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Maltsev conditions and relations on algebras

J. W. SNOw

Abstract. We showthat every sentence preserved by products in a purely relational first order language corresponds
to a Maltsev condition on subalgebras of direct powers. Moreover, we establish that this correspondence captures
all strong Maltsev conditions whose defining equations do not involve compositions. We then demonstrate how a
broader version of the correspondence is sufficient to capture all Maltsev conditions when we restrict our attention
to locally finite varieties.

1. Introduction

In 1954, A. I. Maltsev [10] proved that a variety has permuting congruences if and only
if it has a ternary ternp satisfying the identities

p(x,y,y) ~xandp(y,y, x) ~ x.

This was the first such discovered connection between a congruence property of a variety
and the equations satisfied by the variety. In 1967 gBsdon [8] showed that congruence
distributivity of a variety was also equivalent to the existence of particular terms of the
variety satisfying certain equations. A similar characterization of congruence modularity
was given by A. Day [2] in 1969. These discoveries have inspired a new way of classifying
varieties according to properties of congruences on their algebras and according to existence
conditions satisfied by their terms. They also have given powerful tools for the investigation
of congruence distributive and congruence modular varieties. These “existence conditions”
on terms are called Maltsev conditions. Since the discoveries of Maltsessdn, and Day,
anumber of Maltsev conditions have been found. While many of these involve congruences,
some do not. For example the property that every two subalgebras of any algebrain a variety
have non-empty intersection is equivalent to a Maltsev condition. Also, the requirement
that a variety contains no two-element algebras is a Maltsev condition.

SupposeC is any purely relational first order language. We think of the relation symbols
of £ as being interpreted by compatible relations on algebras. We show that every sentence
in £ which is preserved by products corresponds naturally to a Maltsev condition equivalent
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to a condition on subalgebras of direct powers. Moreover, we also show that any strong
Maltsev condition (to be defined) given by linear equations is equivalent in this manner to
a sentence in some purely relational first order language.

2. Preliminaries

To begin with, we use the notion of interpretability to make the idea of a Maltsev condition
rigorous. Suppos¥ is a variety with a set of basic operation symbBlsand supposgV is
any variety. W is said tainterpret V (or V is interpretable inV-or there is an interpretation
of Vin W) if and only if for every basic operationof V there is aV-terms, so that for
every algebra € W the algebraA, {s : t € F}) is a member o). This relationship is
denoted by < W. ltis equivalent to the condition that there be a mapping from Gt
Clow which preserves ranks and compositions.

We pause foramomentto address nullary operations. If a vatieas a nullary constant
c, then it also has a unary constgfitx) = ¢ which mimics the nullary constant. L&t
be the variety with all but the nullary operations)¥f Then)’ < V, butV £ V' since
V' has no nullary operations. This distinction is somewhat confusing 3irexed )’ are
essentiallythe same. To avoid this confusion, we will follow [4] and assume détgebras
have no nullary operations

A class ofIC of varieties is astrong Maltsev class(or is defined by a&trong Maltsev
condition) if and only if there is a finitely presented variéiyso thatC is precisely the class
of all varieties)V for whichV < W. If there is an infinite sequence of finitely presented
varieties... < V3 < V» < V; so thatK is the class of all varietiegV for whichV; < W
for somei, thenC is aMaltsev class(K is defined by aaltsev condition). Finally, if 1
is the intersection of countably many Maltsev classes, thénaweak Maltsev clasqXC
is defined by aveak Maltsev condition).

Thenonindexed productof any collection{A; : i € I} of algebras (denote@;;A;)
is an algebra with universg];.; A;. If 1; is ann-ary term ofA; for eachi e I, then
®icrA; has am-ary operation given byz (x1, ..., x,) (@) = t;(x1(0), ..., x,(i)). All such
operations make up the basic operation®f;A;. The nonindexed product of a collection
of varieties{V; : i € I} is the variety generated by a&ll;c;A; whereA; € V;. Itis easy to
see that ifA; andA; are algebras then any subalgebrao® A, is the nonindexed product
of a subalgebra oi1 and a subalgebra @&f,. Similarly, any congruence &1 ® Az is the
product of a congruence frofy; and one fromA». It is also not difficult to see that finite
nonindexed products commute with direct products. From these facts, it follows What if
andWV are varieties, theA € V ® W if and only if there are algebrdd € V andC € W
sothatA =B ® C.

