
= b̄e1

j1
b̄e2
j2
· · · b̄eu

ju
ȳd1

l1
ȳd2

l2
· · · ȳdv

lv
. (2.15)

After commuting as before, we end up with the equality

t(b̄1, . . . , b̄n, x̄1, . . . , x̄m) = t(b̄1, . . . , b̄n, ȳ1, . . . , ȳm). (2.16)

We have proven the following property which will replace property (5) above.
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(5’) Suppose that t is an (n + m)-ary group term and that a1, . . . , an, b1, . . . , bn ∈ M and
x1, . . . , xm, y1, . . . , ym ∈ N . Let K = [M, N ]. If

t(a1K, . . . , anK, x1K, . . . , xmK) = t(a1K, . . . , a1K, y1K, . . . , ymK) (2.17)

then also

t(b1K, . . . , bnK, x1K, . . . , xmK) = t(b1K, . . . , b1K, y1K, . . . , ymK). (2.18)

We will describe this situation by saying that G satisfies the M, N term condition modulo
K or that M centralizes N modulo K. This term condition will be the basis of the modular
commutator.

3 Notation

We assume that the reader is familiar with the basics of universal algebra, and we will usually
use notation consistent with [37]. In this section, we emphasize a few key ideas and pieces of
notation.

Generally, we will use plain text capital letters to refer to sets. We will use bold faced text
to refer to algebras. Usually (but not always), the same letter will be used for the set and the
algebra. For example, an algebra on a set A will almost always be called A. We use script
letters (such as V) to refer to varieties, classes of varieties, and classes of algebras. For any
algebra A in a variety V and any term t(x0, . . . , xn) of V, it is customary to use a superscript
to denote the term operation of A induced by t (that is, tA(x0, . . . , xn)). In most of our proofs,
the algebra will be understood, so we will often (usually) leave off the superscript to allow
for cleaner notation. If A is an algebra, we will use bold faced lowercase letters to represent
elements of direct powers of A. For example, an element a ∈ An is a vector 〈a0, . . . , an−1〉.
Notice that with this notation, we will always assume our subscripts begin at 0 and go to
n − 1. When applying an (n + m)-ary term t to a vector 〈x0, . . . , xn−1, y0, . . . , ym−1〉, it is
often more convenient (and notationally cleaner) to write t(x,y).

For the subalgebra of A generated by a subset X ⊆ A, we will write SgA(X). For the sub-
algebra generated by elements a1, . . . , an, we may abuse notation and write SgA(a1, . . . , an).
Similarly, we use CgA(X) for the congruence on A generated by a subset X ⊆ A2. For the
principal congruence generated by identifying elements a and b, we will write CgA(a, b). In
all cases, we may omit the subscripted A if the underlying algebra is understood. We will
use End A for the endomorphism monoid of A.

Depending on context, there are three notations we may use to assert that two elements
x and y are related by a binary relation α. These are

xαy

〈x, y〉 ∈ α and

x ≡ y (mod α).

By a tolerance on an algebra A, we mean a subalgebra of A2 which is reflexive and symmetric
(but not necessarily transitive). We will use ConA to represent the congruence lattice of A
and TolA to represent the tolerance lattice of A. If α is any binary relation then Tr(α) will
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Figure 1: The lattices N5 (left) and M3 (right).

be the transitive closure of α. The universal relation on a set A will be denoted 1A, and the
identity relation will be denoted by 0A.

If V is any variety, we will use the notation V|=Con . . . to indicate that all congruences of
all algebras in V satisfy the property . . . . For example, V|=Con(α ∩ β ≈ [α, β]) means that
for every algebra A ∈ V and for all α, β ∈ ConA the equality α ∩ β = [α, β] holds. Usually,
≈ will be used to represent the equality symbol of a first-order language, and = will be used
for a specific instance of equality.

Much of this manuscript will deal with congruence lattices which are modular or dis-
tributive. Therefore, we remind ourselves of the definitions of these properties and state
some basic facts about them. The realization of the concept of a lattice as an independent
algebraic object of interest and the formulation of the modular law dates back to Richard
Dedekind [9].

Definition 3.1 Let L = 〈L,∧,∨〉 be a lattice. L is modular if for all elements a, b, c ∈ L
with c ≤ a the equality a ∧ (b ∨ c) = (a ∧ b) ∨ c holds. L is distributive if for all elements
a, b, c ∈ L the equality a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) holds.

These characterizations of modularity and distributivity should be familiar.

Theorem 3.2 For any lattice L, the following are equivalent.

(1) L is distributive.

(2) a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

(3) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L.

(4) L has no sublattice isomorphic to either N5 or M3 (see Figure 1).

Theorem 3.3 The following are equivalent for any lattice L.

(1) L is modular.

(2) For any a, b, c ∈ L if c ≤ a then a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c.

(3) ((a ∧ c) ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c ∈ L.

(4) L has no sublattice isomorphic to N5 (see Figure 1).



8 R. McKenzie and J. Snow

4 Centrality and the Term Condition Commutator

Definition 4.1 Suppose that α, β, and δ are congruences on an algebra A. Then α central-
izes β modulo δ (in symbols C(α, β; δ)) if for any (m + n)-ary term operation T of A, for
any a,b ∈ Am with aiαbi for all i, and for any c,d ∈ An with ciβdi for all i, the relation
T (a, c)δT (a,d) holds if and only if T (b, c)δT (b,d). When C(α, β; δ) holds, we will also say
that A satisfies the α, β term condition modulo δ.

It will be convenient for us at times to view the elements of A4 as 2× 2 matrices so that
the 4-tuple 〈x0, x1, x2, x3〉 corresponds to the matrix

(
x0 x1

x2 x3

)
.

Definition 4.2 Suppose that α and β are congruences on an algebra A. Define M(α, β) to
be the subalgebra of A4 generated by all matrices either of the form

(
a a
b b

)

where aαb or of the form (
c d
c d

)

where cβd.

It follows immediately from the definitions that

Lemma 4.3 For any congruence α, β, and δ on an algebra A, C(α, β; δ) holds if and only

if for all
(

x y
u v

)
∈ M(α, β), xδy ↔ uδv.

These basic properties of centrality hold without any additional assumptions about the
underlying variety or algebra.

Lemma 4.4 Suppose that α, β, δ, {αi : i ∈ I}, and {δj : j ∈ J} are congruences on an
algebra A.

(1) If C(αi, β; δ) for all i ∈ I, then C(
∨

i∈I αi, β; δ).

(2) If C(α, β; δj) for all j ∈ J , then C(αj , β;
⋂

j∈J δj)

(3) C(α, β; α ∩ β).

Proof (1) Let γ =
∨

i∈I αi. Suppose that T is an (n+m)-ary term of A and that a,b ∈ An

and x,y ∈ Am. Assume also that atγbt for all t and xtβyt for all t. There exist vectors
u1, . . . ,ul so that for each t

at = u1
t αj1u

2
t αj2u

3
t . . . ul

t = bt

Suppose that T (a,x)δT (a,y). We can prove by induction that for each i = 1, . . . , l the
relation T (ui,x)δT (ui,y) holds using C(αji , β; δ). It follows then that T (b,x)δT (b,y).
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(2) Suppose that C(α, β; δj) for all j ∈ J . If
(

x y
u v

)
is any matrix in M(α, β) so that

〈x, y〉 is in
⋂

j∈J δj , then xδjy for all j, so by centrality uδjv for all j. Hence 〈u, v〉 ∈ ⋂
j∈J δj .

(3) Suppose that
(

x y
u v

)
is any matrix in M(α, β). If x(α∩ β)y, then uαx(α∩ β)yαv

so uαv. Since uβv by assumption, it follows that u(α ∩ β)v. 2

This lemma makes possible the following definition

Definition 4.5 Suppose that A is any algebra and α, β ∈ ConA. The commutator of α and
β is defined as [α, β] =

⋂{δ ∈ ConA : C(α, β; δ)}.
This lemma is an immediate consequence of the fact that if α′ ⊆ α and β′ ⊆ β then

M(α′, β) ⊆ M(α, β) and M(α, β′) ⊆ M(α, β).

Lemma 4.6 [ , ] is monotone in both variables.

This lemma follows immediately from (3) of Lemma 4.4.

Lemma 4.7 Suppose that α and β are congruences on an algebra A. Then [α, β] ≤ α ∩ β.

We take the opportunity here to state our definition of what it means for an algebra, or
a congruence, to be Abelian.

Definition 4.8 An algebra A is Abelian if A |= [1A, 1A] = 0A. A congruence α on A is
Abelian if A |= [α, α] = 0A.

By Lemma 4.4 (1), the following definition makes sense.

Definition 4.9 Suppose that A is any algebra. Define the center of A to be the largest
congruence ζ ∈ ConA so that [ζ, 1A] = 0A. Denote the center of A as ζA.

From the definitions, it is clear that

Lemma 4.10 An algebra A is Abelian if and only if ζA = 1A.

We also have this useful universal substitution property of the center.

Lemma 4.11 Suppose A is any algebra. Then ζA is the set of all 〈x, y〉 so that for all
positive integers n, for all (n + 1)-ary terms t of A, and for all a,b ∈ An

t(x,a) = t(x,b) ↔ t(y,a) = t(y,b).

Proof Let θ be the set of all 〈x, y〉 satisfying the conditions of the lemma. We will prove
that θ = ζA. Since [ζA, 1A] = 0A, it should be clear that ζA ⊆ θ. We need only establish
the reverse inclusion. To do so, we need to know that θ is a congruence on A and that
[θ, 1A] = 0A. It is easy to see that θ is an equivalence relation. To prove that it is a
congruence, we prove that θ is closed under all unary polynomials of A. Let p be any unary
polynomial of A. This means that for some k there is an (k+1)-ary term s of A and constants
c ∈ Ak so that p(x) = s(x, c). Let 〈x, y〉 ∈ θ. We show that 〈p(x), p(y)〉 ∈ θ. Suppose that
t is an (n + 1)-ary term of A and that a,b ∈ An. Then t(p(x),a) = t(p(x),b) if and only if



10 R. McKenzie and J. Snow

t(s(x, c),a) = t(s(x, c),b). Since xθy, this happens if and only if t(s(y, c),a) = t(s(y, c),b),
which happens if and only if t(p(y),a) = t(p(y),b). Thus p(x)θp(y). The equivalence relation
θ is closed under all unary polynomials of A, so θ ∈ ConA as desired.

Now we only have left to prove that [θ, 1A] = 0A. To do so, we show that C(θ, 1A; 0A).
Suppose that t is an (n + m)-ary term operation of A, that x,y ∈ Am, that a,b ∈ An with
xiθyi for all i. Suppose that t(x,a) = t(x,b). We must establish that t(y,a) = t(y,b). We
will prove by induction on i = 0, 1, . . . , (m− 1) that

t(y0, . . . , yi, xi+1, . . . , xm−1,a) = t(y0, . . . , yi, xi+1, . . . , xm−1,b).

For i = 0, since x0θy0 and t(x,a) = t(x,b), it follows immediately that

t(y0, x1, . . . , xm−1,a) = t(y0, x1, . . . , xm−1,b).

Suppose then that 0 ≤ i < m− 1 and that

t(y0, . . . , yi, xi+1, . . . , xm−1,a) = t(y0, . . . , yi, xi+1, . . . , xm−1,b).

That
t(y0, . . . , yi, yi+1, xi+2, . . . , xm−1,a) = t(y0, . . . , yi, yi+1, xi+2, . . . , xm−1,b)

follows now from xi+1θyi+1. This completes the induction argument. Taking i = m− 1 now
yields t(y,a) = t(y,b) as desired. 2

5 Examples

In this section we give a few examples of centrality and the commutator in some familiar
varieties. Hopefully, these examples will motivate some of the results we will prove later and
the techniques necessary to prove them. We first consider the commutator in rings.

Suppose that R is a ring and let I, J , and K be ideals of R. Denote the congruence
relations corresponding to I, J , and K by α, β, and δ. Then, for example, xαy if and only
if x− y ∈ I. Suppose further that C(α, β; δ). Taking x ∈ I and y ∈ J , we will use centrality
to prove that xy ∈ K. We have the relations xα0 and yβ0, so the matrix

(
0y 00
xy x0

)
=

(
0 0
xy 0

)

is in M(α, β). Since obviously the top row of this matrix in in δ, we have that xyδ0. This
means that xy = xy − 0 ∈ K. A symmetric argument will show that yx ∈ K also. This
implies that K must contain the ideal IJ +JI. Suppose on the other hand that K is an ideal
containing IJ + JI. We will use this assumption to prove that C(α, β; δ). First of all, notice
that in R/K, the product of any element from I/K and an element from J/K is 0. Suppose
now that t is an (n + m)-ary ring term, a,b ∈ Rn with aiαbi for all i, x,y ∈ Rm with xiβyi

for all i, and that t(a,x)δt(a,y). We need to show that t(b,x)δt(b,y). To simplify notation
in the next calculations, we will write r̄ for any coset r + K in R/K. Since t(a,x)δt(a,y), in
R/K we have t(ā, x̄) = t(ā, ȳ). Through distribution we can find ring terms q, r, s so that

t(u,v) = q(u) + r(v) + s(u,v) (5.1)
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where each of q, r, and s is a sum of products of variables and negated variables and so that
in each product of s at least one ui and at least one vi occurs. Notice that by our assumptions

s(ā, x̄) = s(ā, ȳ) = s(b̄, x̄) = s(b̄, ȳ) = 0. (5.2)

From t(ā, x̄) = t(ā, ȳ) it follows that

q(ā) + r(x̄) + s(ā, x̄) = q(ā) + r(ȳ) + s(ā, ȳ) (5.3)

and hence that
q(ā) + r(x̄) + 0 = q(ā) + r(ȳ) + 0. (5.4)

Appropriate cancellation and addition of q(b̄) now gives

q(b̄) + r(x̄) + 0 = q(b̄) + r(ȳ) + 0 (5.5)

and hence
q(b̄) + r(x̄) + s(b̄, x̄) = q(b̄) + r(ȳ) + s(b̄, ȳ) . (5.6)

This gives t(b̄, x̄) = t(b̄, ȳ) or t(b,x)δt(b,y) as desired. We have proven that C(α, β; δ) holds
if and only if K contains IJ + JI. This gives us

Fact 5.1 Let R be a ring and let I and J be ideals of R. Suppose that α and β are the
congruences associated with I and J . Then [α, β] is the congruence associated with the ideal
IJ + JI.

This fact tells us what Abelian rings look like. Suppose that R is an Abelian ring. This
means that [1R, 1R] = 0R, which by the last fact tells us that R·R+R·R = {0}. This happens
exactly when multiplication in R is trivial in the sense that all products are 0. Hence

Fact 5.2 A ring R is Abelian if and only if all products in R are 0.

Since we know what ring commutators look like, it is easy to see what the center of a ring
is.

Fact 5.3 If R is any ring, then ζR is the annihilator of R—the set of all x ∈ R so that
xr = rx = 0 for all r ∈ R.

We next turn our attention to the commutator in lattices. Suppose that L is a lattice and
that α and β are congruences on L. We will prove that [α, β] = α ∩ β. That [α, β] ⊆ α ∩ β
is always true. We just need to prove the reverse inclusion. Suppose that 〈a, b〉 ∈ α ∩ β.
We will use the α, β term condition modulo [α, β] to show that 〈a, b〉 ∈ [α, β]. Consider the
lattice term t(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). This term satisfies

t(x, x, x) ≈ t(x, x, y) ≈ t(x, y, x) ≈ t(y, x, x) ≈ x. (5.7)

Any ternary term which satisfies these equations is called a majority term. It is well known
that any variety with a majority term is congruence distributive. The matrix

(
a a
a b

)
=

(
t(a, a, a) t(a, a, b)
t(a, b, a) t(a, b, b)

)

is in M(α, β). Since we have equality in the first row – and hence a relation via [α, β], the
α, β term condition modulo [α, β] tells us the second row is in [α, β]. We have proven
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Fact 5.4 The commutator operation in the variety of lattices is congruence intersection.

Actually, our argument proves

Fact 5.5 Suppose that V is any variety with a majority operation. Then the commutator
operation in V is congruence intersection.

We will extend this fact in Section 7 to all congruence distributive varieties. For now,
we will use it to see what Abelian lattices look like. A lattice L is Abelian if and only if
0L = [1L, 1L] = 1L ∩ 1L = 1L. This happens if and only if L is a one element lattice. Thus

Fact 5.6 The only Abelian lattice is the one element lattice.

This could also be proven quickly by considering the term t(x, y, z) = x ∧ y ∧ z and the
term condition. Since such an argument would only involve the one lattice operation, it
would also establish the same result for semilattices. Also notice that since the commutator
in lattices is intersection, the center of a lattice is trivial (the identity relation).

As a final example in this section, we will consider the commutator in modules. We will
prove that the commutator in any module M over a ring R is constantly 0M . To do this, it
suffices to show that [1M , 1M ] = 0M . In particular, we will see that every module is Abelian.
Suppose that t is any (n + m)-ary term of M. We can assume that R has a unity. The term
t can be expressed as

t(u,v) =
l∑

i=1

riuji +
l′∑

i=1

sivji (5.8)

where each ri and each si is in R. Let a,b ∈ Mn and x,y ∈ Mm and suppose that
t(a,x) = t(a,y). This means that

l∑

i=1

riaji +
l′∑

i=1

sixji =
l∑

i=1

riaji +
l′∑

i=1

siyji . (5.9)

Appropriate cancellation and addition now gives

l∑

i=1

ribji +
l′∑

i=1

sixji =
l∑

i=1

ribji +
l′∑

i=1

siyji (5.10)

and hence that t(b,x) = t(b,y). Thus we have established that C(1M , 1M ; 0M ) so [1M , 1M ] =
0M . This means

Fact 5.7 Every module over a ring is Abelian.

I follows, of course, that the center of any module is the universal relation. We will see
in Section 9 that every Abelian algebra in a congruence modular variety is (polynomially
equivalent to) a module over a ring.
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6 Maltsev Conditions

A variety W is said to interpret a variety V if for every basic operation t of V there is a
W-term st so that for every algebra A ∈ W the algebra 〈A, {sA

t }〉 is a member of V. We
denote this situation by V ≤ W. We say that a class K of varieties is a strong Maltsev
class (or that K is defined by a strong Maltsev condition) if and only if there is a finitely
presented variety V so that K is precisely the class of all varieties W for which V ≤ W. If
there are finitely presented varieties . . . ≤ V3 ≤ V2 ≤ V1 so that K is the class of all varieties
W so that Vi ≤ W for some i, then K is a Maltsev class (or is defined by a Maltsev
condition). Finally, if K is the intersection of countably many Maltsev classes, then K is a
weak Maltsev class (or is defined by a weak Maltsev condition).

Most Maltsev conditions in practice take the form of an assertion that a variety has a
set of terms satisfying one of a sequence of sets of weaker and weaker equations. The first
example of a strong Maltsev class was the class of all varieties with permuting congruences.

Theorem 6.1 (A. I. Maltsev [31]) A variety V has permuting congruences if and only if
there is a term p of the variety so that V models the equations:

p(x, z, z) ≈ x and p(z, z, x) ≈ x.

Proof Suppose that a variety V has such a term p. Let A ∈ V and let θ and φ be congruences
of A. Suppose that x, z ∈ A and 〈x, z〉 ∈ θ ◦ φ. Then there is a y ∈ A so that xθy and yφz,
and we have

x = pA(x, z, z)φpA(x, y, z)θpA(x, x, z) = z.

Thus θ ◦ φ ⊆ φ ◦ θ. Also
φ ◦ θ = φ∪ ◦ θ∪

= (θ ◦ φ)∪

⊆ (φ ◦ θ)∪

= θ∪ ◦ φ∪

= θ ◦ φ .

(6.1)

So θ ◦ φ = φ ◦ θ. It follows that V has permuting congruences.
Suppose now that V has permuting congruences. Let F be the algebra in V free on

{x, y, z}. Let f : F → F be the homomorphism which maps x and y to x and z to z and
let θ = ker f . Let g : F → F be the homomorphism mapping x to x and y and z to z and
let φ = ker g. Clearly, we have 〈x, z〉 ∈ θ ◦ φ. Since we are assuming congruences permute,
〈x, z〉 ∈ φ ◦ θ, so there must be a w ∈ F with xφwθz. Since F is generated by {x, y, z}, there
is a term p of V so that pF(x, y, z) = w. Observe:

x = g(x) = g(w) = g(pF(x, y, z)) = pF(g(x), g(y), g(z)) = pF(x, z, z).

Using f , we can similarly show that pF(z, z, x) = x. Since F is freely generated by {x, y, z},
it follows that these equalities hold throughout V. 2

The second example of a strong Maltsev class was found in 1963 by A. F. Pixley. It is
the class of all varieties in which congruences permute and in which congruence lattices are
distributive. Such varieties are called arithmetical. The fact that this is a Maltsev class
is a consequence of the following theorem whose proof is similar to the proof of Maltsev’s
theorem:
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Theorem 6.2 (A.F. Pixley [38]) A variety V is arithmetical if and only if it has a term t so
that V models

t(x, y, y) ≈ t(y, y, x) ≈ t(x, y, x) ≈ x.

The first class of varieties which was shown to be a Maltsev class but not a strong Maltsev
class was the class of all varieties in which all congruence lattices are distributive. Such a
variety is said to be congruence distributive.

Theorem 6.3 (B. Jónsson [25]) A variety V is congruence distributive if and only if for some
positive integer n, V has ternary terms d0, . . . , dn so that V models the following equations:

x ≈ d0(x, y, z)
x ≈ di(x, y, x) for 0 ≤ i ≤ n

di(x, x, y) ≈ di+1(x, x, y) for even i < n
di(x, y, y) ≈ di+1(x, y, y) for odd i < n
dn(x, y, z) ≈ z.

Proof Suppose first that V has ternary terms as described. Let A ∈ V and let θ, φ and
ψ be congruences of A. Suppose that 〈a, c〉 ∈ θ ∩ (φ ∨ ψ) and let α = (θ ∩ φ) ∨ (θ ∩ ψ).
We show 〈a, c〉 ∈ α. There must be a = x0, x1, . . . , xk = c in A with 〈xi, xi+1〉 ∈ φ ∪ ψ for
i < k. For any j ≤ n and for any i < k, we have that 〈dA

j (a, xi, c), dA
j (a, xi+1, c)〉 ∈ φ∪ψ. Also,

dA
j (a, xi, c)θdA

j (a, xi, a) = a = dA
j (a, xi+1, a)θdA

j (a, xi+1, c). Hence, 〈dA
j (a, xi, c), dA

j (a, xi+1, c)〉 ∈
α. By transitivity, for all 0 ≤ j ≤ n:

dA
j (a, a, c) = dA

j (a, x0, c)αdA
j (a, xk, c) = dA

j (a, c, c).

By the third and fourth equations above, this yields dA
j (a, c, c)αdA

j+1(a, c, c) for all j ≤ n.
Hence, a = dA

0 (a, c, c)αdA
n (a, c, c) = c. Thus, θ ∩ (φ ∨ ψ) ⊆ (θ ∩ φ) ∨ (θ ∩ ψ). The reverse

inclusion always holds, so we have established that ConA is distributive.
Now assume that V is congruence distributive and let F be the free algebra in V generated

by {x, y, z}. Let f , g, and h be homomorphisms from F to F given by:

f(x) = f(y) = x,

f(z) = z,

g(x) = x,

g(y) = g(z) = y,

h(x) = h(z) = x, and

h(y) = y.

Let φ = ker f , ψ = ker g, and θ = kerh. Since 〈x, z〉 ∈ θ ∩ (φ ∨ ψ) ≤ (θ ∩ φ) ∨ (θ ∩ ψ), there
must be elements w0 = x, x1, . . . , wn = z in F so that

wiθx for all i ≤ n,

wiψwi+1 for all even i < n, and

wiφwi+1 for all odd i < n.
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Since F is generated by {x, y, z}, there must be ternary terms d0, . . . dn so that dF
i (x, y, z) = wi

for i = 0, . . . , n. That these terms satisfy the desired equations follows as in the proof of
Maltsev’s theorem above. 2

The following Maltsev characterization of congruence modularity is critical for work with
the modular commutator.

Theorem 6.4 (A. Day [7]) A variety V is congruence modular if and only if V has 4-ary
terms m0, . . . ,mn for which V satisfies the equations

x ≈ m0(x, y, z, u)
x ≈ mi(x, y, y, x) for all i

mi(x, x, z, z) ≈ mi+1(x, x, z, z) for i even
mi(x, y, y, u) ≈ mi+1(x, y, y, u) for i odd
mn(x, y, z, u) ≈ u .

The terms in Theorem 6.4 are called Day terms. To prove Day’s theorem, we need the
following lemmas.

Lemma 6.5 Let m0, . . . , mn be Day terms for a variety V. Let A ∈ V and a, b, c, d ∈ A. Let
γ ∈ ConA with bγd. Then aγc if and only if mi(a, a, c, c)γmi(a, b, d, c) for each i = 0, . . . , n.

Proof First suppose that aγc. Then

mi(a, a, c, c)γmi(a, a, a, a) = a = mi(a, b, b, a)γmi(a, b, d, c). (6.2)

Next, suppose that mi(a, a, c, c)γmi(a, b, d, c) for all i. We will prove by induction that
mi(a, b, d, c)γa for all i. This is trivial for i = 0 since m0(a, b, d, c) = a. Assume that
0 ≤ i < n and that mi(a, b, d, c)γa. If i is odd, then

mi+1(a, b, d, c)γmi+1(a, b, b, c) = mi(a, b, b, c)γmi(a, b, d, c)γa. (6.3)

If i is even, then

mi+1(a, b, d, c)γmi+1(a, a, c, c) = mi(a, a, c, c)γmi(a, b, d, c)γa. (6.4)

This finishes the proof that mi(a, b, d, c)γa for all i. In particular, we now know that
aγmn(a, b, d, c) = c. 2

Lemma 6.6 (Shifting Lemma – Gumm [17]) Suppose that A is an algebra in a variety V
with Day terms m0, . . . ,mn. Let α, γ ∈ ConA and let β be a compatible reflexive binary
relation on A. Suppose α ∩ β ⊆ γ. If aβb, cβd, aαc, and b(α ∩ γ)d, then aγc (see figure 2).

Proof We will employ Lemma 6.5, so we need mi(a, a, c, c)γmi(a, b, d, c) for all i. First note
that for all i our assumptions imply mi(a, a, c, c)βmi(a, b, d, c). Next, note that for all i

mi(a, a, c, c)αmi(a, a, a, a) = a = mi(a, b, b, a)αmi(a, b, d, c) . (6.5)

Thus, we have
〈mi(a, a, c, c, ),mi(a, b, d, c)〉 ∈ α ∩ β ⊆ γ. (6.6)
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Figure 2: The Shifting Lemma.

By Lemma 6.5, aγc. 2

Proof (Theorem 6.4) Suppose first that V is a variety with terms m0, . . . , mn satisfying
Day’s equations. Let α, β, and γ be congruences on an algebra A in V with α ≥ γ. We
must show that α ∩ (β ∨ γ) = (α ∩ β) ∨ γ. The inclusion ⊇ is always true. We establish the
forward inclusion. Define compatible reflexive binary relations Γ0, Γ1, . . . on A recursively
by Γ0 = β and Γn+1 = Γn ◦ γ ◦ Γn. Then β ∨ γ =

⋃∞
n=0 Γn. We will prove by induction

that α ∩ Γn ⊆ (α ∩ β) ∨ γ for all n. First, α ∩ Γ0 = α ∩ β which is clearly contained in
(α ∩ β) ∨ γ. Assume that n ≥ 0 and α ∩ Γn ⊆ (α ∩ β) ∨ γ. Let 〈a, c〉 ∈ α ∩ Γn+1. Since
γ ≤ α and γ ≤ (α ∩ β) ∨ γ, we have the relations in Figure 3 for some b and d. The Shifting

u
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u

u

uΓn

Γn

α α

(α ∩ β) ∨ γ

⇒
a b

dc

a

c

¢
¢® z

Figure 3: The inductive step for the first half of the proof of Theorem 6.4.

Lemma now gives that 〈a, c〉 ∈ (α ∩ β) ∨ γ. By induction, α ∩ Γn ⊆ (α ∩ β) ∨ γ for all n, so
α ∩ (β ∨ γ) ⊆ (α ∩ β) ∨ γ. This inclusion gives equality and completes the proof that ConA
is modular.

Next, suppose that V is a congruence modular variety. Let A be the free algebra in V on
the generators {x, y, z, u}. Let α = CgA(x, u) ∨ CgA(y, z), β = CgA(x, y) ∨ CgA(u, z), and
γ = CgA(y, z). Then 〈x, u〉 is in α ∩ (β ∨ γ) which by modularity is equal to (α ∩ β) ∨ γ.
This means there are elements u0, . . . , un ∈ A so that x = u0, u = un, uiα ∩ βui+1 for
i even, and uiγui+1 for i odd. Let m0, . . . ,mn be 4-ary terms so that mi(x, y, z, u) = ui.
Immediately, then, we have m0(x, y, z, u) = x and mn(x, y, z, u) = u. Since γ ≤ α, all of
the ui’s are α related. This means that xαmi(x, y, z, u)αmi(x, y, y, x). However, by our
definitions, (x/α)∩SgA(x, y) = {x}, so we have mi(x, y, y, x) = x for all i. Let g : A → A be
the unique homomorphism defined by g(x) = g(y) = x and g(u) = g(z) = z. Then ker g = β.
Suppose that i is even. Since mi(x, y, z, u)(α ∩ β)mi+1(x, y, z, u), we have

mi(x, x, z, z) = mi(g(x), g(y), g(z), g(u))
= g(mi(x, y, z, u))
= g(mi+1(x, y, z, u))
= mi+1(g(x), g(y), g(z), g(u))
= mi+1(x, x, z, z).

(6.7)

Let f : A → A be the unique homomorphism defined by f(x) = x, f(y) = f(z) = y, and
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f(u) = u. Then ker f = γ. Suppose that i is odd. Since mi(x, y, z, u)γmi+1(x, y, z, u) we see

mi(x, y, y, u) = mi(f(x), f(y), f(z), f(u))
= f(mi(x, y, z, u))
= f(mi+1(x, y, z, u))
= mi+1(f(x), f(y), f(z), f(u))
= mi+1(x, y, y, u).

(6.8)

We have established these equalities in A:

x = m0(x, y, z, u)
x = mi(x, y, y, x) for all i

mi(x, x, z, z) = mi+1(x, x, z, z) for i even
mi(x, y, y, u) = mi+1(x, y, y, u) for i odd
mn(x, y, z, u) = u.

Since A is freely generated in V by {x, y, z, u}, it follows that these hold as equations in all
of V. 2

The lemma usually referred to as the shifting lemma assumes the underlying variety is
modular and that β is a congruence. The version we have stated happens to be equivalent
and is what we need to prove Day’s theorem directly. We actually proved that the existence of
Day terms implies the shifting lemma, that the shifting lemma implies congruence modularity,
and that modularity implies the existence of Day terms. Thus, these three conditions are
equivalent.

It has long been known that any lattice identity interpreted as a congruence equation is
equivalent to a weak Maltsev condition [46, 39], but it is still an open problem as to which
lattice equations are equivalent to Maltsev conditions. There are lattice equations which do
not imply modularity among lattices but which, when satisfied by the congruence lattice of
every algebra in a variety, do imply congruence modularity [8]. It was all but conjectured on
page 155 of [12] that all of these equations are Maltsev conditions for congruences. This has
recently been proven to be true.

Theorem 6.7 [6] A variety V is congruence modular if and only if for all tolerances α and
β on any algebra in V it is the case that Tr(α) ∩ Tr(β) = Tr(α ∩ β).

Using this theorem, it is easy to show that

Theorem 6.8 [5] Suppose that ε is a lattice equation so that for any variety V if V|=Conε,
then V is congruence modular. Then the class of all varieties V with V|=Conε is a Maltsev
class.

7 Congruence Distributive Varieties

The commutator in congruence distributive varieties reduces to congruence intersection. This
can be proved later after we have derived some of the properties of the commutator in
congruence modular varieties. However, we offer a proof here based on the Jónsson terms.
This will illustrate in an isolated setting the intimate relationship between the commutator
and equations for Maltsev conditions. The proof we are about to see should be reminiscent
of Fact 5.5.
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Theorem 7.1 A variety V is congruence distributive if and only

V|=Con[α ∨ γ, β] ≈ [α, β] ∨ [γ, β] and [α, β] = α ∩ β. (7.1)

Proof Half of this is almost obvious. Suppose that congruences in V satisfy the stated
commutator equations. Let α, β, γ be congruences on an algebra A ∈ V. Then

(α ∩ β) ∨ (γ ∩ β) = [α, β] ∨ [γ, β]
= [α ∨ γ, β]
= (α ∨ γ) ∩ β.

(7.2)

Thus ConA is distributive.
For the reverse direction, we will need to use Jónsson’s terms. Suppose that V is a

congruence distributive variety and let d0, . . . , dn be Jónsson terms for V. Let A ∈ V and
α, β ∈ ConA. We will prove that [α, β] = α ∩ β. That [α, β] ⊆ α ∩ β is always true. We
will prove the reverse inclusion. Let δ = [α, β] and let 〈x, y〉 ∈ α ∩ β. We will prove by
induction that di(x, y, x)δdi(x, y, y) for all i = 0, . . . , n. This is trivially true for d0 since
x = d0(x, y, x) = d0(x, y, y). Suppose that 0 ≤ i < n and di(x, y, x)δdi(x, y, y). There are
two cases – either i is even or it is odd. Supposing that i is odd, then

di+1(x, y, x) = di(x, y, x)δdi(x, y, y) = di+1(x, y, y). (7.3)

Suppose next that i is even. Since
(

di(x, y, x) di(x, y, y)
di(x, x, x) di(x, x, y)

)
∈ M(α, β), from C(α, β; δ) we

can conclude that di(x, x, x)δdi(x, x, y). It follows that

di+1(x, x, x) = di(x, x, x)δdi(x, x, y) = di+1(x, x, y). (7.4)

Now (
di+1(x, x, x) di+1(x, x, y)
di+1(x, y, x) di+1(x, y, y)

)
∈ M(α, β),

so centrality now gives di+1(x, y, x)δdi+1(x, y, y). This completes the proof that for all i ∈
{0, . . . , n}, di(x, y, x)δdi(x, y, y). The particular case we care about is i = n, which gives

x = dn(x, y, x)δdn(x, y, y) = y. (7.5)

Thus we have α ∩ β ⊆ [α, β], so these congruences are actually equal. We have that
V|=Con[α, β] = α ∩ β. The other equation now follows immediately from distributivity. Sup-
pose that α, β, γ are congruences on an algebra in V. Then

[α ∨ γ, β] = (α ∨ γ) ∩ β
= (α ∩ β) ∨ (γ ∩ β)
= [α, β] ∨ [γ, β].

(7.6)

2

Of course, this gives

Corollary 7.2 The only Abelian algebras in a congruence distributive variety are trivial.
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8 Congruence Modular Varieties

The commutator is particularly well behaved in congruence modular varieties. In fact, we can
extend all of the properties listed for the group commutator in Section 2 to the commutator in
congruence modular varieties. Our primary tool for doing so will be this next characterization
of centrality in congruence modular varieties.

Definition 8.1 Suppose that α and β are congruences on an algebra A in a variety with
Day terms m0, . . . , mn. Define χ(α, β) to be the set of all pairs 〈mi(x, x, u, u),mi(x, y, z, u)〉
for which

(
x y
u z

)
∈ M(α, β) and mi is a Day term.

Theorem 8.2 (R. Freese, R. McKenzie [12]) Suppose that α, β, and γ are congruences on
an algebra A in a congruence modular variety. The following are equivalent.

(1) C(α, β; γ).

(2) χ(α, β) ⊆ γ.

(3) C(β, α; γ).

(4) χ(β, α) ⊆ γ.

Proof We will prove that (1) → (2) → (3). Then exchanging α and β in these implications
will show that all four conditions are equivalent.

(1) → (2): Suppose that C(α, β; γ). Let t be an (n + m)-ary term of A. Let a,b ∈ An

and x,y ∈ Am with aiαbi for all i and xiβyi for all i. This makes
(

t(a,x) t(a,y)
t(b,x) t(b,y)

)
a

generic element of M(α, β). To establish the implication, we need to prove that

mi(t(a,x), t(a,x), t(b,x), t(b,x))γmi(t(a,x), t(a,y), t(b,y), t(b,x)) . (8.1)

The matrix
(

mi(t(a,x), t(b,x), t(b,x), t(a,x)) mi(t(a,x), t(b,y), t(b,y), t(a,x))
mi(t(a,x), t(a,x), t(b,x), t(b,x)) mi(t(a,x), t(a,y), t(b,y), t(b,x))

)
(8.2)

is in M(α, β). Notice that by the Day equations both elements of the top row of this matrix
equal t(a,x). In particular, the top elements are γ related. It follows then that the bottom
elements are also γ related as desired.

(2) → (3): Suppose now that χ(α, β) ⊆ γ. Suppose that
(

b d
a c

)
∈ M(β, α) and that

bγd. It follows that
(

a b
c d

)
∈ M(α, β) and hence that 〈mi(a, a, c, c),mi(a, b, d, c)〉 ∈ γ for

all i. By Lemma 6.5 it follows that aγc, so C(β, α; γ).
We now have (1) → (2) → (3). By trading α and β, we get (3) → (4) → (1), so the

statements are equivalent. 2

We can now easily prove the following corollaries.
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Theorem 8.3 Suppose that α, β, and γ are congruences on an algebra A in a congruence
modular variety.

(1) C(α, β; γ) if and only if [α, β] ≤ γ.

(2) [α, β] = CgA(χ(α, β)) = CgA(χ(β, α)).

(3) C(α, β; γ) if and only if C(β, α; γ).

(4) [α, β] = [β, α] .

(5) If {αt : t ∈ T} ⊆ ConA then [
∨

t αt, β] =
∨

t[αt, β].

(6) For any surjective homomorphism f : A → B, if π = ker f then

[α, β] ∨ π = f−1([f(α ∨ π), f(β ∨ π)])

and
[f(α ∨ π), f(β ∨ π)] = f([α, β] ∨ π).