In [17], W. Taylor proves that a number of properties are equivalent to Maltsev condi-
tions. His major tool is a characterization of Maltsev conditions equivalent to the following
theorem. Our statement of the theorem is taken from [9].
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THEOREM 2.1. (W. Taylor[17], W. Neumanifil3]) A classC of varieties is a Maltsev
class if and only if the following hold:

1. Every variety in which some memberfohas an interpretation belongs 6.
2. K is closed under finite non-indexed products.
3. Every member of is contained in a finitely based variety that also belongKto

3. Maltsev conditions and first order logic

SupposeLC is a first order language with relation symbéts: i € 7} where each; has
ranko;. If Vis any variety, leiZ (V) be the class of alf-structureg A, {riA 11 € I}) sothat
there is an algebrA in V with universeA andriA is a subuniverse oA’ for eachi € I.

If A is an algebra of type andrl.A is a subuniverse oA’ for eachi € I, we will call the
structure(A, {riA 11 e I}y a(r U L)-structure. When there is no danger of confusion, we
will omit superscripts on our relation and operation symbols.

We are ready for our first theorem:

THEOREM 3.1. Suppos€& is a purely relational first order language awds a sentence
in £ preserved by products. The class

{V:LYV) =0}
is a Maltsev class.

Proof. Since we are only concerned with the relation symbots,iwe can assumé has
finitely many relation symbols, . . ., r, ofrankoy, ..., o, respectively. Lek be the class
of varieties defined in the theorem. We show tkaatisfies the conditions of Theorem 2.1.
That K satisfies the first condition is easy. The second condition follows quickly from the
fact that for any varietie¥ and)V every member of (V ® W) is isomorphic to a product of
a member ofZ (V) and a member of (W). The third condition requires a little more work.

Suppose thaV € K is a variety of typer. If ¢ is at-term andr; is a relation symbol
from L, then we can write a formulain the language ofr U £)-structures so that any
(t U £)-structure(A, r{!, ..., ;') modelse if and only if r* is preserved by#. Let A
be the collection of all such formulas for eaclerms and each = 1,...,n. Suppose
that(A, r1,...,r,) isa(r U L)-structure. If{A, r1, ..., r,) E1d(V) U A thenA € V and
ri € SUbA% for eachi. Therefore, the&-structure(A, r1, ..., r,) modelss, and hence the
(t U L)-structure(A, r1, ..., r,) also modelsr. Thus we see Ig’) UA + o. We can find
a finite subsel’ C Id(V) sothatl U A I o. LetW be the variety of type defined byl".

V is contained iV, andWV is finitely based. Itis also the case thé&te K. ForifA e W
andr; € SubA? for eachi, then(A,r1,...,r,) ETUA and solA,r1,...,1,) = o.
Hence(A, r1, ..., r,) = o. This shows thak satisfies (3) of Theorem 2.1 and completes
the proof thatC is a Maltsev class. O
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We offer two applications of this theorem. Equations for the first example were given
by W. Taylor in [16].

THEOREM 3.2. W. Taylor{16]) The class of all varieties which contain no two-element
algebras is a Maltsev class.

Proof. This class is defined in the manner of Theorem 3.1 by the following implication
which is in every first order language and which is obviously preserved under products:

[Ax1, x2(=(x1 ~ x2)] —> [3x1, X2, x3(=(x1 ~ x2) [\ ~(x1 = x3) /\ ~(x2 ~ x3))]

O

An algebra hasegular congruences if and only if every congruence of the algebra is
completely and uniquely determined by any equivalence class. A variety is regular if every
member of the variety has regular congruences. In[19] H. A. Thurston proved that a variety
V is regular if and only if the only congruence on any algebr® wwhich has a singleton
congruence class is the identity relation. Using this fact it is simple to show:

THEOREM 3.3. R. Wille[20], G. Gratzer[6], B. Csakany[1]) The class of all varieties
with regular congruences is a Maltsev class.