(See figure 4)
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Figure 4: To calculate [f(α∨π), f(β∨π)], first pull back through f to α∨π and β∨π. Their
commutator [α, β] might not lie above π, so join with π. The image of this congruence under
f is [f(α ∨ π), f(β ∨ π)].

Proof (1)-(4) are immediate from the previous lemma and the definition of the commutator.
We look first, then, at (5). That

∨
t[αt, β] ⊆ [

∨
t αt, β] follows from monotonicity. To establish

the reverse inclusion, it suffices to show that C(
∨

t αt, β;
∨

t[αt, β]). First, notice that by
property (1), C(αt, β;

∨
t[αt, β]) holds for all t. Then Lemma 4.4(1) gives the desired result.

For part (6), note that by part (5) [α, β] ∨ π = [α ∨ π, β ∨ π] ∨ π; and from this the two
statements can easily be seen to be equivalent. Part (6) now follows from the fact that the
function induced by f on A4 maps M(α ∨ π, β ∨ π) onto M(f(α ∨ π), f(β ∨ π)) and maps
χ(α ∨ π, β ∨ π) onto χ(f(α ∨ π), f(β ∨ π)). 2

The symmetry in the above theorem gives us this characterization of centrality in con-
gruence modular varieties.
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Corollary 8.4 Suppose that α, β, and δ are congruences on an algebra in a congruence

modular variety. Then C(α, β; δ) if and only if for all
(

a b
c d

)
∈ M(α, β)

aδb ↔ cδd and aδc ↔ bδd . (8.3)

To make further arguments clearer, we will often write the elements of A2 as column
vectors.

Definition 8.5 Suppose that A is an algebra in a congruence modular variety and α, β ∈
ConA. Let A(α) be the subalgebra of A2 whose universe is α and define these three congru-
ences on A(α)

[α, β]0 =
{〈(

x
u

)
,

(
y
v

)〉
∈ A(α)2 : 〈x, y〉 ∈ [α, β]

}
(8.4)

[α, β]1 =
{〈(

u
x

)
,

(
v
y

)〉
∈ A(α)2 : 〈x, y〉 ∈ [α, β]

}
(8.5)

∆α,β = Tr
({〈(

x
u

)
,

(
y
z

)〉
:
(

x y
u z

)
∈ M(α, β)

})
. (8.6)

Lemma 8.6 Suppose that α and β are congruences on an algebra A in a congruence modular
variety. For i ∈ {0, 1}, let πi : A2 → A be the projection to the ith coordinate and let
ηi = kerπi|A(α). Then

(1) η1 ∩∆α,β ⊆ [α, β]0.

(2) η0 ∩∆α,β ⊆ [α, β]1.

(3) ∆α,β ∨ η0 = π−1
0 (β).

(4) ∆α,β ∨ η1 = π−1
1 (β)

Proof For the proof, we will write ∆ for ∆α,β. Let
〈(

x
u

)
,

(
y
u

)〉
∈ η1 ∩ ∆. Then

we have the arrangement in Figure 5, so we can conclude that
〈(

x
y

)
,

(
y
y

)〉
∈ η1 ∩∆.

This means that there are a0, . . . , an, b0, . . . , bn ∈ A so that a0 = x, b0 = an = bn = y

u

u

u

u

u

u

u
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(
x
y
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(
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)

¢
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Figure 5: The shifting lemma for Lemma 8.6 (1).

and for each i < n

(
ai ai+1

bi bi+1

)
∈ M(α, β). Since 〈an, bn〉 = 〈y, y〉 ∈ [α, β], we can use
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Corollary 8.4 to establish that 〈ai, bi〉 ∈ [α, β] for all i. In particular, 〈x, y〉 ∈ [α, β]. This

places
〈(

x
u

)
,

(
y
u

)〉
∈ [α, β]0 as desired. We have established that η1 ∩ ∆ ⊆ [α, β]0.

This proves (1). (2) now follows because

〈(
x
u

)
,

(
y
v

)〉
∈ [α, β]0 ⇔

〈(
u
x

)
,

(
v
y

)〉
∈ [α, β]1 (8.7)

and 〈(
x
u

)
,

(
y
v

)〉
∈ ∆ ⇔

〈(
u
x

)
,

(
v
y

)〉
∈ ∆. (8.8)

For (3), suppose that xβy, xαu and yαv. Then

(
x
u

)
η0

(
x
x

)
∆

(
y
y

)
η0

(
y
v

)
. (8.9)

This shows π−1
0 (β) ⊆ η0 ∨∆. The other inclusion is trivial. (4) is similar. 2

Theorem 8.7 Suppose that V is a congruence modular variety. The commutator is the
greatest binary operation defined on the congruence lattice of every algebra in V so that for
any A,B ∈ V, for any α, β ∈ ConA, and for any surjective homomorphism f : A → B

[α, β] ≤ α ∩ β and (8.10)

[α, β] ∨ π = f−1([f(α ∨ π), f(β ∨ π)]). (8.11)

Proof Let C be any other binary operation on the congruence lattices of algebras in V
satisfying the stated properties. We will prove that the commutator always dominates C.
The proof is essentially the same as that of this property for groups presented in Section 2.
Let α and β be congruences on an algebra A in V.

For i ∈ {0, 1}, let πi : A(α) → A be the projection to the ith coordinate with ηi =
kerπi|A(α). Let ∆ = ∆α,β. In ConA(α) we have C(η1, ∆) ⊆ η1 ∩∆ by our assumptions on
C. Also, η1 ∩ ∆ ⊆ [α, β]0 by Lemma 8.6. Hence C(η1,∆) ⊆ [α, β]0. Let α0 = π−1

0 (α) and
β0 = π−1

0 (β). Then α0 = η0 ∨ η1 and β0 = η0 ∨∆ so α = π0(η0 ∨ η1) and β = π0(η0 ∨∆). It
follows then by our assumptions on C that

C(α, β) = C(π0(η0 ∨ η1), π0(η0 ∨∆))
= π0(C(η1, ∆) ∨ η0)
⊆ π0([α, β]0)
= [α, β].

(8.12)

This concludes the proof that C is always dominated by the commutator. 2

At this point in time, we have an extension of all seven of the properties of the group
commutator listed in Section 2.
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9 Abelian Algebras and Abelian Varieties

Recall that we defined an algebra A to be Abelian if [1A, 1A] = 0A. In some respects, Abelian
algebras and algebras generating congruence distributive varieties represent two extremes in
congruence modular varieties. In Abelian algebras, the commutator is as small as possible. In
algebras generating congruence distributive varieties, the commutator is as large as possible.
This dichotomy is emphasized further in this theorem.

Theorem 9.1 Suppose that A is an algebra in a congruence modular variety. The following
are equivalent.

(1) The projection congruences have a common complement in ConA×A.

(2) M3 is a 0-1 sublattice of ConA2.

(3) M3 is a 0-1 sublattice of some subdirect product of two copies of A.

(4) A is Abelian.

Proof (1) → (2) and (2) → (3) are immediate. Suppose that B is a subalgebra of A2 which
projects onto both coordinates and that M3 is a 0-1 sublattice of ConB. We claim that B
is Abelian. Let α, β, and γ be the atoms of the copy of M3. Then

[1B, 1B] = [α ∨ β, α ∨ γ]
= [α, α] ∨ [α, γ] ∨ [β, α] ∨ [β, γ]
⊆ α ∨ (β ∩ γ)
= α

(9.1)

so [1B, 1B] ⊆ α. Similarly, [1B, 1B] is below β and γ. Thus, [1B, 1B] = 0B and B is Abelian.
Let π : B → A be either projection and η = kerπ. Now by Theorem 8.3 (6) we have

[1A, 1A] = [π(1B), π(1B)]
= π([1B, 1B] ∨ η)
= π(η)
= 0A.

(9.2)

Thus A is Abelian, so (3) → (4).
Now assume that A is Abelian. For i = 0, 1, let πi be the projection of A2 to the ith

coordinate and let ηi = kerπi. Let ∆ = ∆1A,1A . It follows from Lemma 8.6 that ∆∨ ηi = 1A

for i = 0, 1. Also, ∆ ∩ ηi ⊆ [1A, 1A]1−i = η1−i for i = 0, 1, so ∆ ∩ ηi = 0A2 . Thus, ∆ is a
complement of both projection kernels. 2

Definition 9.2 Two algebras are polynomially equivalent if they have the same universe and
the same polynomial operations. An algebra is affine if it is polynomially equivalent with a
module over a ring.

J.D.H. Smith and R. McKenzie independently proved that any Abelian algebra in a
congruence permutable variety is affine. C. Herrmann [20] proved that any Abelian algebra
in a congruence modular variety is affine using a complex directed union construction which
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forced the existence of a Maltsev operation in the original algebra. This Maltsev operation
is the key to the proof. H.-P. Gumm [13, 15] also constructed this term with his geometric
arguments. Walter Taylor developed the following terms which we will be able to use to
construct such a Maltsev term.

Lemma 9.3 (W. Taylor [45]) Suppose that V is a congruence modular variety and that
m0, . . . mn are Day terms for the variety. Define ternary terms q0, . . . , qn recursively in the
following manner

q0(x, y, z) = z
qi+1(x, y, z) = mi+1(qi(x, y, z), x, y, qi(x, y, z)) if i is even
qi+1(x, y, z) = mi+1(qi(x, y, z), y, x, qi(x, y, z)) if i is odd .

Then

(1) V |= qi(x, x, y) ≈ y for all i.

(2) For any congruence β on an algebra A ∈ V and any 〈x, y〉 ∈ β, 〈qn(x, y, y), x〉 ∈ [β, β].

Proof Part (1) we prove by induction on i = 0, 1, . . . , n. It is trivial for i = 0. Suppose that
i ≥ 0 and V |= qi(x, x, y) ≈ y. Then

qi+1(x, x, y) ≈ mi+1(qi(x, x, y), x, x, qi(x, x, y)) i even or odd
≈ mi+1(y, x, x, y)
≈ y.

(9.3)

Let β be a congruence on an algebra A in V and let xβy. We will prove by induction that

qi(x, y, y)[β, β]mi(y, y, x, x) for even i and (9.4)
qi(x, y, y)[β, β]mi(y, y, y, x) for odd i. (9.5)

This will be sufficient. The case of i = 0 is trivial. So suppose first that i is even and
qi(x, y, y)[β, β]mi(y, y, x, x). It follows that

qi+1(x, y, y) = mi+1(qi(x, y, y), x, y, qi(x, y, y))
[β, β] mi+1(mi(y, y, x, x), x, y, mi(y, y, x, x)) .

(9.6)

Also note that

mi+1(mi(y, y, x, x), x, x, mi(y, y, x, x)) = mi(y, y, x, x)
= mi+1(y, y, x, x)
= mi+1(mi(y, y, y, y), y, x,mi(x, x, x, x)).

(9.7)

By centrality, we can replace the underlined variable with the β-equivalent y and maintain
equivalence modulo [β, β]. Thus

mi+1(mi(y, y, x, x), x, y,mi(y, y, x, x))[β, β]mi+1(mi(y, y, y, y), y, y,mi(x, x, x, x)). (9.8)

Combining this with 9.6 gives

qi+1(x, y, y)[β, β]mi+1(y, y, y, x). (9.9)
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The case when i is odd is similar. 2

Part (1) of the lemma tells us that qn obeys half of Maltsev’s equations. In the case when
A is Abelian, we can take β in part (2) to be 1A and get the other half of the equations. Once
we have the Maltsev operation, we can prove that the Abelian algebra is affine. Any ternary
term satisfying the two properties above for qn is called a Gumm difference term. The Gumm
difference term is all we need to conclude that any Abelian algebra in a congruence modular
variety is congruence permutable. A weak difference term for a variety V is a term d so that
whenever θ is a congruence on an algebra in V and aθb, then

d(b, b, a)[θ, θ]a[θ, θ]d(a, b, b).

The presence of just a weak difference term would be enough to conclude that all Abelian
algebras are affine. In [28], K. Kearnes and A. Szendrei prove that having a weak difference
term is equivalent to a Maltsev condition. In fact, any variety in which congruence lattices
satisfy a nontrivial lattice equation has such a term.

Corollary 9.4 (C. Herrmann [20]) If A is an Abelian algebra in a congruence modular
variety, then any Gumm difference term of A is a Maltsev operation. In particular, every
Abelian algebra in a congruence modular variety has permuting congruences.

A little more generally:

Corollary 9.5 If β is a congruence of an algebra A in a congruence modular variety and
[β, β] = 0A, then every congruence of A permutes with β.

Proof Suppose that β is a congruence on A satisfying [β, β] = 0A and α is any congruence
on A. We will prove that α ◦ β = β ◦ α. Suppose that 〈x, z〉 ∈ β ◦ α. There is some y ∈ A
with xβyαz. Denote the Gumm difference term of A by d. Then d(y, y, z) = z and since
[β, β] = 0A, d(x, y, y) = x. Therefore,

x = d(x, y, y)αd(x, y, z)βd(y, y, z) = z.

We have shown that β ◦ α ⊆ α ◦ β. It follows that α and β commute as in the proof of
Theorem 6.1. 2

Before we prove that Abelian algebras in a congruence modular variety are affine, we need
to know a few things about Abelian algebras with Maltsev terms.

Definition 9.6 Suppose that f(x1, . . . , xn) and g(x1, . . . , xm) are operations on a set A.
Then f and g commute if they satisfy the equation

f(g(x1
1, . . . , x

1
m), g(x2

1, . . . , x
2
m), . . . , g(xn

1 , . . . , xn
m))

= g(f(x1
1, . . . , x

n
1 ), f(x1

2, . . . , x
n
2 ), . . . , f(x1

m, . . . , xn
m)) .

Commutativity of operations can be viewed more easily using matrices. Consider an m×n
matrix with entries from A: 



x1
1 x2

1 · · · xn
1

x1
2 x2

2 · · · xn
2

...
x1

m x2
m · · · xn

m


 .
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We could apply g to each column of this matrix and then evaluate f at the resulting vector,
or we could evaluate f along each row and apply g to the result. If f and g commute, these
will be the same.

Definition 9.7 A ternary Abelian group is an algebra with a single ternary basic operation
which satisfies Maltsev’s equations and commutes with itself.

Theorem 9.8 (H.-P. Gumm [13]) Suppose that A = 〈A, d〉 is an algebra with a single ternary
basic operation. The following are equivalent.

(1) A is a ternary Abelian group.

(2) There is an Abelian group 〈A,+,−, 0〉 with universe A so that d(x, y, z) = x− y + z.

Proof If there is such a group, it is easy to check that d(x, y, z) = x − y + z is a Maltsev
operation which commutes with itself, so A is a ternary Abelian group. On the other hand,
suppose that A is a ternary Abelian group. Let 0 ∈ A be arbitrary and define x+y = d(x, 0, y)
and −x = d(0, x, 0). It is routine to check that these operations make 〈A,+,−, 0〉 an Abelian
group and that d(x, y, z) = x− y + z. 2

Theorem 9.9 The following are equivalent for any algebra A.

(1) A is affine.

(2) A has a Maltsev polynomial and satisfies C(1A, 1A; 0A).

(3) A has a Maltsev polynomial which commutes with every polynomial operation of A.

(4) A has a Maltsev term which commutes with every term operation of A.

(5) A has a Maltsev term and is Abelian.

Proof Suppose that A is affine. Then A is polynomially equivalent to a module. The
proof that C(1A, 1A; 0A) can be gleaned from the discussion on modules in Section 5. Thus
(1) → (2).

Suppose now that A has a Maltsev polynomial m and that C(1A, 1A; 0A). We will prove
that m commutes with every polynomial operation of A. Suppose that t is an (n + m)-ary
term of A, x,y, z ∈ An, and c ∈ Am. Then

m(t(y, c), t(y, c), t(z, c)) = m(t(z, c), t(y, c), t(y, c)).

Then
m(t(m(y0, y0, y0), . . . ,m(yn−1, yn−1, yn−1), c), t(y, c), t(z, c))

= m(t(m(y0, y0, z0), . . . , , m(yn−1, yn−1, zn−1), c), t(y, c), t(y, c)).

Applying C(1A, 1A; 0A), we can replace the underlined variables with corresponding x’s to
get

m(t(m(x0, y0, y0), . . . ,m(xn−1, yn−1, yn−1), c), t(y, c), t(z, c))

= m(t(m(x0, y0, z0), . . . , , m(xn−1, yn−1, zn−1), c), t(y, c), t(y, c)).
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Maltsev’s equations now give

m(t(x, c), t(y, c), t(z, c)) = t(m(x0, y0, z0), . . . , ,m(xn−1, yn−1, zn−1), c).

Thus m commutes with any polynomial, so (2) → (3).
Now suppose that A has a Maltsev polynomial m which commutes with every polynomial

of A. We know immediately that m commutes with every term of A and with itself. We
need only to prove that m is a term operation of A. Since m is a polynomial of A, there is
a term operation S of A and elements a1, . . . , an ∈ A so that for any x, y, z ∈ A

m(x, y, z) = S(x, y, z, a1, . . . , an).

Let x, y, z ∈ A. We will express m(x, y, z) as a term evaluated only at x, y, and z. Let 0 ∈ A
be arbitrary and define α = S(0, 0, 0, y, . . . , y). We have:

m(x, y, z) = m(m(x, y, z),m(0, 0, 0),m(α, α, 0))
= m(m(x, 0, α),m(y, 0, α),m(z, 0, 0))
= m(m(x, 0, α),m(y, 0, α), z)
= m(m(x, 0, α),m(m(y, 0, α), m(y, 0, α),m(y, 0, α)),

m(z, m(y, 0, α),m(y, 0, α)))
= m(m(x,m(y, 0, α), z),m(0,m(y, 0, α),m(y, 0, α)),m(α,

m(y, 0, α),m(y, 0, α)))
= m(m(x,m(y, 0, α), z), 0, α)
= m(m(x,m(m(y, y, y),m(0, 0, 0), α), z), 0, α)
= m(m(x,m(S(y, y, y, a1, . . . , an), S(0, 0, 0, a1, . . . , an),

S(0, 0, 0, y, . . . , y)), z), 0, α)
= m(m(x, S(m(y, 0, 0),m(y, 0, 0),m(y, 0, 0),m(a1, a1, y),

. . . , m(an, an, y)), z), 0, α)
= m(m(x, S(y, y, y, y, . . . , y), z), 0, α)
= m(S(x, S(y, y, y, y, . . . , y), z, a1, . . . , an), S(0, 0, 0, a1, . . . , an),

S(0, 0, 0, y, . . . , y)
= S(m(x, 0, 0),m(S(y, y, y, y, . . . , y), 0, 0),m(z, 0, 0),m(a1, a1, y),

. . . , m(an, an, y))
= S(x, S(y, y, y, y, . . . , y), z, y, . . . , y) .

(9.10)

Thus, m is actually a term and we have established that (3) → (4).
Assume now that A has a Maltsev term m which commutes with every term operation of

A. We will prove that A is affine. Let 0 ∈ A be arbitrary and define x + y = m(x, 0, x) and
−x = m(0, x, 0). Then by Theorem 9.8, Â = 〈A, +,−, 0〉 is an Abelian group. We will define
a ring R so that Â becomes an R-module. Let R be the set of all unary polynomials of A
which fix the element 0. R is nonempty since the unary projection operation and the constant
0 are both in R. Since m commutes with the terms of A and is idempotent, m also commutes
with the polynomials of A. Therefore, m commutes with each r ∈ R. Since each r ∈ R fixes 0,
it follows that each r is an endomorphism of Â. Notice that R is closed under the operations
of the ring End Â. This is because R contains the identity of End Â (the unary projection)
and the zero of End Â (the constant 0), and because for each r, s ∈ R the operations r + s,
−r, and rs = r◦s are unary polynomials of A which fix 0. Thus R is the universe of a subring
R of End Â. Since R ⊆ End Â, we have the natural structure of Â as an R module. We will
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denote this module as RA. We claim that A and RA are polynomially equivalent. We must
show that Pol RA = PolA. That Pol RA ⊆ PolA should be clear. We will prove inductively
on rank that every polynomial p(x0, . . . , xn−1) of A is a polynomial of RA. Suppose first
that p is a unary polynomial of A. Let r(x) = p(x)− p(0). Then r is a unary polynomial of
A which fixes 0 so r ∈ R. Moreover, p(x) = p(x)−p(0)+p(0) = r(x)+p(0). If c = p(0), then
p(x) = rx + c is a polynomial of RA as desired. Next, assume that any n-ary polynomial of
A is in Pol RA, and let p be an (n + 1)-ary polynomial of A. Then

p(x0, . . . , xn) = p(m(x0, 0, 0), . . . , m(xn−1, 0, 0),m(0, 0, xn))
= m(p(x0, . . . , xn−1, 0), p(0, . . . , 0), p(0, . . . , 0, xn))
= p(x0, . . . , xn−1, 0)− p(0, . . . , 0) + p(0, . . . , 0, xn).

(9.11)

Now, p(x0, . . . , xn−1, 0) is an n-ary polynomial of A, and p(0, . . . , 0, xn) is a unary polynomial
of A. As such, each of these is a polynomial of RA. Since p(0, . . . , 0) is a constant, this
makes p a polynomial of RA. This proves that Pol RA = PolA and completes the proof that
(4) → (1).

We have proven that (1) − (4) are equivalent. It is easy to see that these combined are
equivalent to (5). 2

Suppose that A is an Abelian algebra in a congruence modular variety. Then A has a
Maltsev term by Corollary 9.4. By the previous theorem, A is affine. On the other hand,
any affine algebra is Abelian; so we have the Fundamental Theorem of Abelian Algebras:

Theorem 9.10 (C. Herrmann [20]) An algebra in a congruence modular variety is Abelian
if and only if it is affine.

This theorem has been extended by K. Kearnes and A. Szendrei [28] to the following.

Theorem 9.11 If a variety V satisfies a nontrivial lattice equation as a congruence equation,
then the Abelian algebras in V are affine.

A congruence modular variety in which every algebra is Abelian is termed an Abelian
variety or an affine variety. In Sections 13 and 14, we will need some information about
these varieties. We develop that information now without giving proofs (which in every case
are easy and routine). For more detail on this topic, see R. Freese, R. McKenzie [12], Chapter
IX.

Definition 9.12 Two varieties V and W are said to be polynomially equivalent if every
algebra in each of the varieties is polynomially equivalent with an algebra in the other.

Suppose that A is a congruence modular, Abelian variety. Let d(x, y, z) be a Gumm
term for A and let F be the free algebra on A freely generated by {x, y}. Let R be the
set of all t(x, y) ∈ F such that A |= t(x, x) ≈ x. For r = r(x, y) and s = s(x, y) in R,
put r ◦ s = r(s(x, y), y), r + s = d(r(x, y), y, s(x, y)), −r = d(y, r(x, y), y), 0 = y, 1 = x.
Then R = 〈R, +, ◦, 0, 1〉 is a ring with unit and we have the Fundamental Theorem of Affine
Varieties:

Theorem 9.13 If a variety A is congruence modular and Abelian, then A is polynomially
equivalent with the variety RM of unitary left R-modules where R is the ring of idempotent
binary terms of A defined above.
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In fact, if A ∈ A, then the universe of A becomes an R-module, denoted RA, by choosing
some element a ∈ A and putting 0 = a, rb = rA(b, 0), b+ c = dA(b, 0, c), and −b = dA(0, b, 0)
for {b, c} ⊆ A and r ∈ R. This module is, up to isomorphism, independent of the choice of
0 in A. The two algebras A and RA are polynomially equivalent. The Gumm term comes
out to be dA(x, y, z) = x − y + z (evaluated in the module). The passage from A to RA
is generally many-to-one—i.e., RA0

∼= RA1 does not imply A0
∼= A1. But every R-module

occurs as RA for some A ∈ A.
Every algebra A ∈ A is closely associated with an algebra A∇ with a one-element subal-

gebra (although A need not have any one-element subalgebra). Namely, A∇ = (A×A)/∆1,1

with ∆1,1 the congruence on A×A generated by {〈〈x, x〉, 〈y, y〉〉 : {x, y} ⊆ A}. One verifies
that if we choose 0 = a in RA and 0 = 〈a, a〉 in R(A ×A), then R(A ×A) = RA × RA.
Since A×A and R(A×A) have the same congruences (being polynomially equivalent), it is
easily seen that ∆1,1 = {〈〈x, y〉, 〈u, v〉〉 ∈ A2 × A2 : x− y = u− v}. Then RA∇ ∼= RA while
A∇ has the one-element subalgebra ∇ = {〈x, x〉 : x ∈ A}.

10 Solvability and Nilpotence

We can use the commutator to extend the ideas of solvability and nilpotence to congruence
modular varieties. Before we tackle this topic, we will derive H.-P. Gumm’s Maltsev charac-
terization of congruence modularity—which is (relatively) easy to do thanks to the Gumm
difference term supplied by W. Taylor’s equations.

Theorem 10.1 (H.-P. Gumm [16]) A variety V is congruence modular if and only if V has
ternary terms d0, . . . , dn and q satisfying

x ≈ d0(x, y, z)
x ≈ di(x, y, x) for all i

di(x, x, z) ≈ di+1(x, x, z) for even i
di(x, z, z) ≈ di+1(x, z, z) for odd i
dn(x, z, z) ≈ q(x, z, z)
q(x, x, z) ≈ z .

Proof Suppose that V is a congruence modular variety, and let q be a Gumm difference
term for V. Let F be the free algebra in V on the generators {x, y, z}. Let α = CgF(x, y),
β = CgF(y, z), and γ = CgF(x, z). Then 〈x, z〉 ∈ γ ∩ (α ∨ β). Now by the property of the
difference term, 〈x, q(x, z, z)〉 ∈ [γ ∩ (α ∨ β), γ ∩ (α ∨ β)]. However

[γ ∩ (α ∨ β), γ ∩ (α ∨ β)] ≤ [γ, α ∨ β]
= [γ, α] ∨ [γ, β]
≤ (γ ∩ α) ∨ (γ ∩ β).

(10.1)

Thus 〈x, d(x, z, z)〉 ∈ (γ ∩ α) ∨ (γ ∩ β). This means there are u0, . . . , un ∈ A with u0 = x,
un = q(x, z, z), uiαui+1 if i is even, uiβui+1 if i is odd, and uiγui+1 for all i. There are
ternary terms d0, . . . , dn so that ui = di(x, y, z) for each i. Now, x = d0(x, y, z) holds by
design. Define f, g, h : F → F to be the unique homomorphisms defined by

f(x) = f(y) = x, f(z) = z (10.2)
g(x) = x, g(y) = g(z) = z (10.3)

h(x) = h(z) = x, h(y) = y . (10.4)
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Then ker f = α, ker g = β, and kerh = γ. For any i, notice that

x = d0(x, y, x)
= d0(h(x), h(y), h(z))
= h(d0(x, y, z))
= h(di(x, y, z))
= di(h(x), h(y), h(z))
= di(x, y, x).

(10.5)

Suppose now that i < n is even. Then

di(x, x, z) = di(f(x), f(y), f(z))
= f(di(x, y, z))
= f(di+1(x, y, z))
= di+1(f(x), f(y), f(z))
= di+1(x, x, z).

(10.6)

If i < n is odd then
di(x, z, z) = di(g(x), g(y), g(z))

= g(di(x, y, z))
= g(di+1(x, y, z))
= di+1(g(x), g(y), g(z))
= di+1(x, z, z).

(10.7)

Finally, dn(x, z, z) = q(x, z, z) by design, and q(x, x, z) = z since q is a Gumm difference
term. Since these terms satisfy these equations in F, they satisfy the equations throughout
V.

Finally, assume that V has terms d0, . . . , dn, q satisfying the equations in (3). If n were
even, then the equations would imply that dn−1(x, z, z) ≈ q(x, z, z) also, so we can assume
that n is odd. Define 4-ary terms m0, . . . , m2n+2 in the following manner. m0(x, y, z, u) = x
and

m2i−1(x, y, z, u) = di(x, y, u) for i odd (10.8)
m2i−1(x, y, z, u) = di(x, z, u) for i even (10.9)

m2i(x, y, z, u) = di(x, z, u) for i odd (10.10)
m2i(x, y, z, u) = di(x, y, u) for i even. (10.11)

Also, let m2n+1 = q(y, z, u) and m2n+2(x, y, z, u) = u. It is routine now to check that these
are Day terms for V. Hence V is congruence modular. 2

H.-P. Gumm’s Maltsev condition for congruence modularity may be viewed as a compo-
sition of B. Jónsson’s condition for congruence distributivity and A.I. Maltsev’s condition
for congruence permutability. Notice that in the proof of Gumm’s theorem, the term q was
chosen to be the difference term of V. Thus every difference term has Gumm terms associated
with it. On the other had, every q arising from the Gumm terms is a difference term. Hence

Theorem 10.2 The following are equivalent for any ternary term q in a variety V.

(1) V is congruence modular; V |= q(x, x, y) ≈ y; and for all A ∈ V, for all β ∈ ConA, for
all 〈a, b〉 ∈ β, 〈a, q(a, b, b)〉 is in [β, β].
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(2) For this particular q, there exist ternary terms d0, . . . , dn satisfying Gumm’s equations
for congruence modularity.

Proof All we need to prove is that if d0, . . . , dn, q are Gumm terms for a variety V, then q
is a difference term. Suppose that β is a congruence on an algebra A in V and that aβb in
A. We only need to establish that 〈a, q(a, b, b)〉 ∈ [β, β] since the other equation is part of
Gumm’s equations. We will first establish 〈di(a, b, b), di(a, a, b)〉 ∈ [β, β] for all i. This is true
by centrality since

(
di(a, b, a) di(a, a, a)
di(a, b, b) di(a, a, b)

)
=

(
a a

di(a, b, b) di(a, a, b)

)
(10.12)

is in M(β, β). Next, we establish 〈di(a, b, b), di+1(a, b, b)〉 ∈ [β, β] for all i. If i is odd, this is
actually an equality, so there is nothing to show. If i is even then

di(a, b, b)[β, β]di(a, a, b) = di+1(a, a, b)[β, β]di+1(a, b, b). (10.13)

Now it follows that
a = d0(a, b, b)[β, β]dn(a, b, b) = q(a, b, b). (10.14)

2

Definition 10.3 Suppose that β is a congruence on an algebra A in a congruence modular
variety. Define (β]0, (β]1, (β]2, . . . recursively as follows. First, (β]0 = β. Next, if (β]n is
defined, then (β]n+1 = [β, (β]n]. If (β]n = 0 for some n, then β is n-step nilpotent. If 1A is
n-step nilpotent, then A is also called n-step nilpotent. Also define the sequence [β]0, [β]1,
[β]2, . . . recursively by [β]0 = β and [β]n+1 = [[β]n, [β]n]. If [β]n = 0A for some n, then β is
n-step solvable. If 1A is n-step solvable, then A is also called n-step solvable.

Definition 10.4 Suppose that q is a Gumm difference term for a congruence modular variety
V. Define a sequence of ternary terms q0, q1, q2, . . . recursively by q0 = q and qn+1(x, y, z) =
q0(x, qn(x, y, y), qn(x, y, z)). We will call these terms generalized Gumm terms.

Theorem 10.5 (H.-P. Gumm [17]) Suppose that α and β are congruences on an algebra A
in a congruence modular variety. Then α ◦ β ⊆ [α]n ◦ β ◦α and α ◦ β ⊆ (α]n ◦ β ◦α for all n.

Proof We prove this by induction on n. For n = 0, [α]n = α, so the inclusion is trivial.
Suppose that the inclusion holds for n ≥ 0 and suppose that aαbβc. By our induction
hypothesis, there are x and y so that a[α]nxβyαc. Let q be the Gumm difference term of A.
Then

〈a, q(a, x, x)〉 ∈ [[α]n, [α]n] ⊆ [α]n+1 . (10.15)

Therefore
a[α]n+1q(a, x, x)βq(a, x, y)αq(x, x, c) = c (10.16)

so 〈a, c〉 ∈ [α]n+1 ◦ β ◦ α. The other claim in the theorem is proved similarly. 2

If α is n-step solvable, then [α]n = 0, so this theorem gives α ◦ β ⊆ β ◦ α. It follows that
α and β permute (as in the proof of Theorem 6.1). Hence
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Corollary 10.6 Suppose that α is an n-step solvable (or nilpotent) congruence of an algebra
A in a congruence modular variety. Then α permutes with every congruence of A.

If A is n-step solvable, then every congruence on A is n-step solvable, so A has permuting
congruences. Moreover, we can adapt the above proof using the generalized Gumm terms to
manufacture a Maltsev term for A so that the entire variety generated by A has permuting
congruences.

Theorem 10.7 Suppose that A is an algebra in a congruence modular variety with general-
ized Gumm terms q0, q1, q2, . . .. If A is (n + 1)-step solvable (or nilpotent) for some n, then
A has permuting congruences, and the term qn is a Maltsev term for A.

Proof Let a, b ∈ A. We will first prove that 〈a, qk(a, b, b)〉 ∈ [1A]k+1 for all k. We proceed by
induction on k. Since q0 is a difference term and 〈a, b〉 ∈ 1A, we clearly have 〈a, q0(a, b, b)〉 ∈
[1A, 1A] = [1A]1. Now assume that k ≥ 0 and that 〈a, qk(a, b, b)〉 ∈ [1A]k+1. Since q0 is a
difference term, 〈a, q0(a, qk(a, b, b), qk(a, b, b))〉 ∈ [[1A]k+1, [1A]k+1] = [1A]k+2, as desired. We
have proved that 〈a, qk(a, b, b)〉 ∈ [1A]k+1 for all k. Since [1A]n+1 = 0A, this means that
a = qn(a, b, b).

Next, we will prove by induction that qk(a, a, b) = b for all k. This is true for k = 0 since
q0 is a difference term. Assume that k ≥ 0 and that qk(a, a, b) = b. Then qk+1(a, a, b) =
q0(a, qk(a, a, a), qk(a, a, b)) = q0(a, a, b) = b. We have shown that qk(a, a, b) = b for all k. In
particular qn(a, a, b) = b.

We have proven that for arbitrary a, b ∈ A, qn(a, b, b) = a and qn(a, a, b) = b. Therefore,
qn is a Maltsev term for A and the result follows. The claim for nilpotence is proven in a
similar manner. 2

Theorem 10.8 The class of n-step solvable (nilpotent) algebras in a congruence modular
variety V is a variety.

Proof We prove the theorem for the case of nilpotence. Let K be the class of n-step nilpotent
algebras in V. We will prove that K is closed under homomorphic images, subalgebras, and
products.

Suppose that A ∈ K and that f : A → B is a surjective homomorphism with ker f = π.
We will prove by induction on k that (1B]k = f((1A]k ∨ π) for all k. This is trivial for k = 0,
so assume that k ≥ 0 and that (1B]k = f((1A]k ∨ π). Then

(1B]k+1 = [1B, (1B]k]
= [f(1A ∨ π), f((1A]k ∨ π)]
= f([1A, (1A]k] ∨ π)
= f((1A]k+1 ∨ π).

(10.17)

It now follows that (1B]n = f((1A]n ∨ π) = f(π) = 0B so B is n-step nilpotent and is in K.
Next, suppose that A ∈ K and that B is a subalgebra of K. For any congruences

α, β, δ ∈ ConA, it should be clear that C(α, β; δ) (in A) implies that C(α∩B2, β∩B2; δ∩B2)
(in B). Therefore [α ∩B2, β ∩B2] ⊆ [α, β]∩B2. It follows that (1B]n ⊆ (1A]n ∩B2 = 0B, so
B is n-step nilpotent and B ∈ K.

Finally, suppose that {Ai : i ∈ I} ⊆ K. Let B =
∏

i∈I Ai. Let πi : B → Ai be the
canonical projection and let ηi = kerπi. As we showed above, πi((1B]n ∨ ηi) = (1A]n = 0A.
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Thus, (1B]n ⊆ ηi for all i. Therefore, (1B]n = 0B. Thus B is n-step nilpotent and is in K.
This finishes the proof that K is a variety. The proof of the theorem for solvable algebras is
similar. 2

To prove the next lemma, we need the following commutativity result.

Lemma 10.9 Suppose that α and δ are congruence on an algebra A with a Maltsev term m
and that C(α, 1A; δ). If a,b, c ∈ A3 with aiαbi for all i then

m(m(a0, b0, c0),m(a1, b1, c1),m(a2, b2, c2))δm(m(a0, a1, a2),m(b0, b1, b2),m(c0, c1, c2)) .
(10.18)

Proof Maltsev’s equations give us

m(m(b0, b1, b2),m(b0, b1, b2),m(c0, c1, c2)) = m(m(c0, c1, c2),m(b0, b1, b2),m(b0, b1, b2)) .

We expand the first subterm of each side of this equality to get

m(m(m(b0, b0, b0), m(b1, b1, b1),m(b2, b2, b2)), m(b0, b1, b2),m(c0, c1, c2))

= m(m(m(b0, b0, c0),m(b1, b1, c1),m(b2, b2, c2)), m(b0, b1, b2),m(b0, b1, b2)) .

By centrality, we can replace the underlined bi’s with corresponding ai’s and maintain equiv-
alence modulo δ so that

m(m(m(a0, b0, b0),m(a1, b1, b1),m(a2, b2, b2)),m(b0, b1, b2), m(c0, c1, c2))

δm(m(m(a0, b0, c0),m(a1, b1, c1),m(a2, b2, c2)), m(b0, b1, b2),m(b0, b1, b2)) .

Maltsev’s equations now give

m(m(a0, a1, a2),m(b0, b1, b2),m(c0, c1, c2)) δ m(m(a0, b0, c0),m(a1, b1, c1),m(a2, b2, c2)) .

2

Lemma 10.10 Suppose that A is an n-step nilpotent algebra with a Maltsev term m. There
are ternary terms l and r so that for all b, c ∈ A the function l(−, b, c) is the inverse of
m(−, b, c) and the function r(−, b, c) is the inverse of m(c, b,−).

Proof We will prove the existence of l. The existence of r is similar. We will prove this by
induction on n. If n = 0, then A is trivial. If n = 1, then A is Abelian. For any x ∈ A,
Define u+x v = m(u, x, v) and −xu = m(x, u, x) for all u, v ∈ A. Then by Theorem 9.8 these
operations define an Abelian group on A with identity x so that m(u, v, w) = u−xv+xw. For
any b, c ∈ A, the inverse of m(x, b, c) = x−x b+x c is clearly l(x, b, c) = x−x c+x b = m(x, c, b).