Proof. Let £ be the first order language with one binary relation symbahd let coir)
be the sentence ifi which holds if and only if- is an equivalence relation. The property
“If ris an equivalence relation then it has a singleton class if and only if it is the identity
relation” is preserved under products and is defined by this sentedrte in

con(r) — [(FaVb(r(a,b) —> (a = b))) —> (Va, b(r(a,b) —> (a ~ b)))]

4. Strong Maltsev classes

An obvious question to ask is which Maltsev classes can be described in this manner.
We give a partial solution to this problem. We show that Theorem 3.1 is powerful enough to
capture any strong Maltsev class corresponding to a variety which has a finite presentation
consisting of only linear equations (i.e. equations not involving compositions). We call
such Maltsev classdmear (strong) Maltsev classes

THEOREM 4.1. Every linear strong Maltsev class is defined by a sentence in a first
order language with binary relation symbols of the form

veay | A\ | [ Arita. o)) | — ritei.di) (1)

i J
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where all of the a’s and b’s are x’s. Moreover, every sentence of this form defines a linear
strong Maltsev class.

Proof. Suppose that a variely has a finite linear presentation. We can assume for some
n thatV has a presentatiofyi, ..., fu, >_) in which everyf; is n-ary and every equation
in Y involves only variables selected fram, .. ., x,,. List the members o} _ as:
D= i kg e Xk, fip@ogpseesxig )i 1<i < N}
U Gy, = xy,, 1 1< < M),

Let £ be the first order language wittN2+ M binary relation symbols,, ..., rony 4, and
let € be this sentence ig:

Vxi,...,x,3F1, ..o, o y1, ..., YN

N n
|:(</\ ri (X, Xz)) — i (i, Fj,-)) A )
i=1 t=1

/\I’N+i(xklf,tvxt)) —> rn+i (i Fj;)>j| A ®3)

=1

[(/\ FaN+i (X1,-_,,xt)) —> ran+i (X7, . Fhi):| : (4)

i=1 =1

We claim that a varietyV interpretsV if and only if LOW) = €. Suppose first that
W interpretsV. ThenW has termsfi, ..., f, modeling)_. Suppose thaf € W and

X1, ..., % € A.Fori=1,...,n,letF; = fA(x1,...,x,) and let
A A

Yi = f'[- (-xki’ls ey -xk,'Yn) = fjl’ (‘xkt{,17 ey xki’.n).

If » is any subuniverse d%? so that(xy, ,, x1), ..., {(xk,,, xa) € r, then
A2

(vi, Fj.) = fj'_ ((Xkq0 X1)s oo s (Xky o Xn)) €T

Also, if (xk<1, x1), ..., {(xp ,x,) €r,thenr also contains
L, in

2
(via Fyp) = [ (g o) (g ).

Thus the implications in (2) and (3) hold. The argument that (4) holds is identical, so we
see thall (W) k.

Supposethaf (W) = €. LetA be the free algebra W generated byxy, ..., x,}. Sup-
posei € {1,...,N}. Letr; be the subuniverse ok? generated bW (xk; 1, x1), . -,
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(xx,; ,» xn)} and letry; be the subuniverse @2 generated by (xy i X1)y e, <xkfn’ X))
By ¢, there are termga, ..., f,, of W so thatf/‘(xl, o xy) =Ffori=1...,m(The
elements ofA are precisely terms applied to1, . . ., x,)). By (2) and (3), there is & so

that(y;, Fj;) € r; and(y;, F ) € ry+i, SO there is aterrg of W so that

gh(x1, .. x) = Fi, = F{(x1, ..., x0) and gk - - X)) = Vi

SinceA is freely generated hys, . . ., x, the varietyV must satisfyfj,. (x) = g(x). Thus

f,?(xk,;l» ce Xk ) = i S|m|larly we can shovy“l (xk/ XK ) = y;. Again, sinceA

is freely generated byy, .. ., x,, it follows thatf]l (xkl 1o Xy ,,) ~ f (xk/ XK )
holds inW. A similar argument using (4) shows that, . . fm model all of the necessary
identities of the formfy, (x;, 4, ..., x;,,) = Xl - Thusfl, ...y fm model>” in W, so
YV <W.