Next suppose that n ≥ 1 and that the lemma holds for n-step nilpotent algebras. Suppose
that A is (n + 1)-step nilpotent. Let θ = (1A]n. Then C(1A, θ; 0), and A/θ is n-step
nilpotent. By our induction hypothesis, there is a term l′ so that l′(−, b/θ, c/θ) is the inverse
of m(−, b/θ, c/θ) for all b, c,∈ A. Let l(y, b, c) = m(m(y, m(l′(y, b, c), b, c), y), y, l′(y, b, c)). We
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will show that l is the desired term. Let y, b, c ∈ A. Let z = l′(y, b, c). By our choice of l′, we
know at least that m(z, b, c)θy. Then

m(l(y, b, c), b, c) = m(m(m(y, m(z, b, c), y), y, z),m(y, y, b),m(y, y, c))
= m(m(m(y, m(z, b, c), y), y, y),m(y, y, y),m(z, b, c))
= m(m(y, m(z, b, c), y), y,m(z, b, c))

(10.19)

where the second equality follows from Lemma 10.9 since m(z, b, c)θy and since C(θ, 1A; 0).
The set y/θ is closed under m since m is idempotent, and by Lemma 10.9 m commutes with
itself on this θ block. Define u +y v = m(u, y, v) and −yu = m(y, u, y) on y/θ. By Theorem
9.8, these are Abelian group operations on y/θ with y as an identity. Then we can continue
our calculations to see

m(l(y, b, c), b, c) = m(m(y,m(z, b, c), y), y, m(z, b, c))
= −ym(z, b, c) +y m(z, b, c)
= y .

(10.20)

Now we look at the composition in the reverse order. Let z = l′(m(y, b, c), b, c). Then zθy
and

l(m(y, b, c), b, c) = m(m(m(y, b, c),m(z, b, c),m(y, b, c)),m(y, b, c), z)
= m(m(m(y, z, y),m(b, b, b),m(c, c, c)),m(y, b, c), z)
= m(m(m(y, z, y), b, c),m(y, b, c), z)
= m(m(m(y, z, y), b, c),m(y, b, c),m(y, y, z))
= m(m(m(y, z, y), y, y),m(b, b, y),m(c, c, z))
= m(m(y, z, y), y, z)
= −yz +y z
= y.

(10.21)

Note that the second and fifth equalities follow from Lemma 10.9 since zθy. 2

The real mechanics of this proof are hidden from sight, but there is an elegant structure to
these algebras. The Maltsev term m gives each block of θ the structure of a ternary Abelian
group. For any b, c ∈ A, the functions m(−, b, c) : b/θ → c/θ and m(−, c, b) : c/θ → b/θ are
inverse isomorphisms of these group structures which exchange b and c, so all of the blocks
are isomorphic to a ternary Abelian group G. The algebra Â = 〈A,m〉 is a sort of semi-
direct product of Â/θ and G. To find the term l, we try to solve the equation m(x, b, c) = y
for x, assuming that there is a solution z modulo θ. To solve this equation, we use the
isomorphisms m(−, b, y), m(−, c, y), and m(−, z, y) to map everything into y/θ. Then we can
treat y/θ as an Abelian group with identity y to solve the new equation. The nature of the
semi-direct product is such that when we pull this solution back to z/θ using m(−, y, z) we
have a solution to the original equation.

More generally, if α is any congruence on A and b, c ∈ A then the maps m(−, b, c) : b/α →
c/α and m(−, c, b) : c/α → b/α may not be inverses, but they are both injective. Hence the
congruence classes are the same size. Thus

Corollary 10.11 Any n-step nilpotent algebra in a congruence modular variety has uniform
congruences.
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Suppose that a, b and c are elements of an n-step nilpotent algebra A in a congruence
modular variety with Maltsev term m and that θ ∈ ConA. If aθb, then m(a, b, c)θm(b, b, c) =
c so m(a, b, c)θc. On the other hand, if m(a, b, c)θc, then a = l(m(a, b, c), b, c)θl(c, b, c).
However, m(l(c, b, c), b, c) = c = m(b, b, c), so by Lemma 10.10 l(c, b, c) = b. This means that
aθb. We have that aθb if and only if m(a, b, c)θc. This means that θ consists precisely of those
pairs 〈a, b〉 for which m(a, b, c) ∈ c/θ. Hence, θ is uniquely determined by any equivalence
class c/θ. Thus

Corollary 10.12 Any n-step nilpotent algebra in a congruence modular variety has regular
congruences.

Suppose now that A is an n-step nilpotent algebra in a congruence modular variety. Let
l and r be the terms guaranteed by the previous lemma and let 0 ∈ A be arbitrary. Now
define these operations on A

u · v = m(u, 0, v)
u/v = l(u, 0, v)
u\v = r(u, 0, v).

(10.22)

Then these are the multiplication and division operations of a loop on A. Hence

Theorem 10.13 Suppose that A is an n-step nilpotent algebra in the congruence modular
variety V. There is a loop operation in PolA whose left and right division operations are also
in PolA.

11 Applications

We briefly describe here some of the important results that have been achieved through the
application of commutator theory in the study of basic questions about varieties. We make
no attempt at completeness.

In 1979 there appeared the paper J. Hagemann, C. Herrmann [19], which provided the
first proofs of much of the basic commutator theory we have developed in the preceeding
sections, and the same year appeared H.-P. Gumm, C. Herrmann [18] in which the new
theory was applied to obtain new cancellation, refinement and uniqueness results for direct
products of algebras in congruence modular varieties. H.-P Gumm and C. Herrmann proved,
among other results, that if A×B ∼= A×C and if A×B belongs to a congruence modular
variety, and if the congruence lattice of A has the ascending chain condition and the center
of A is a congruence of “finite rank”, then B is “affine-isotopic” to C.

In 1981 appeared R. Freese, R. McKenzie [11] in which commutator theory was used to
show that every residually small congruence modular variety V obeys a certain commutator
law (C1), which must hold in the congruence lattice of every algebra of V augmented by the
commutator operation. Conversely, if V is congruence modular and generated by a finite
algebra A and if A, along with all of its subalgebras, obeys (C1) then V is residually small,
in fact has a finite residual bound.

Also in 1981 appeared a monograph by S. Burris and R. McKenzie [4], containing a
proof that every locally finite congruence modular variety with decidable first-order theory
must decompose as the varietal product of two subvarieties, a decidable affine variety and
a decidable discriminator variety. Commutator theory was the essential tool for this work.
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The authors also provided an algorithm which can be used to reduce the question whether
HSP(A) has decidable theory, where A is a given finite algebra, (the decidability problem)
to the question whether the variety of R-modules has decidable theory, where R is a certain
finite ring correlated with A, produced by the algorithm. The problem to characterize in
some fashion those finite A for which the class of finite members of HSP(A) has decidable
theory (the finite decidability problem) seems to be much more difficult than the decidability
problem. In 1997, P. M. Idziak [22] provided a solution to the finite decidability problem for
finite algebras in congruence modular varieties. His result is equally as satisfactory as the
result of S. Burris and R. McKenzie, but is rather more difficult to state.

In 1982 appeared R. McKenzie [32] which used commutator theory to characterize the
locally finite varieties having a finite bound on the cardinalities of their finite directly inde-
composable members (the “directly representable” varieties). A breakthrough result achieved
in the paper was the fact that every directly representable variety has permuting congruences.

The 1987 monograph R. Freese, R. McKenzie [12], which has been the principal source for
the first ten sections of this text, contains the result (Chapter XIV) that any finite nilpotent
algebra of finite type (i.e., which possesses only finitely many basic operations) which lies in
a congruence modular variety and decomposes as the direct product of algebras of prime-
power orders, has a finitely axiomatizable equational theory. R. McKenzie [33] proves that
any finite algebra F belonging to a residually small congruence modular variety of finite
type has a finitely axiomatizable equational theory. A main ingredient in this proof is the
demonstration that F obeys finitely many equations which collectively imply that an algebra
(which satisfies them) satisfies the commutator equation (C1) discovered by R. Freese and
R. McKenzie.

In 1989 appeared K. A. Kearnes [26] which used commutator theory to prove that every
residually small, congruence modular variety with the amalgamation property possesses the
congruence extension property. Whether the words “congruence modular” can be removed
from this result is unknown.

In 1996, P. M. Idziak and J. Berman began a study of the “generative complexity” of
locally finite varieties. They define the generative complexity, or G-function, of a variety
V to be the function GV defined for all positive integers n so that GV(n) is the number of
non-isomorphic n-generated algebras in V. Perhaps their deepest result is a characterization
of finitely generated congruence modular varieties V for which GV(n) ≤ 2cn (for all n ≥ 1) for
some constant c. The characterization is of the same order as P. M. Idziak’s characterization
of finite decidability for HSP(A) but even more complicated. A much easier result of P.
M. Idziak and R. McKenzie [23] will be proved in Section 14 below; namely, a locally finite
congruence modular variety V satisfies GV(n) ≤ nc (for all n ≥ 1), for a constant c, iff V is
Abelian and directly representable.

Perhaps this is the appropriate place to mention the tame congruence theory of D. Hobby,
R. McKenzie [21]. With this theory, it became possible to extend most of the above-mentioned
results that deal with finite algebras or locally finite varieties, either to all finite algebras and
all locally finite varieties, or to a domain much broader than congruence modular varieties.
Sometimes, tame congruence theory simply produces the result that every locally finite variety
possessing a certain property must be congruence modular. For instance, it is proved in [21],
Chapter 10 that every residually small locally finite variety that satisfies any non-trivial
congruence equation must be congruence modular (i.e., must satisfy the modular law as a
congruence equation).
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In the book R. McKenzie, M. Valeriote [34] it is proved that every locally finite variety with
decidable first-order theory decomposes as the varietal product of three decidable subvarieties:
an affine variety, a discriminator variety and a combinatorial variety. This result contains
the result proved five years earlier by S. Burris and R. McKenzie for congruence modular
varieties. In the modular case, the combinatorial variety must consist just of one-element
algebras.

P. M. Idziak, R. McKenzie and M. Valeriote [24] (unpublished) have extended the above-
mentioned result of P. M. Idziak and R. McKenzie into a characterization of all locally finite
varieties V with the property that GV(n) ≤ nc for all n ≥ 1, for some constant c. Such a
variety is a varietal product of an affine, directly representable, subvariety and a very special
kind of combinatorial subvariety.

Successful applications of tame congruence theory, like those mentioned in the two pre-
vious paragraphs, have frequently begun with the idea to attempt an extension of results
proved earlier for locally finite congruence modular varieties with the help of commutator
theory. Tame congruence theory is a powerful tool for such efforts but, unlike modular com-
mutator theory, its application appears to be essentially restricted to the realm of locally
finite varieties.

12 Residual Smallness

An algebra A is called subdirectly irreducible if it has a smallest non-zero congruence, (called
the monolith of A). According to a theorem of G. Birkhoff, every algebra can be embedded
into a product,

∏
t∈T St, of subdirectly irreducible algebras St in such a way that it projects

onto each factor St (subdirect embedding).

Definition 12.1 A variety V is residually small if there is a cardinal bound on the size of
subdirectly irreducible algebras in V. If V is residually small, then we will write resb(V) for
the least cardinal κ such that every subdirectly irreducible algebra in V has cardinality less
than κ. If the cardinalities of subdirectly irreducible algebras in V have no cardinal upper
bound, then we write resb(V) = ∞, and say that V is residually large. For an algebra A, we
put resb(A) = resb(HSP(A)). A variety V will be called residually finite if resb(V) ≤ ℵ0. A
residual bound for V is any cardinal κ ≥ resb(V).

R. W. Quackenbush [42] proved that if a locally finite variety has an infinite subdirectly
irreducible algebra, then it has unboundedly large finite subdirectly irreducible algebras.
He posed the question, “Does every finitely generated residually finite variety have a finite
residual bound?” While in general the answer to this question is no (R. McKenzie [35]),
the answer is affirmative for finite algebras in congruence modular varieties (R. Freese and
R. McKenzie [11]). Moreover, the class of finite algebras A in congruence modular varieties
for which HSP(A) is residually finite is defined by a commutator equation. This equation,
which takes the form x ∧ [y, y] ≤ [x, y], is called (C1). Notice that (C1) is equivalent to
x ∧ [y, y] = [x ∧ y, y], as can be proved by substituting x ∧ y for x.

Theorem 12.2 Suppose that A is a finite algebra and that HSP(A) is congruence modular.
The following are equivalent.

(1) resb(A) < ∞.
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(2) resb(A) is a positive integer.

(3) HSP(A)|=Con(α ∧ [β, β] ≤ [α, β]).

(4) S(A)|=Con(α ∧ [β, β] ≤ [α, β]).

Proof The implications (3) → (4) and (2) ⇒ (1) are trivial. We will prove that (4) implies
the validity of (C1) in finite algebras of HSP(A), and that this in turn implies (2). Finally,
we shall prove that (1) ⇒ (3).

To begin, suppose that S(A) |= (C1). Let B be any finite algebra in HSP(A). There is a
positive integer n, a subalgebra D of An, and a congruence θ on D such that B is isomorphic
to D/θ. First, we show that D |= (C1); then using that, we show that B |= (C1). So let
{α, β} ⊆ ConD. We write ηi for the kernel of the i th projection homomorphism of D into
A, so that D/ηi ∈ S(A).

To get a contradiction, we assume that α∧ [β, β] 6= [α∧β, β]. This means that α∧ [β, β] >
[α ∧ β, β]. Since D/η0 |= (C1), using statement (6) of Theorem 8.3, we have that

[α ∧ β, β] ∨ η0 = [(α ∧ β) ∨ η0, β ∨ η0] ∨ η0 = ((α ∧ β) ∨ η0) ∧ ([β ∨ η0, β ∨ η0] ∨ η0) ;

which gives that
[α ∧ β, β] ∨ η0 ≥ α ∧ β ∧ [β, β] = α ∧ [β, β] . (12.1)

Modularity of ConD thus implies that

η0 ∧ α ∧ [β, β] > η0 ∧ [α ∧ β, β] ≥ [η0 ∧ α ∧ β, β] .

Replacing i = 0 by i = 1 and α by η0 ∧ α in this argument, leads to

η1 ∧ η0 ∧ α ∧ [β, β] > [η1 ∧ η0 ∧ α ∧ β, β] . (12.2)

Continuing in this fashion, we eventually reach the conclusion that
∧

i<n

ηi ∧ α ∧ [β, β] > [
∧

i<n

ηi ∧ α ∧ β, β] ,

which is absurd since
∧

i<n ηi = 0D. This contradiction establishes that α∧ [β, β] = [α∧β, β].
Thus D |= (C1).

Now to see that B ∼= D/θ satisfies (C1), let {α, β} ⊆ ConD with α∧β ≥ θ. By Theorem
8.3, statement (6), what we need to show is that α ∧ ([β, β] ∨ θ) = [α ∧ β, β] ∨ θ. Since
D |= (C1), and α ≥ θ, we have that

α ∧ ([β, β] ∨ θ) = (α ∧ [β, β]) ∨ θ = [α ∧ β, β] ∨ θ ,

as required.
Next, suppose that all the finite algebras in HSP(A) satisfy (C1). If HSP(A) had an

infinite subdirectly irreducible algebra, then the variety would contain arbitrarily large finite
subdirectly irreducible algebras by [42]. Therefore, we need only find a finite bound on the
size of the finite subdirectly irreducible algebras in the variety generated by A. Let B be a
finite subdirectly irreducible algebra in the variety generated by A. Choose a positive integer
n, a subalgebra D of An, and a congruence θ on D with B isomorphic to D/θ. Let β be the
monolith of B.
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By additivity of the commutator, B has a largest congruence ζ such that [ζ, β] = 0B. We
will prove that B/ζ ∈ HS(A). Let α ∈ ConD be the congruence of D corresponding to ζ
via the isomorphism of B with D/θ, and θ′ be the congruence of D corresponding to β. (So
that θ′ is the unique cover of θ.) By our choice of ζ, α is the largest congruence in ConD
with [α, θ′] ≤ θ. For each i = 0, . . . , n − 1, let ηi be the kernel of the projection of D to
the ith coordinate. We will prove that there is some i so that ηi ≤ α. This will show that
B/ζ ∼= D/α ∈ HS(A). We do so by contradiction. Suppose that ηi 6≤ α for all i. By our
choice of α, this means that [θ′, ηi] 6≤ θ for all i. It follows that for all i, [θ′, ηi] ∨ θ is strictly
larger than θ but contained in θ′. Hence, [θ′, ηi] ∨ θ = θ′. If we substitute [θ′, η0] ∨ θ for θ′ in
θ′ = [θ′, η1] ∨ θ, we get

θ′ = [([θ′, η0] ∨ θ), η1] ∨ θ
≤ [(θ′ ∩ η0) ∨ θ, η1] ∨ θ
= [(θ′ ∩ η0), η1] ∨ [θ, η1] ∨ θ
≤ (θ′ ∩ η0 ∩ η1) ∨ θ.

(12.3)

Since the reverse inclusion is also true, we actually have θ′ = (θ′∩η0∩η1)∨θ. By substituting
this result into the equation θ′ = [θ′, η2]∨ θ, we similarly find that θ′ = (θ′ ∩ η0 ∩ η1 ∩ η2)∨ θ.
Proceeding inductively, repeatedly applying this argument, we eventually obtain that θ′ =
(θ′ ∧ ∧

0≤i<n ηi) ∨ θ. This means that θ′ = θ, which is the desired contradiction. The
assumption that ηi 6≤ α for all i must be false, as we claimed.

Now B/ζ ∈ HS(A) implies |B/ζ| ≤ |A|. We shall conclude this proof that (4) → (2) by
demonstrating that each ζ-class is no larger than 2M where M is the cardinality of the free
algebra in HSP(A) on |A|+ 2 generators. This will prove that |B| ≤ |A| · 2M .

Next, we observe that [ζ, ζ] = 0B, equivalently, [α, α] ≤ θ. This is true because D |=
(C1), so that θ′ ∧ [α, α] ≤ [θ′, α] ≤ θ. But if [α, α] 6≤ θ, then θ′ ≤ [α, α] ∨ θ, giving that
θ′ = (θ′ ∧ [α, α]) ∨ θ = θ by modularity, a contradiction. Thus [ζ, ζ] = 0B.

Denote the Gumm difference term of HSP(A) by q. Since [ζ, ζ] = 0, we know that the
restriction of q to any ζ-class is a Maltsev operation, and gives that set the structure of a
ternary Abelian group. Select 〈0, b〉 ∈ β − 0B, and let + and − denote the Abelian group
operations on 0/ζ with neutral element 0 induced by q. Letting u be any element of B, we
now proceed to prove that |u/ζ| ≤ 2M . Suppose that x, y ∈ u/ζ and x 6= y. Since β is the
monolith of B, 〈0, b〉 ∈ CgB(x, y). This means that there are elements v0 = 0, v2, . . . , vk = b
and unary polynomials p0, . . . , pk−1 so that {pi(x), pi(y)} = {vi, vi+1} for all i. We can apply
the difference term q and manipulate its local Maltsev characteristics to shorten the chain of
vi’s until k = 2. This means that there is a unary polynomial f so that {f(x), f(y)} = {0, b}.
Moreover, if f(x) = b and f(y) = 0, then we can replace f by the polynomial b−f(z) so that
we can assume f(x) = 0 and f(y) = b. We will bound the number of constants necessary
to construct f . Let c0, . . . , cl−1 be representatives of the ζ-classes with c0 = 0. Note that
l ≤ |A|. There are constants r0, . . . , rm−1 and an (m + 1)-ary term t so that f(z) = t(z, r)
for all z ∈ B. For each j = 1, . . . , m− 1, select ij so that cijζrj . For notational convenience,
let sj = cij . If z ∈ x/ζ, then the matrix

(
t(x, r)− t(x, r) + 0 t(x, s)− t(x, s) + 0
t(z, r)− t(x, r) + 0 t(z, s)− t(x, s) + 0

)

is in M(ζ, ζ). Since the top row of the matrix is an equality, so is the bottom since [ζ, ζ] = 0B.
It follows then that f(z) = t(z, r) = t(z, s)− t(x, s)+ 0. Let cl = t(x, s). Then for all z ∈ x/ζ



40 R. McKenzie and J. Snow

we have f(z) = q(t(z, s), cl, c0) (recall that 0 = c0). Since each sj = cij , we have an (l+2)-ary
term t′ so that f(z) = t′(z, c0, . . . , cl) for all z ∈ u/ζ. We have proven that for all x 6= y ∈ u/ζ
there exists an (l + 2)-ary term t′ so that t′(x, c0, . . . , cl) = 0 iff t′(y, c0, . . . , cl) 6= 0. Define
Σ to be the set of all functions t(−, c0, . . . , cl) with t an (l + 2)-ary term of B. Notice that
|Σ| ≤ |FHSP(A)(l + 2)| = M where FHSP(A)(l + 2) is the free algebra in HSP(A) on l + 2
generators. Define an equivalence relation ∼ on u/ζ by x ∼ y if for all f ∈ Σ, f(x) = 0 if
and only if f(y) = 0. Then |(u/ζ)/ ∼ | ≤ 2|Σ| ≤ 2M . However, since we can separate points
of u/ζ with functions in Σ, it follows that ∼ is the identity relation on u/ζ, so we have that
|u/ζ| ≤ 2M as desired. As stated above, it follows that

|B| ≤ |A| · 2M ≤ |A| · 2|A||A|
|A|+2

,

and this gives a finite upper bound to resb(A). We have proven that (4) → (2).
To complete the proof of this theorem, it only remains to establish that (1) → (3).

Assume that (3) does not hold. We will prove that HSP(A) has arbitrarily large subdirectly
irreducibles. There is an algebra E in HSP(A) with congruences β′ and γ so that β′ ∩
[γ, γ] 6≤ [β′, γ]. Let β = β′ ∩ [γ, γ]. Then β ≤ [γ, γ] and [β, γ] < β (because otherwise,
β′ ∩ [γ, γ] = β = [β, γ] ≤ [β′, γ]). Choose a strictly meet irreducible congruence θ which
exceeds [β, γ] but not β. Let θ′ be the unique cover of θ. It follows that θ′ ≤ [γ ∨ θ, γ ∨ θ]∨ θ
and

[θ′, γ ∨ θ] ≤ [β ∨ θ, γ ∨ θ] ≤ [β, γ] ∨ θ = θ ,

because θ′ ≤ β ∨ θ ≤ [γ, γ] ∨ θ. Therefore, we can change notation (replacing E by E/θ)
and assume that E is subdirectly irreducible with monolith β. We have that β ≤ [γ, γ] and
[β, γ] = 0E .

Let ∆ = ∆γ,β be the congruence on E(γ) as in Lemma 8.6. Let πi : E(γ) → E for i = 0, 1
be the canonical projections with ηi = kerπi. For i = 0, 1, let βi = π−1(β). From Lemma 8.6
we have that ∆ ∩ ηi = 0E(γ) and ∆ ∨ ηi = βi.

Let ℵ be an arbitrary cardinal. We will follow the tradition that ℵ = {σ : σ < ℵ} and
extend the notation for elements of Eℵ which we have been using for finite direct powers up
to now. That is, we will represent elements of Eℵ as bold faced vectors a, and for δ ∈ ℵ,
we will denote the δ coordinate of a as aδ. Let B = {a ∈ Eℵ : aδγaε for all δ, ε ∈ ℵ}. For
any ε ∈ ℵ, let γε ∈ ConB be defined by aγεb iff aεγbε, and define βε analogously. From our
definition of B, it follows that γδ = γε for all ε, δ ∈ ℵ. We will denote this congruence as
γ. For each ε ∈ ℵ, let ηε be the kernel of the projection of B to the ε coordinate and let
η′ε =

⋂
δ 6=ε ηδ. Then ηε ∨ ηδ = γ for all {δ, ε} ⊆ ℵ, δ 6= ε. For each σ ∈ ℵ, let θσ be defined as

θσ = {〈a,b〉 : aσβbσ and for all ε 6= σ, aε = bε}.

For each σ ∈ ℵ \ {0}, let ∆σ be defined as

∆σ = {〈a,b〉 : 〈a0, aσ〉∆〈b0, bσ〉 and for all ε 6∈ {0, σ}, aε = bε}.

Finally, let θ =
∨

σ θσ and κ =
∨

σ>0 ∆σ.
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We claim that θ0 ≤ θδ ∨∆δ and that θδ ≤ θ0 ∨∆δ for δ 6= 0. Suppose that aθ0b. This
means that a0βb0 and otherwise a and b are equal. Now, since 〈a0, a0〉∆〈b0, b0〉 we have

a = 〈a0, . . . , aδ, . . .〉
η′δ 〈a0, . . . , a0, . . .〉
∆δ 〈b0, . . . , b0, . . .〉
η′δ 〈b0, . . . , bδ, . . .〉
= b

(12.4)

so θ0 ≤ η′δ ∨∆δ. If we meet with θ0 ∨ θδ, then using modularity several times, observing that
∆δ ≤ θ0 ∨ θδ and η′δ ∧ (θ0 ∨ θδ) = (η′δ ∧ θ0) ∨ θδ = θδ (since η′δ ≥ θδ), we obtain that

θ0 ≤ (θ0 ∨ θδ) ∧ (η′δ ∨∆δ) = {(θ0 ∨ θδ) ∧ η′δ} ∨∆δ = θδ ∨∆δ .

That θδ ≤ θ0 ∨∆δ can be proven similarly.
For any δ 6= 0 6= ε this gives

κ ∨ θδ = κ ∨∆δ ∨∆ε ∨ θδ

= κ ∨∆ε ∨ θ0 ∨ θδ

= κ ∨ θε ∨ θ0 ∨ θδ

≥ θε ∨ θ0.

(12.5)

It follows from our definitions that κ ∨ θδ = θ for all δ including δ = 0.
We also claim that θδ 6≤ κ. We first show that θ0 6≤ κ. The case for δ 6= 0 then follows

since κ ∨ θ0 = κ ∨ θδ. Since 0E ≺ β in ConE, we know that 0B ≺ θδ in ConB. Hence, θδ is
compact. If θ0 ≤ κ, then by compactness, θ0 would be exceeded by a join of finitely many
of the ∆ε. We will prove by induction on n ≥ 1 that θ0 is not exceeded by a join of n of
the ∆ε. It must be that θ0 ∩∆ε = 0B for all ε. To see this, suppose that 〈a,b〉 ∈ θ0 ∩∆ε.
This means that aδ = bδ for all δ 6= 0 and that 〈a0, aε〉∆〈b0, bε〉 = 〈b0, aε〉. By Lemma 8.6
this means that 〈a0, b0〉 ∈ [γ, β] = 0E . Hence, we also have that a0 = b0 so a = b. Since
θ0 ∩ ∆ε = 0B for all ε, it cannot be that θ0 ≤ ∆ε for any ε. Now suppose that n > 1 and
that θ0 is not exceeded by any join of fewer than n of the ∆ε. Suppose that ε1, ε2, . . . , εn are
n distinct members of ℵ. Then we know that ∆ε1 ≤ θ0 ∨ θε1 , that

∨
i≥2 ∆εi ≤ θ0 ∨ (

∨
i≥2 θεi),

and that θ0 ∩ (
∨

i≥2 ∆εi) = 0B (since 0B ≺ θ0). Also, it is not difficult to prove that the θδ’s
are independent. Putting all of this together gives

θ0 ∩
(∨

1≤i≤n ∆εi

)
= θ0 ∩ (θ0 ∨ θε1) ∩

(∨
1≤i≤n ∆εi

)

= θ0 ∩
(
∆ε1 ∨

[
(θ0 ∨ θε1) ∩

(
θ0 ∨

(∨
i≥2 θεi

))
∩

(∨
i≥2 ∆εi

)])

= θ0 ∩
(
∆ε1 ∨

[
θ0 ∩

(∨
i≥2 ∆ε2

)])

= θ0 ∩∆ε1

= 0B.
(12.6)

This means, of course, that θ0 6≤
∨

1≤i≤n ∆εi . By induction, it cannot be that θ0 is less than
any finite join of ∆ε’s. It follows then that θ0 6≤ κ and that θδ 6≤ κ for any δ.

Since κ ∨ θδ = θ but θδ 6≤ κ for all δ, it follows that κ < θ. Therefore, there is a
completely meet irreducible λ ∈ ConB which contains κ and not θ. In ConB, ηδ ∩ η′δ = 0B

and ηδ ∨ η′δ = γ. So the interval from ηδ to γ is isomorphic to the interval from 0 to η′δ. Since
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E is subdirectly irreducible, the interval from ηδ to γ has a unique atom. Hence, the interval
from 0 to η′δ has a unique atom—which is θδ in our notation. This implies that λ ∩ η′δ = 0B.
If this were not the case, then λ ≥ θδ and so λ ≥ θδ ∨ κ = θ which is a contradiction. We
have then that ηδ ∨ η′δ = γ and that λ ∩ η′δ = 0B. We claim that for all δ, λ ∨ ηδ 6≥ γ.
To see this, suppose that λ ∨ ηδ ≥ γ. Then [γ, γ] ≤ [ηδ ∨ η′δ, ηδ ∨ λ] ≤ ηδ ∨ (λ ∩ η′δ) = ηδ.
Since E ∼= B/ηδ, this would imply that in ConE, [γ, γ] = 0E—which is not true. Now,
since ηδ ∨ ηε = γ for all δ 6= ε ∈ ℵ, the congruences λ ∨ ηδ, δ ∈ ℵ, are pairwise distinct.
Therefore B/λ—which is subdirectly irreducible—has at least ℵ congruences. Since ℵ is an
arbitrary infinite cardinal, it follows that HSP(A) has no residual bound. We have proven
the contrapositive of (1) → (3).

2

13 Directly Representable Varieties

Definition 13.1 A variety V is directly representable iff there is a finite set D of finite
algebras such that V = HSP(D) and every finite algebra in V belongs to IP(D), equivalently,
V is locally finite and has, up to isomorphism, only a finite set of finite directly indecomposable
algebras. The finite spectrum of a class K of algebras is the set of positive integers n such
that K has an n-element algebra. A class K of algebras is said to be narrow iff there is a
finite set {p0, . . . , pk−1} of prime integers such that every member of the finite spectrum of K
takes the form

∏
i<k pai

i for some integers ai.

In this section, we prove that every narrow locally finite variety has permuting congru-
ences, characterize finite algebras that generate narrow varieties, and using the commutator,
characterize finite algebras that generate directly representable varieties. The results proved
here are drawn from R. McKenzie [32].

Theorem 13.2 Let V be any locally finite variety and consider these possible properties of
V.

(1) V is directly representable.

(2) V is narrow.

(3) All congruences on finite algebras in V are uniform.

(4) V has permuting congruences.

We have (1) → (2) → (3) → (4).

Proof Clearly (1) implies (2).
To prove that (2) implies (3), suppose that V is a narrow variety, that A is a finite algebra

in V, and that θ ∈ ConA. For n a positive integer, define An(θ) to be the algebra (subalgebra
of An) consisting of all sequences u ∈ An such that uiθuj for all {i, j} ⊆ {0, . . . , n − 1}.
We assume that |A/θ| = k and that the k distinct θ-equivalence classes have cardinalities
a0, . . . , ak−1. We are going to show that a0 = a1 = · · · = ak−1. Observe that

|An(θ)| = an
0 + · · ·+ an

k−1 = sn(a) (13.1)



Congruence modular varieties 43

where a = 〈a0, . . . , ak−1〉. Let {p0, . . . , p`−1} be a finite set of prime integers that include
all the prime divisors of the members of the finite spectrum of V, and hence all the prime
divisors of the integers sn(a), n ≥ 1. Let d = gcd{ai : i < k} and let b = 〈b0, . . . , bk−1〉
where dbi = ai. Choose M to be any positive integer such that 2M ≥ k. For j < `, put
qj = (pj − 1)pM

j . An easy calculation, based on the Euler-Fermat theorem, shows that

b
qj

i ≡ 0, 1 (mod pM+1
j ) for i < k, j < ` . (13.2)

Thus for any positive integer N , b
qjN
i ≡ 0, 1 (mod pM+1

j ), and we have

sqjN (b) ≡ uj (mod pM+1
j ) (13.3)

where uj is the number of i < k such that bi is prime to pj . Note that 1 ≤ uj ≤ k, since the
bi have no positive common divisors other than 1, and pM+1

j > k. Thus pM+1
j cannot divide

sqjN (b).
Now taking q =

∏
j<` qj and N any positive integer, it follows from the above analysis

that sqN (b) is not divisible by pM+1
j for any j < `. Since sqN (b) is a product of powers of

the pj , it follows that
sqN (b) ≤ P =

∏

j<`

pM
j . (13.4)

If we had bi > 1 for some i, then the sequence 〈sqN (b) : N ≥ 1〉 would be a strictly increasing
sequence of integers. Because the sequence is bounded, we must have b0 = b1 = · · · = bk−1 =
1. Thus we conclude our proof that a is a constant sequence, or in other words, θ is a uniform
congruence.

To prove that (3) implies (4), suppose that V is locally finite and its finite algebras have
uniform congruences. We first observe that as an easy corollary of the proof of Theorem 6.1,
a variety has permuting congruences iff its free algebra on three generators has permuting
congruences. Since V is locally finite, it therefore suffices to show that the finite algebras in
V have permuting congruences. Thus suppose that A ∈ V is finite and {α, β} ⊆ ConA. Let
B be the algebra A2(α) ≤ A×A consisting of all pairs 〈x, y〉 with xαy. Let θ (on B) be the
congruence β × β|B, so that 〈x, y〉θ〈u, v〉 iff xβu and yβv. By assumption, the congruences
β, α∩β, θ are uniform. Let b, c, e be the respective block-sizes for these congruences. Choose
any a ∈ A. Then 〈a, a〉/θ consists of all 〈x, y〉 ∈ A×A such that x ∈ a/β and y ∈ x/(α∩ β);
thus e = bc.

Now, to conclude this proof, we assume that there are elements u, v, w in A with uαvβw
and 〈u,w〉 6∈ β ◦ α, and we derive a contradiction. This assumption implies that there is no
x ∈ A with 〈x,w〉 ∈ 〈u, v〉/θ. Note that for any z ∈ A, if 〈x, z〉 ∈ 〈u, v〉/θ for some x = x0

then 〈x, z〉 ∈ 〈u, v〉/θ precisely for the elements x ∈ x0/(α∩β). Thus |〈u, v〉/θ| = b′c where b′

is the number of z ∈ v/β such that such 〈u, z〉 ∈ β ◦α. We have that b′ < b since w ∈ v/β and
〈u,w〉 6∈ β ◦α. Thus |〈u, v〉/θ| = b′c < bc = |〈u, v〉/θ|, which is the promised contradiction. 2

Lemma 13.3 In a directly representable variety, every finite subdirectly irreducible algebra
is Abelian or simple.

Proof Assume that V is a directly representable variety. By Theorem 13.2, V is congruence-
modular; in fact, it is a Maltsev variety. Since subdirectly irreducible algebras are directly
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indecomposable, V has a finite bound on the size of its finite subdirectly irreducible algebras.
As we noted in our proof of Theorem 12.2, this implies that the locally finite variety V has
resb(V) < ω, and V |= (C1). Now let A be a finite subdirectly irreducible algebra in V.
To get a contradiction, we suppose that A is neither Abelian nor simple. Where β is the
monolith of A, this supposition means that 0A ≺ β < 1A and β ≤ [1A, 1A]. Applying (C1),
we find that β = [β, 1A].

Choose any positive integer n. Once again, we consider the algebra An(β) of β-constant n-
tuples. Our goal this time is to prove that An(β) is directly indecomposable. Since |An(β)| >
2n, this will contradict the ground assumption that V is directly representable. {This is the
fourth time that we have used this fruitful construction after Section 11.}

Suppose, for sake of contradiction, that An(β) is not directly indecomposable. Then it
possesses a pair of congruences 〈δ0, δ1〉 such that 0 < δε < 1, δ0 ∨ δ1 = 1, δ0 ∧ δ1 = 0. We
write ηi for the kernel of the projection homomorphism of An(β) to A at the i coordinate
(as usual) and put η′i =

∧
j 6=i ηj . We write βi for the kernel of the homomorphism of An(β)

to A/β through the i coordinate, so that βi = βj for alll {i, j} ⊆ {0, . . . , n−1}, and we write
simply β for this congruence. The fact that A |= β = [β, 1] gives An(β) |= β = ηi ∨ [β, 1]
for each i < n. (Here we have used Theorem 8.3, statement (6), again.) For i < n we have
ηi ≺ β, β = ηi ∨ η′i, and ηi ∧ η′i = 0. Then by modularity, 0 ≺ η′i.

We can now show that for each i < n and ε ∈ {0, 1}, if δε 6≤ ηi then η′i ≤ δε. Indeed, if
δε 6≤ ηi, then β ≤ ηi ∨ δε, giving β = ηi ∨ (β ∧ δε). Then

[η′i, δ1−ε] ≤ [β, δ1−ε] = [ηi ∨ (β ∧ δε), δ1−ε] ≤ ηi ∨ [δε, δ1−ε] = ηi . (13.5)

Thus [η′i, δ1−ε] ≤ η′i ∧ ηi = 0. Then since [β, 1] = [ηi ∨ η′i, 1] 6≤ ηi we have

0 6= [η′i, 1] = [η′i, δ0 ∨ δ1] = [η′i, δ0] ∨ [η′i, δ1] = [η′i, δε] . (13.6)

Since η′i is an atom, then
η′i = [η′i, δε] ≤ δε . (13.7)

So indeed, δε 6≤ ηi implies η′i ≤ δε.
Since

∨
i ηi = β < 1 = δ0 ∨ δ1, then there is ε ∈ {0, 1} such that δε ≤ ηi holds for no i.

Then δε ≥
∨

i η
′
i = β. This implies that δ1−ε ≥ η′i holds for no i since δ0∧δ1 = 0; consequently,

δ1−ε ≤ ηi for all i < n. But that forces δ1−ε = 0. This contradiction proves the lemma. 2

For the final theorem of this section, we will need this lemma.