We now show that every sentence of the form (1) defines a linear strong Maltsev class.
Any sentence of this form can be expressed in this manner:

VX1, ..., XAV, ooy Vi

N1 M;
/\ /\ri(xki.jsxk;j) —>"i()kz,~,yal()
i=1 j=1

M;

2
A /\ /\Vi(Xk,»,_,-,xk;_/.) — 1i(Xp;, Xp))

i=N1+1 | \j=1

M;

3
AN /\ri(in,-,ij) — 1i(X¢;, Yel)
i=Ny+1 | j=1

M;
A /\ /\Vz(xk,/a )| > ri(ya;s Xap)
i=N3+1 j=1 K i
Let £ be the first order language wit¥ binary relation symbols, . .., ry,, and lete be
this sentence if. Foreach =1, ..., Ny, let f; be anM;-ary operation symbol. Define

r = {ﬁ(xki.l""’xki,M,-) A xp, - N1 <i < Np}
Ui oomg, ) o i Nu<i < N2
U UfiGkygo -2 Xty gy ) X Xe, t N2 < i < N3)

Uthieug,. g, )~ xg o N3 <i < Naj
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and

Al = {fi(xki,l""’xki,M,»)%yui 1<i < Ni}

U Uit ) Ry 1 1<i < Ny

U it oo ox, ) X v N2 < i < Na)
J fiGkiae - Xk ) & va - N3 < i < Nab.

Next, let A be the collection of all identitieg; (x1) ~ f;(x2) where there is g; so that
both f; (x1) =~ y; and f; (x2) ~ y; are inA1. Finally, letV be the variety with presentation
(f1, ..., fng TUA). A proof similar to the one for the first half of the theorem now shows
that any varietyV interpretsy if and only if LOV) k& e. O

It should be noted that the variely defined in the second half of this proof is often
trivial. For example, if an identity

Ji@qs ooy Xk ) 2 Xy

is included inl" wherex;, is notincluded infxy, ,, ..., xi; ,, }, thenV is trivial.

5. Locally finite varieties

A variety V is locally finite if and only if for all A € V and forallX C A, if X is
finite then so is the subalgebra it generates. In [7], the authors discuss Maltsev conditions
restricted to the class of locally finite varieties. Throughout this sectioitt; bt the first
order language with one relation symbol of every finite rank. We show that for any strong
Maltsev clasdC, there is a theor¥ in the language so that if) is a locally finite variety,
theny € Kifand only if £L(V) = T.

For the sake of convenience, we will call a strong Maltsev class corresponding to a
finitely presented variety defined using omhary operation symbols and oniyvariables
ann-ary strong Maltsev class It is not hard to see that every strong Maltsev class can
be assumed to be-ary for somen. We call the strong Maltsev condition associated with
ann-ary strong Maltsev class anary strong Maltsev condition. Am-ary strong Maltsev
condition, then, is an assertion that there exiatry terms in a variety which satisfy certain
equations im variables.

LEMMA 5.1. Suppose thab is ann-ary strong Maltsev condition and > 1. Let M
be the first order language with ome"-ary relation symbot. There is a sentencey ,, in
M so that ifA is any algebra, theriA, r) = o for all » € SubA™" if and only ifA has
terms modelingb or |A| # m.
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Proof. Suppose tha® is ann-ary strong Maltsev condition. LeR, be the sentence
which holds in anyM-structureM if and only if M| = m. Fori = 1,...,n, letp; €

{x1, ..., )" be the projection to theth coordinate. Lef be the collection of all sets
of n-ary operations ofx1, ..., x,,} satisfying the conditions ob, and letos ,, be this
sentence irC:

P, — | Vx1,...,xn /\ —'(x,-%xj')
i#j<m

n
— (/\mm) — VI A+
| \i=1 TeF \Fer

Suppose that is anm element algebra anit, r) = og,, for all v in SubA™" | List the
elements oA\ asxi, ..., x,, and let- = Clo,A (which is in SubA™"). Then—(x; ~ x;)
holds for eachk # j andr(p;) holds for eachi = 1,...,n. Fromog,, it follows
that» must contain one of the sets of operationsAdsatisfying®. ThusA has terms
modeling®.