Lemma 13.4 (I. Fleischer [10]) Let A ≤ A0 × A1 be a subdirect product, where A has
permuting congruences. Then A is the equalizer of a pair of surjective homomorphisms
πi : Ai → K for some algebra K. Consequently, if A has permuting congruences and A is a
subdirect product of a finite system of simple algebras, A ≤ ∏

t∈T St, then for some W ⊆ T ,
the projection of A into

∏
t∈W St is an isomorphism πW : A ∼= ∏

t∈W St.

Proof This is left as an exercise for the reader. 2

Theorem 13.5 (1) In a directly representable variety, every finite algebra is isomorphic,
for some m ≥ 0, with a direct product B0×B1× · · · ×Bm where B0 is Abelian and Bi

is a simple non-Abelian algebra for i ≥ 1.
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(2) Let A be a finite algebra. HSP(A) is directly representable iff A has a Maltsev term,
every subalgebra of A is isomorphic with a direct product of an Abelian algebra and a
product of simple non-Abelian algebras, and the variety A generated by the collection of
all Abelian direct factors of subalgebras of A is directly representable.

(3) Let A be a finite algebra. HSP(A) is narrow iff A has a Maltsev term and every
subalgebra of A has uniform congruences.

Proof To prove (1), suppose that V is directly representable and A is a finite algebra in V.
By Lemma 13.3, and G. Birkhoff’s subdirect representation theorem, A is isomorphic,

for some integer m ≥ 0, to an algebra A′ ≤ ∏
i≤m Bi where B0 is Abelian and Bi (i ≥ 1) is

non-Abelian and simple. (Here we have used that any subdirect product of Abelian algebras
is Abelian.) We assume that m is as small as it can be.

Let ηi denote the kernel of the i coordinate projection of A′ onto Bi. Put δ0 = η0 and
δ1 =

∧
1≤i≤m ηi. Since V has permuting congruences, the minimality of m and Lemma 13.4

tells us that the projection of A′ into B1 × · · · ×Bm (an algebra isomorphic to A′/δ1) is the
full direct product of B1, . . . ,Bm.

Next we claim that A′/δ1 |= [1, 1] = 1. This actually follows from the fact that in a
modular variety, the class of algebras satisfying [x, y] = x∧y for congruences—called “neutral
algebras”—is closed under binary subdirect products. (Simple, non-Abelian algebras are
neutral.) To see this, suppose that E ≤ E0×E1 is a subdirect product and Ei |=CON [x, y] =
x ∧ y. Let ρ0, ρ1 denote the two projection congruences on E, and let {α, β} ⊆ ConE. Then
E/ρ0 neutral implies that

α ∧ β ≤ (α ∨ ρ0) ∧ (β ∨ ρ0) = [α, β] ∨ ρ0 . (13.8)

Since [α, β] ≤ α∧β, by modularity it follows that if [α, β] < α∧β then [α, β]∧ρ0 < α∧β∧ρ0.
Suppose that this strict inclusion holds. Now (α ∧ β ∧ ρ0) ∧ ρ1 = 0, hence by modularity we
must have ([α, β] ∧ ρ0) ∨ ρ1 < (α ∧ β ∧ ρ0) ∨ ρ1. But since E/ρ1 is neutral, we can calculate
that

([α, β] ∧ ρ0) ∨ ρ1 ≥ [[α, β], ρ0] ∨ ρ1

= [[α ∨ ρ1, β ∨ ρ1], ρ0 ∨ ρ1] ∨ ρ1

= (α ∨ ρ1) ∧ (β ∨ ρ1) ∧ (ρ0 ∨ ρ1)
≥ (α ∧ β ∧ ρ0) ∨ ρ1 .

(13.9)

This final contradiction shows that [α, β] = α ∧ β, as claimed.
Thus we have proved that A′/δ1 |= [1, 1] = 1. This means that A′ |= 1 = δ1 ∨ [1, 1]. Since

B0 is Abelian, then [1, 1] ≤ δ0. Thus δ1 ∨ δ0 = 1. Since δ0 ∧ δ1 = 0 by definition, and since δ0

and δ1 must commute, then it follows that A′ is the direct product of B0 and the projection
of A′ into

∏
i≥1 Bi—i.e., A′ =

∏
i≤m Bi.

Now let A be any finite algebra. To prove (2), observe that we have already proved that
HSP(A) directly representable implies the truth of the other three conditions. Conversely,
suppose that these conditions are valid. Let A be the variety generated by the Abelian direct
factors of subalgebras of A. Every finite algebra B in SP(A) is isomorphic to a subdirect
product of subalgebras of A, and thus is isomorphic to a subdirect product B′ ≤ ∏

i≤m Bi

with B0 ∈ A and Bi simple and non-Abelian for 1 ≤ i ≤ m. Choosing m minimal for B,
the above argument yields that B′ =

∏
i≤m Bi. Now let θ be any congruence of B′. Write,

as before, δ0 and δ1 for the kernels of the projections of B′ onto B0 and B1 × · · · × Bm,



46 R. McKenzie and J. Snow

respectively. The neutrality of B′/δ1 yields θ ∨ δ1 = [θ, 1] ∨ δ1 = [θ, δ0] ∨ δ1 (by replacing 1
by δ0 ∨ δ1). Modularity gives θ = [θ, δ0] ∨ (θ ∧ δ1) and θ ∨ δ0 = δ0 ∨ (θ ∧ δ1). Then

(δ0 ∨ θ) ∧ (δ1 ∨ θ) = (δ0 ∨ (θ ∧ δ1)) ∧ (δ1 ∨ [θ, δ0])
= (δ0 ∨ (θ ∧ δ1)) ∧ δ1) ∨ [θ, δ0])
= (δ0 ∧ δ1) ∨ (θ ∧ δ1) ∨ [θ, δ0])
≤ θ .

(13.10)

Thus
(δ0 ∨ θ) ∧ (δ1 ∨ θ) = θ . (13.11)

Since also,
(δ0 ∨ θ) ∨ (δ1 ∨ θ) = 1 , (13.12)

it follows that B′/θ ∼= (B′/(δ0 ∨ θ)) × (B′/(δ1 ∨ θ)), the product of an algebra in A and a
quotient of B′/δ1. Since B′/δ1 is neutral, it has distributive congruence lattice, and every
quotient of this algebra is isomorphic to a direct product of a subsystem of the simple algebras
Bi, 1 ≤ i ≤ m.

We have now shown that every finite algebra in HSP(A) is isomorphic to a product of an
algebra in A and a product of a system of simple non-Abelian direct factors of subalgebras of
A. Since A is directly representable, then V has, within isomorphism, only a finitely number
of directly indecomposable finite algebras.

To prove (3), suppose that the finite algebra A has a Maltsev term and all subalgebras of
A have uniform congruences. We first show that SP(A) is narrow, in fact, that every prime
divisor of the finite spectrum of SP(A) divides the cardinality of some subalgebra of A. To
do this, we use Lemma 13.4. If B ≤ B0×B1 is a subdirect product in a Maltsev variety, then
B is the equalizer of surjective homomorphisms πi : Bi → K. If the kernel of π1 is a uniform
congruence on B1 with congruence classes of size c, then it is trivial to see that |B| = |B1|c.
Now suppose that that F ≤ F1 × · · · × Fn is a subdirect product where Fi are subalgebras
of A. By induction on n, using the preceeding observation and the fact that all congruences
on every Fi are uniform, we find that |F| is the product of |F1| and a sequence of integers
c2, . . . , cn where ci is the block size of a uniform congruence on Fi. Thus |F| = c1c2 · · · cn

with ci a divisor of |Fi|.
Now since SP(A) is narrow, our proof of Theorem 13.2, (2) → (3), shows that the finite

algebras in SP(A) have uniform congruences. If an algebra B has uniform congruences, then
|B/θ| divides |B| for every congruence θ. Thus HSP(A) is narrow, as claimed. 2

In [44] it is proven that on any finite set A there altogether only finitely many clones F so
that the algebra 〈A,F 〉 satisfies the conditions of (2) in Theorem 13.5. Each of these clones
is generated by its operations of |A|+2 variables. To finish our presentation of this topic, we
characterize, in a fashion, the directly representable affine varieties.

Theorem 13.6 For an Abelian, congruence modular variety A, the following are equivalent:

(1) A is directly representable.

(2) A is locally finite and the polynomially equivalent variety RM of modules is directly
representable.
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(3) A is locally finite and the ring of A, R, is a finite ring of finite representation type.

Proof If A ∈ A and M ∈ RM and A and M are polynomially equivalent, then these
algebras have the same universe and the same congruence lattice L. Hence A is directly
indecomposable iff M is directly indecomposable, since direct decompositions in algebras
with permuting congruences correspond to complement pairs of congruences—(θ, ψ) with
θ ∩ ψ = 0, θ ∨ ψ = 1. If A is locally finite, then R is finite, and each of these varieties
has, for each integer n, only finitely many non-isomorphic n-element algebras. (They are all
homomorphic images of the free algebra on n generators in the variety.) Then A is directly
representable iff RM is directly representable iff there is a finite bound to the size of finite
directly indecomposable algebras in A. A ring R with the property that up to isomorphism
there are only finitely many finitely generated, directly indecomposable, R-modules is said
to be of finite representation type. The equivalence of (1), (2) and (3) should now be clear.

2

14 Varieties with Very Few Models

Definition 14.1 For a class C of algebras and a cardinal k, let GC(k) denote the number of
pairwise non-isomorphic members of C that are generated by at most k elements. We call
this function, restricted to positive integral k, the G-spectrum (or generative complexity) of C.
We say that C has very few models iff there is a positive integer N such that for all positive
integral k > 1, GC(k) ≤ kN .

Below is the chief result of P. M. Idziak, R. McKenzie [23], which will be proved in this
section.

Theorem 14.2 A locally finite, congruence modular, variety has very few models iff it is
Abelian and polynomially equivalent to the variety of unitary modules over some finite ring
of finite representation type.

In the next two lemmas, V denotes a fixed, locally finite, congruence modular variety
with very few models. We first show that all finite algebras in V are nilpotent. Then by
Corollary 10.6, the finite algebras in V have permuting congruences. Since the free algebra
on three generators in V is finite, it follows that V has a Maltsev term. Then to prove that
V is Abelian, it suffices to show that all finite algebras in V are Abelian. Assuming that this
fails, we show by direct construction that GV(k) is not bounded by any polynomial function
of k, thus getting a contradiction. Our proofs will be modifications of those appearing in P.
M. Idziak, R. McKenzie [23]. As we mentioned in Section 11, all locally finite varieties with
very few models have recently been completely characterized in P. M. Idziak, R. McKenzie,
M. Valeriote [24]. Each such variety consists entirely of Abelian algebras.

Notation: The following notation will be used in the next two lemmas. For any sets
B ⊆ X, and elements a, b in an algebra A, we define a member of AX : [a, b]B denotes the
function f ∈ AX such that f(x) = b for x ∈ B and f(x) = a for x ∈ X \B. Then for x ∈ X,
we use [a, b]x to denote [a, b]B with B = {x}.
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Lemma 14.3 Every finite algebra in V is nilpotent.

Proof Assume that this fails. By taking a quotient of a finite non-nilpotent algebra, we can
find a finite algebra A ∈ V with a minimal congruence µ such that [1, µ] = µ. For n > 0, let
X be a set of cardinality 2n and let {Xi,j : 0 ≤ i < n, 0 ≤ j < 2} be a system of 2n subsets
of X so that for all x ∈ X there is a function p : {0, 1, . . . , n− 1} → {0, 1} such that

{x} =
⋂

i<n

Xi,p(i) .

For example, we can take Xi,0 and Xi,1 to be Bi and its complement, where B0, . . . , Bn−1 is
a set of generators of the Boolean algebra of all subsets of X.

Let Kn be the subalgebra of AX generated by the set of all functions [a, b]Xi,0 where a
and b are any two elements of A and 0 ≤ i ≤ n− 1. (See the note on notation above.) Thus
Kn is generated by a set of a(a−1)n+a elements, where a = |A|. We shall show that Kn has
a set of 2n + 1 pairwise non-isomorphic homomorphic images. Since these are all generated
by at most a(a− 1)n + a elements, then we can conclude that GV(a(a− 1)n + 1) ≥ 2n. But
this conclusion is obviously incompatible with the assumption that V has very few models.

Suppose that X = {x0, . . . , x2n−1}. For 0 ≤ i ≤ 2n let θi be the congruence of Kn

consisting of all pairs 〈f, g〉 ∈ K2
n such that f(xj) = g(xj) for all 0 ≤ j < i. Then for i < j

we have θj ≤ θi. We shall show that θj < θi. This will imply that |Kn/θi| < |Kn/θj | so that
the two quotient algebras are non-isomorphic, as desired.

Actually, given x ∈ X, we shall show that Kn contains two distinct functions f, g such
that f(y) = g(y) for all y ∈ X \ {x}. Taking x = xi, this certainly implies that θi > θj

whenever i < j ≤ 2n.
So let x ∈ X and write

{x} =
⋂

i<n

Xi,p(i) ,

where p is a certain function mapping {0, 1, . . . , n − 1} → {0, 1}. We shall now produce, by
induction on i, pairs of functions 〈fi, gi〉 ∈ K2

n for 0 ≤ i ≤ n − 1, so that where [[fi 6= gi]] is
the set of all z ∈ X with fi(z) 6= gi(z), we have

[[fi 6= gi]] =
⋂

0≤j≤i

Xi,p(i) .

Then fn−1, gn−1 will be the desired pair of functions f, g with [[f 6= g]] = {x}. The inductive
construction requires that fi(z) µ gi(z) for all z ∈ X—i.e., 〈fi, gi〉 ∈ µX—and that each of
fi, gi is constant on the set [[fi 6= gi]].

Choosing 〈a, b〉 ∈ µ, a 6= b, we put f0 = [a, a]X0,p(0)
, g0 = [a, b]X0,p(0)

so that {f0, g0} ⊆ Kn,
〈f0, g0〉 ∈ µX , [[f0 6= g0]] = X0,p(0) and each of f0, g0 is constant on X0,p(0). Now suppose that
i < n− 1 and we have succeeded in constructing fi, gi with the required properties. Let ai, bi

be the constant value of fi, respectively gi, on the set [[fi 6= gi]]. Since 0 ≺ µ = [1, µ], then
〈ai, bi〉 does not belong to the center of A. Hence there must exist a term t(u, w̄) and tuples
of elements c̄, d̄ in A so that

t(ai, c̄) = t(ai, d̄) ↔ t(bi, c̄) 6= t(bi, d̄) .
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Without losing generality, assume that t(bi, c̄) = t(bi, d̄) and t(ai, c̄) 6= t(ai, d̄). Taking γ
in the Shifting Lemma (Lemma 6.6) to be the equality relation, we find that there is a Day
term m(x, y, z, u) such that

m(t(ai, c̄), t(ai, c̄), t(ai, d̄), t(ai, d̄)) 6= m(t(ai, c̄), t(bi, c̄), t(bi, d̄), t(ai, d̄)) .

Let ai+1 be the left hand side of this inequality and bi+1 be the right. We can choose tuples
of (two-valued) functions h̄, k̄ in Kn so that for all z ∈ Xi+1,p(i+1), h̄(z) = c̄ and k̄(z) = d̄
while for all z ∈ Xi+1,1−p(i+1), h̄(z) = k̄(z). Then consider the functions

fi+1 = m(t(fi, h̄), t(fi, h̄), t(fi, k̄), t(fi, k̄))
gi+1 = m(t(fi, h̄), t(gi, h̄), t(gi, k̄), t(fi, k̄)) .

Since V |= m(u, v, v, u) ≈ u, then fi+1(z) = gi+1(z) for all z ∈ X for which either fi(z) = gi(z)
or h̄(z) = k̄(z). In particular, fi+1(z) = gi+1(z) when z 6∈ ⋂

j≤i+1 Xj,p(j). On the other hand,
if z ∈ ⋂

j≤i+1 Xj,p(j) then
fi+1(z) = ai+1 6= bi+1 = gi+1(z) .

The two functions fi+1, gi+1 obviously satisfy all our requirements. This concludes our proof
of the lemma. 2

Lemma 14.4 Every algebra in V is Abelian.

Proof We assume that the lemma is false, in order to get a contradiction. let A be a
non-Abelian algebra in V of least cardinality. Then it follows that A is finite, is subdirectly
irreducible, and where µ is the monolith of A, we have that A/µ is Abelian. By Lemma 14.3,
we have [1A, µ] = 0A, and our assumption of least cardinality implies that µ = [1A, 1A].

Our proof will consist in constructing, for every structure (X,E) consisting of an equiva-
lence relation E over a finite set X, an algebra R(X, E) = AX/ΘE (for a certain congruence
ΘE on AX), and proving that R(X, E1) ∼= R(X, E2) iff (X, E1) ∼= (X,E2). If |X| = k then
the number of non-isomorphic equivalence-relation structures (X, E) is π(k), the number of
partitions of the integer k. Thus Ak has at least π(k) non-isomorphic quotient algebras.

We shall show that Ak is generated by a set of at most |A|k many elements. Thus it will
follow that GV(|A|2k) ≥ π(k). But π(k) is known to be asymptotic to

1
4k
√

3
e

(
π
√

2k
3

)

(confer G. E. Andrews [1], p. 70). Thus we have a clear contradiction to our assumption that
V has very few models. The contradiction will establish that all algebras in V are Abelian.

Let d(x, y, z) be a Maltsev term for V. Suppose that X = {1, . . . , k}. Choose a0 ∈ A. We
show that AX is generated by the set

G = {[a0, b]x : b ∈ A and x ∈ X} ,

thus establishing that AX is |A|k-generated. Indeed, if (a1, a2, . . . , ak) ∈ AX , then each of
the functions fi = [a0, ai]i (0 ≤ i ≤ k) belongs to G, and therefore

(a1, . . . , ak) = d(d(. . . (d(d(f1, f0, f2), f0, f3) . . . , f0, fk−1), f0, fk)
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belongs to the subalgebra generated by G.
Now let (X,E) be a finite equivalence-relation structure. Before defining ΘE , we choose

and fix a non-trivial µ-equivalence class N , and an element of N which we will denote by
0. Let A|N denote the set N supplied with all the functions f : Nm → N (for any positive
integral m) such that f = g|N for some polynomial operation g of the algebra A. Since µ is
an Abelian congruence, and d|N is a Maltsev operation on N , then A|N is an Abelian algebra
in a certain congruence modular variety. By Theorem 9.10, AN is polynomially equivalent
to a module M over a ring R with unit. Without any loss of generality, we can assume that
0 is the zero-element of this module.

Where 0̄ denotes the constant function in NX with value 0, we define ΘE to be the
congruence relation of AX generated by the set

GE =

{
(f, 0̄) : f ∈ NX and

∑

x∈Z

f(x) = 0 for all Z ∈ X/E

}
.

The sums in this definition are finite sums in the module.
Since all generating pairs of ΘE are µ̄-related, we get

ΘE ⊆ µ̄ , (14.1)

where µ̄ is the kernel of the homomorphism of AX onto (A/µ)X . Moreover,

if f0, f1 ∈ NX then 〈f0, f1〉 ∈ ΘE iff
∑

x∈Z f0(x) =
∑

x∈Z f1(x) (14.2)
for all Z ∈ X/E .

To prove the “if” in (14.2), note that the assumption that
∑

x∈Z f0(x) =
∑

x∈Z f1(x) for all
Z ∈ X/E gives f0 − f1 ≡ 0̄ (mod ΘE) and therefore 〈f0, f1〉 ∈ ΘE .

Conversely, assume that f0, f1 ∈ NX and 〈f0, f1〉 ∈ ΘE . Then the congruence per-
mutability of the variety generated by A implies that there is a polynomial, say n-ary,
H(x1, . . . , xn) of AX and f1, . . . , fn ∈ NX such that

∑
x∈Z fi(x) = 0 for all Z ∈ X/E

and
f0 = H(f1, . . . , fn), f1 = H(0̄, . . . , 0̄) .

This means that there is an n+m-ary polynomial h(x1, . . . , xn, y1, . . . , ym) of A and g1, . . . , gm ∈
AX with

f0 = h(f1, . . . , fn, g1, . . . , gm), f1 = h(0̄, . . . , 0̄, g1, . . . , gm) .

It follows that h(a1, . . . , an, g1(x), . . . , gm(x)) ∈ N whenever {a1, . . . , an} ⊆ N and x ∈ X
(since N is an equivalence class of the congruence µ).

Choose x0 ∈ X and put Z = x0/E. We apply the fact that [µ, 1A] = 0A to the equation

h(0, . . . , 0, ḡ(x))− h(0, . . . , 0, ḡ(x)) = h(0, . . . , 0, ḡ(x0))− h(0, . . . , 0, ḡ(x0))

replacing the underlined elements to obtain

h(u1, . . . , un, ḡ(x))− h(0, . . . , 0, ḡ(x)) = h(u1, . . . , un, ḡ(x0))− h(0, . . . , 0, ḡ(x0))

for all x ∈ Z and u1, . . . , un ∈ N . Thus

h(u1, . . . , un, ḡ(x)) = h(u1, . . . , un, ḡ(x0))− h(0, . . . , 0, ḡ(x0)) + h(0, . . . , 0, ḡ(x)) .
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The map (u1, . . . , un) 7→ h(u1, . . . , un, ḡ(x0))−h(0, . . . , 0, ḡ(x0)) is a polynomial of the module
M that maps (0, . . . , 0) to 0; thus it must be of the form (u1, . . . , un) 7→ ∑

1≤i≤n λiui for some
λi ∈ R. Thus

h(u1, . . . , un, ḡ(x)) =
i=n∑

i=1

λiui + h(0, . . . , 0, ḡ(x))

for all x ∈ Z and u1, . . . , un ∈ N . This implies that

f0(x) = h(f1(x), . . . , fn(x), ḡ(x)) =
i=n∑

i=1

λifi(x) + h(0, . . . , 0, ¯g(x))

=
i=n∑

i=1

λifi(x) + f1(x) .

Together with
∑

x∈Z fi(x) = 0, this gives

∑

x∈Z

f0(x) =
∑

x∈Z

f1(x)

as required in (14.2).
Now, for a subset B ⊆ X we define the following congruences of AX :

ηB =
{〈f, g〉 ∈ AX ×AX : ft = gt for all t ∈ B

}
, η′B = ηX\B .

For a congruence φ of A we put

φB =
{〈f, g〉 ∈ AX ×AX : 〈ft, gt〉 ∈ φ for all t ∈ B

}
, φ′B = φB ∩ η′B .

Also, we write ηt, η
′
t, φt, φ

′
t instead of η{t}, η′{t}, φ{t}, φ

′
{t}, respectively. For any congruence γ

of AX , the congruence (γ ∨ΘE)/ΘE of AX/ΘE will be denoted by γ̃.
Next, we observe that

µ′t is the unique atom of Con(AX) that is below η′t . (14.3)

To see this, note that ηt ∨ η′t = 1 and ηt ∧ η′t = 0, hence by modularity in the congruence
lattice, the intervals I[0, η′t] and I[ηt, 1] are transposes, and hence isomorphic. Thus the
interval I[0, η′t], isomorphic to ConA, has the unique atom µt ∧ η′t = µ′t.

Choose and fix any a ∈ N \ {0}, and for x ∈ X put ax = [0, a]x. Note that we have
µ′x = Cg(0̄, ax) (the congruence generated by the pair 〈0̄, ax〉) since µ′x is an atom. Then
since 〈0̄, ax〉 6∈ ΘE (by (14.2)), the covering pair 0 ≺ µ′x projects up to ΘE ≺ ΘE ∨ µ′x and
therefore

µ̃′x is an atom in Con(AX/ΘE) . (14.4)

Moreover,
µ̃′t = µ̃′s iff 〈t, s〉 ∈ E . (14.5)

In fact, if 〈t, s〉 ∈ E then (14.2) gives 〈at, as〉 ∈ ΘE , which easily yields the “if” direction in
(14.5).
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Conversely, suppose that 〈t, s〉 6∈ E. If µ̃′t = µ̃′s, then 〈at, 0̄〉 ∈ ΘE ∨ µ′s. Then by
congruence permutability, we have an element f ∈ AX with

at ΘE f µ′s 0̄ .

Since 〈at, f〉 ∈ µ̄ then f ∈ NX . Then applying (14.2) to at ΘE f and Z = s/E we get that∑
z∈Z f(z) = 0. On the other hand, from f µ′s 0̄ we have that f(z) = 0 for all z ∈ X \ {s}.

Consequently, f = 0̄, i.e., 〈at, 0̄〉 ∈ ΘE , which contradicts (14.2).
Next we show:

For γ ∈ Con(AX) and t ∈ X either [γ, 1] ⊆ ηt or µ′t ⊆ [γ, 1] . (14.6)

Indeed, suppose that [γ, 1] 6⊆ ηt. Then there is a term τ(x, ȳ), a pair 〈f, g〉 ∈ γ and tuples
c̄, d̄ in AX such that 〈τ(f, c̄), τ(f, d̄)〉 ∈ ηt and 〈τ(g, c̄), τ(g, d̄)〉 6∈ ηt. Let d̄′ = [c̄, d̄]t. Then
τ(f, c̄) = τ(f, d̄′), τ(g, c̄) 6= τ(g, d̄′), so that 0 6= [γ, η′t] ≤ η′t. Then (14.3) gives µ′t ⊆ [γ, 1], as
required.

Let us call a congruence of AX/ΘE regular if it is the only atom below a congruence of
the form [γ, 1]. We prove:

A congruence of AX/ΘE is regular iff it is of the form µ̃′t for some (14.7)
t ∈ X .

First, suppose that α, γ ≥ ΘE are such that α̃ is the unique atom below [γ/ΘE , 1/ΘE ]. Then
[γ, 1] 6= 0 and we can choose t such that [γ, 1] 6≤ ηt. By (14.6), we have µ′t ≤ [γ, 1]. Thus
µ̃′t ≤ [γ/ΘE , 1/ΘE ]. By uniqueness of α̃, we have that α̃ = µ̃′t as required.

To prove that µ̃′t is regular, it suffices to show that µ′t ∨ΘE is the only congruence α with
ΘE ≺ α ⊆ [η′t, 1] ∨ ΘE . Obviously, [η′t, 1] ⊆ [1, 1] ⊆ µ̄ and so [η′t, 1] ⊆ η′t ∩ µ̄ = µ′t. Since
η′t ∨ ηt = 1 and A |= [1, 1] 6= 0, then [η′t, 1] 6= 0. We now have that [η′t, 1] = µ′t since µ′t is an
atom. We know that ΘE ≺ µ′t ∨ΘE by (14.3). Thus it follows that µ̃′t is regular.

From (14.5) and (14.7) we have that the number of E-classes in X can be recovered from
AX/ΘE—it is the number of regular atoms in the congruence lattice of this algebra.

We will prove that non-isomorphic structures (X, E), (X, E′) give rise to non-isomorphic
algebras AX/ΘE , AX/ΘE′ by showing that the sizes of the equivalence classes of E are also
recoverable from AX/ΘE .

Note that for the center ζ of A we have µ ≤ ζ < 1. Obviously,

AX/ζB is isomorphic to (A/ζ)B, for any B ⊆ X . (14.8)

We have ΘE ⊆ µ̄ ⊆ ζX ⊆ ζB for B ⊆ X, whence (AX/ΘE)/(ζB/ΘE) ∼= (A/ζ)B and |B| is
the logarithm of the cardinality of this algebra to the base |A/ζ|. Thus, we can finish the
proof of this lemma by showing that the set of congruences of the form ζX\Z/ΘE with Z

ranging over X/E is definable in AX/ΘE .
Let us call a congruence δ of AX/ΘE co-regular if δ is a maximal congruence with the

property that the commutator [δ, 1] contains exactly one atom. We conclude our proof by
showing:

A congruence δ is co-regular iff δ = ζX\Z/ΘE for some Z ∈ X/E. (14.9)
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To begin, let t ∈ Z ∈ X/E. Now ζX\Z ∨ ηt = 1, so [ζX\Z , 1] ∨ ηt = [1, 1] ∨ ηt = µt, implying
[ζX\Z , 1] 6≤ ηt. Then by (14.6), [ζX\Z , 1] ≥ µ′t. On the other hand, clearly we have

[ζX\Z , 1] ≤ µ′Z =
∨

s∈Z

µ′s

and this combined with the above conclusion yields

[ζX\Z , 1] = µ′Z =
∨

s∈Z

µ′s .

Then
[ζX\Z/ΘE , 1/ΘE ] = [ζX\Z , 1] ∨ΘE =

∨

s∈Z

µ̃′s = µ̃′t .

Next, suppose that ΘE ≤ γ and γ/ΘE is co-regular. Then [γ/ΘE , 1/ΘE ] contains exactly
one atom, and by (14.7), this atom must be of the form µ̃′t. Say µ̃′t ≤ [γ/ΘE , 1/ΘE ] and
t/E = Z. Then for s ∈ X \ Z, [γ, 1] cannot contain µ′s and so by (14.6), [γ, 1] ≤ ηs. Since
this holds for all s ∈ X \ Z, we have [γ, 1] ≤ η′Z . This is easily seen to imply that γ ≤ ζX\Z .
We have seen in the last paragraph that [ζX\Z/ΘE , 1/ΘE ] = µ̃′t. The maximality of γ now
gives that γ = ζX\Z . The results of this paragraph and the last one, combined, yield (14.9).

2

The next lemma completes our proof of Theorem 14.2.

Lemma 14.5 A locally finite affine variety has very few models iff it is directly representable.

Proof Assume that A is a locally finite, congruence modular, Abelian variety, and let R
denote the finite ring such that A is polynomially equivalent with RM.

For a positive integer n, let F = FA(n) be the free algebra in A freely generated by
x1, . . . , xn. Let M be the R-module polynomially equivalent to F, with xn chosen as the
zero element. Every element w ∈ F can be written as tF(x1, . . . , xn) for a term t, and the
operation tF in F can be expressed as

tF(b1, . . . , bn) =
∑

1≤i≤n

ribi + c

for some ri ∈ R and c ∈ F . Thus w =
∑

1≤i≤n−1 rixi + c is determined by the sequence 〈ri :
1 ≤ i ≤ n− 1〉 and the element tF(xn, . . . , xn) = c. This means that fn = |FA(n)| ≤ rn−1f1

where r = |R| and f1 = |FA(1)|.
Now suppose that A is directly representable. Let D0, . . . ,Dk−1 be a list of all the directly

indecomposable finite algebras in A, up to isomorphism. If B is an n-generated member of
A, then |B| ≤ fn ≤ rn−1f1. We can write

B ∼= D`0
0 × · · · ×D`k−1

k−1

for some non-negative integers `i, and here
∑

i

`i ≤ log2(fn) ≤ M(n− 1)
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for some positive integer M , independently of n. The number of solutions (mi) of the in-
equality

∑
i mi ≤ M(n− 1) is

(
M(n− 1) + k

k

)
≤ (M(n− 1) + k)k .

Thus GA(n) ≤ (M(n− 1) + k)k which estabishes that A has very few models.
Conversely, suppose that A is not directly representable. Let Ap denote the class of all

algebras in A that have a one-element subalgebra. Since A has at most 2f2
n non-isomorphic

n-element members, then there is no finite bound on the size of the finite directly indecom-
posable members of A. For A ∈ A, the algebra A∇ ∈ Ap has the same corresponding module,
up to isomorphism, and is directly indecomposable iff A is. (Confer the discussion at the end
of Section 9.) Where d(k) denotes the number of non-isomorphic, directly indecomposable,
k-generated algebras in Ap, we thus have that d(k) is unbounded.

For a fixed k, let D0, . . . ,Dd−1 be pairwise non-isomorphic, directly indecomposable, k-
generated members of Ap, where d(k) = d. By a theorem of G. Birkhoff (see, for example,
R. McKenzie, G. McNulty, W. Taylor [37], Theorem 5.3), finite algebras with permuting
congruences and a one-element subalgebra have the unique factorization property. This means
that if 〈mi〉i<d, 〈m′

i〉i<d are sequences of non-negative integers and
∏

i<d Dmi
i
∼= ∏

i<d Dm′
i

i

then mi = m′
i for all i < d. Now if

∑
i<d mi ≤ n then

∏
i<d Dmi

i is nk generated. (This follows
by the same argument used in the proof of Lemma 14.4 to show that Ak is |A|k-generated.)
Thus GAp(nk) is at least as great as the number of systems 〈mi〉i<d of non-negative integers
satisfying

∑
i<d mi ≤ n. I.e., we have

GAp(nk) ≥
(

n + d(k)
n

)
.

In particular, GA(k2) ≥
(

k + d(k)
k

)
. For any fixed positive integer M , we have d(k) ≥ M

for large k, and for such k, it follows that GA(k2) ≥
(

k + M
k

)
. Since this is a polynomial

of degree M in k, then GA(k) cannot be bounded for all k by a polynomial of degree < M/2.
This ends our proof that if A is not directly representable then GA is not bounded by any
polynomial function. 2

15 Problems

Problem 15.1 Is there an algorithm to determine, given a finite ring R with unit, whether
the variety RM of left unitary R-modules is decidable? F. Point, M. Prest [40] and M. Prest
[41] provide a starting point for the exploration of what is known about this problem.

Problem 15.2 Is there an algorithm to determine, given a finite algebra F of finite type
such that HSP(F) has modular congruence lattices, whether HSP(F) (or SP(F)) is finitely
axiomatizable? By a famous theorem of K. Baker [2], every finitely generated congruence
distributive variety of finite type is finitely axiomatizable. R. McKenzie [36] proved that
there is no algorithm to determine if HSP(F) is finitely axiomatizable where F ranges over
all finite algebras with one binary operation.
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Problem 15.3 Prove or disprove that for every finite set A and every operation m =
m(x, y, z) over A that satisfies Maltsev’s equations m(x, x, y) ≈ y ≈ m(y, x, x), there are
only countably many clones of operations on A containing m. A. A. Bulatov, P. M. Idziak
[3] has results on this problem.

Problem 15.4 Is it true that every congruence modular variety of finite type that is residu-
ally finite has a finite residual bound? K. Kearnes, R. Willard [29] proved that this implication
holds for congruence distributive varieties of finite type, and more generally for congruence
meet semi-distributive varieties of finite type.

Problem 15.5 Characterize the locally finite congruence modular varieties V that possess
first-order definable principal congruences—i.e., there is a first-order formula θ(x, y, u, v) so
that for all A ∈ V and {a, b, c, d} ⊆ A, A |= θ(a, b, c, d) iff 〈a, b〉 lies in the congruence of A
generated by 〈c, d〉.
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Index of Terms and Notation

Abelian

algebras, page 9

congruences, 9, 50

lattices, 12

rings, 11

varieties, 28

affine (= Abelian), 28

algebra(s)

A(α) is the congruence α of A, considered as an algebra, 21

Abelian, 9

affine, 23

directly indecomposable, 4, 42

free, 14, 28, 39, 40, 47

neutral, 45

nilpotent, 3, 32, 36, 47

of finite type, 36, 54

quotient, 46, 48

simple, 43

solvable, 3, 29

subdirectly irreducible, 37, 43, 49

monolith of, 37, 44, 49

subdirect product, 23, 37, 49

universe of an algebra, i.e., its set of elements, 21

with finitely axiomatizable equational theory, 36, 54

CgA(Y ), the congruence of A generated by a set Y of ordered pairs, 51

Con(A), the set of all congruence relations of A, 6

SgA(X), the subalgebra of A generated by X, 6

Tol(A), the set of all tolerance relations of A, 6

A∇ (= (A×A)/∆1,1), 29, 54

annihilator (of a ring), 11

center, 9, 11, 35, 48
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centrality, 3, 8

C(α, β; γ), or α centralizes β modulo γ, 8

commutator

equation (C1), 35, 37, 44

in lattices, 12

in rings, 11

modular, 4, 37

of congruences, [α, β], 9

term condition commutator, 8

commuting operations, 25

congruence(s)

the center, ζA, a congruence, 9

congruence distributive, 14

congruence lattice, 6

congruence modular, 15

congruence regular, 35

permuting congruences, 13

uniform congruences, 34

(β]n, [β]n, iterated commutators, 31

∆α,β, 21

0A, 1A: the identity relation and the universal binary relation over a set A, 7

G-spectrum, GV : the generative complexity of a variety, 47

group

commutators of normal subgroups, 4

ternary Abelian group, 26

interpret, 13

kernel of a homomorphism, 23

lattice

atom of a lattice, 23, 51

lattice equation, 17, 25

lattice of congruences, 6

Maltsev
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class, 13

condition, 13

term, 13

M(α, β), the set of α, β-matrices of an algebra A (where α and β are congruences of A), 8

nilpotent

algebra, 31

congruence, 31

M3, N5: the five-element non-modular lattice and the five-element modular, non-distributive
lattice, 7

operation(s)

clones of operations, 46, 55

loop operation, 35

division operation (of a loop), 35

polynomial operation: any operation generated with repeated compositions from the
basic operations of an algebra, the constant operations, and the projection opera-
tions, 9

term operation: any operation generated with repeated compositions from the basic
operations of an algebra and the projection operations, 6, 8, 26

polynomial

Maltsev polynomial, 26

polynomial equivalence, 23

polynomial operation (see operation, polynomial)

residual bound of a variety, resb(V), 37

residual bound of an algebra, resb(A) = resb(HSP(A)), 37

residually small (large, finite), 37

ring

Abelian ring, 11

ideals, commutator of, 11

of finite representation type, 46

shifting lemma, 15

solvable

algebra, 31
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congruence, 31

term

term condition, 3, 8, 6
Day terms, 15
(Gumm) difference term, 25
(weak) difference term, 25
generalized Gumm terms, 32
Gumm terms, 30
Jónsson terms, 14
majority term, 11
Maltsev term, 13
term operation (see operation, term)

tolerance, 6

variety

affine, 28
arithmetical, 13
combinatorial, 37
congruence distributive, 17
congruence modular, 19
decidable, 36

finitely decidable, 36
directly representable, 42
discriminator, 35
finitely axiomatizable, 36, 54
finitely generated, 3, 36
finite spectrum of, 42
generated by A, i.e. HSP(A), 36
generative complexity of, 47
locally finite, 4
Maltsev (= with permuting congruences), 13
narrow, 42
of finite type, 36, 54
residually small, 37
ring associated with, 28
with the amalgamation property, 36
with the congruence extension property, 36
with first order definable principal congruences, 55
with very few models, 47