On the other hand, suppose thas anm element algebra with a s€of terms satisfying
®. Suppose that € SubA™". We show thatA, r) = opm- Let{x1,...,xn} € A be

distinct. Then{xi,...,x,}is all of A andS € F. If r contains all of the projection
operations, then contains CIQA and hence contains all ¢f. SinceS € F, this shows
(A,r) Eoom. O

For everym, the languageM of this lemma is contained if, so we can assume that
eachoo ,, is a sentence irf. If V is locally finite and we insist thaf ()) models each
of 092003, ..., then sinceFy(n) is finite, we know that this free algebra satisfies
Hence, all ofy must satisfy®. On the other hand, if a variety satisfiesd, then every
finite algebra in the variety must satisty. Thus£ (V) must satisfy all of there . If we
letT =042, 093, ... then we have:

THEOREM 5.2. For any strong Maltsev conditiof, there is a theory™ in £ so that
any locally finite variety) satisfiesd if and only if £(V) =T

The languag€ is useful in describing all interpretations between locally finite varieties.
The interpretability of one locally finite variety into another can always be described as a
containment between classesstructures.

LEMMA 5.3. Suppose tha¥ is a finitely presented variety and that is locally finite.
Theny < Wifand only if C(W) C L(V).
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Proof. The forward implication is obvious. Suppose tiadV) is contained inC(V).
We can assume that has a presentatiot) _, F) in which every operation symbol iR
is n-ary and every equation il involves at mosk variables. LetA = Fyy(n). Since
W is locally finite, A is finite. Letm = |A|" and consider = Clo,A € SubA™. Since
LOW) € L(V), we have thatA, r) € L(V), so there is an algebr’ on A in V so
thatr € Sub(A’)™. Sincer must contain the projection operations, A < r. Since
Clo,A’ € r = Clo,A, for eachf € F there is a termf of W so thatf4" = f4. Then
{f4: f € Fymodelsy_ in A. SinceA = Fyy(n), these terms mod&T" on all of W. This
givesY < W as desired. O

We would like to eliminate the requirement thate finitely presented in this lemma.
In order to do this, we need the following lemma. A topological proof of this lemma is
given in [12].

LEMMA 5.4. For any varietiesy andW, if W is locally finite then) < W if and only
if V' < W for all finitely presented” < V. O

Using this we can show:

THEOREM 5.5. Suppose thaV and W are varieties and/V is locally finite. Then
Y < Wifandonly if LOV) C L(V).

Proof. The forward implication is again trivial. Suppose tadV) € L(V). If V' <
V is finitely presented, the@(W) € L(V) € L(V'). Since)’ is finitely presented,
Lemma5.3, implie3”” < W. Because this holds for all finitely presentdd< V), we have
VY < W by the previous lemma. O

6. Closing remarks

Theorem 3.1 allows us to look at the types of properties that are equivalent to Maltsev
conditions in a clearer light. Essentially, anything that can be said about subuniverses
of powers of algebras in a “nice” way corresponds to a Maltsev condition-where “nice”
means first order and preserved by finite products. The ideas herein pose numerous ques-
tions. We state some of them here. We have begun to address the first problem-which
(strong or weak) Maltsev conditions can be defined by sentences (or theories) in first
order languages in the manner of Theorem 3.1? Some sentences in purely relational first
order languages actually define strong Maltsev classes. Is there a method for determin-
ing whether a given sentence preserved by products defines a strong Maltsev class or a
Maltsev class?

A. Pixley [14] and R. Wille [20] give algorithms for calculating the equations for (weak)
Maltsev conditions equivalent to congruence identities. A similar algorithm for the types
of sentences we are considering should prove quite useful.
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In [3]itis shown that there are lattice identities which do notimply modularity but which
when satisfied by all of the congruence lattices of a variety imply that every congruence
lattice in the variety is modular. For senteneesnde in a purely relational first order
language’, it would be interesting to investigate the implication

(L) Eo) — (L) Ee).

Finally, we would like to recall one of the supreme open problems in the area of Maltsev
conditions - is every congruence identity (including joins) equivalent to a Maltsev condition
(rather than merely a weak Maltsev condition)?
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