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Every finite lattice in V(M3) is representable

John W. Snow

Abstract. We prove that every finite lattice in the variety generated by M3 is isomorphic
to the congruence lattice of a finite algebra.

1. Introduction

Call a finite lattice which is isomorphic to the congruence lattice of a finite algebra
representable. In [5], the author investigates constructions by which one can
create new representable lattices from lattices already known to be representable.
In this paper, we use similar tactics to prove that any finite lattice in the variety
generated by M3 is representable.

2. A note on finitely fermentable lattices

In [3], Pudlák and Tůma introduced the idea of “finitely fermentable” lattices.
A lattice L is finitely fermentable if and only if L is finite and L and ConL have
the same number of join-irreducible elements. This is a property which is preserved
under homomorphisms, sublattices, and finite direct products. Suppose that L is
a finitely fermentable lattice. Every finite lattice in the variety generated by L is a
homomorphic image of a sublattice of a finite direct power of L. It follows that every
finite lattice in the variety is also finitely fermentable. It is proven in [3] that every
finitely fermentable lattice is representable. Hence, if L is a finitely fermentable
lattice, every finite lattice in the variety generated by L is representable.

The lattice M3 is not finitely fermentable (it has four join irreducibles, but is
simple), so the results of [3] do not apply to M3. However, we do note that two
interesting lattices which are finitely fermentable are the two element lattice and
the pentagon N5. It follows that every finite distributive lattice is representable (a
well known fact [4]) and that every finite lattice in the variety generated by N5 is
representable.
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3. Notation

To avoid confusion between logical symbols and lattice operations, we will use ∨
and ∧ for logical “or” and “and.” We will use additive notation (+, Σ) for lattice
joins, and multiplicative notation (·, Π, or juxtaposition) for lattice meets. We
will refer to the intersection of arbitrary binary relations with ∩, while we refer to
the intersection of equivalence relations with product notation. When equivalence
relations might be mixed with non-equivalence relations, we will use ∩.

A primitive positive formula is a formula of the form ∃∧ (atomic). Suppose that
φ is a primitive positive formula with two free variables v1 and v2 which employs
binary relation symbols r1, . . . , rl. Suppose also that θ1, . . . , θl are binary relations
on a set A. By interpreting each ri as θi, Φ can be used to define a new binary
relation on A. We will denote this new binary relation as Φ(θ1, . . . , θl). To denote
that 〈a, b〉 satisfies this new relation, we will write 〈a, b〉 ∈ Φ(θ1, . . . , θl) rather than
Φ(θ1, . . . , θl)(a, b). On any set A, Φ induces an operation on binary relations of A

which maps an l-tuple 〈θ1, . . . , θl〉 of binary relations to the relation Φ(θ1, . . . , θl).
We will also call this operation Φ and usually denote it by Φ(r1, . . . , rl). When
there is possible confusion about the underlying set A involved, we will denote the
operation by ΦA(r1, . . . , rl). We will also use Φ(r1, . . . , rl) to denote the primitive
positive formula. Generally, it will be apparent from context whether Φ(r1, . . . , rl)
refers to the formula or the operation.

By a compatible relation on an algebra A we mean a subuniverse of a (finite)
direct power of A. In [5], the author exploits the following lemma which follows from
the fact that a set of relations on a finite set is the set of all relations compatible
with an algebra on the set if and only if the relations are closed under primitive
positive definitions [1, 2].

Lemma 3.1 (Corollary 2.2 of [5]). Suppose L is a 0–1 lattice of equivalence relations
on a finite set A. There is an algebra A on A with ConA = L if and only if
every equivalence relation on A which can be defined from L by a primitive positive
formula is already in L.

4. The variety generated by M3

In this section, we prove

Theorem 4.1. Every finite lattice in the variety generated by M3 is representable.

We do so through the following sequence of definitions, lemmas, and corollaries.
Let B = {1, 2, 3}. Denote the lattice of equivalence relations on B by EqB. Then
EqB is isomorphic to M3. Let i ∈ B. Denote the unique atom of EqB in which



Vol. 50, 2003 Finite lattices in V(M3) 77

{i} is an equivalence class by µi. Denote the universal relation on B by 1B and the
smallest equivalence relation by 0B.

Lemma 4.2. Suppose that α, β, and γ are equivalence relations on the three ele-
ment set B. The equivalence relation (α + β)γ is the smallest equivalence relation
on B containing (α ◦ β) ∩ γ.

Proof. Suppose that σ is an equivalence relation on B containing (α ◦ β) ∩ γ. We
will prove that (α + β)γ ≤ σ. If α or β is in {0B, 1B}, then this is easy. Assume
this is not the case. Then α = µi and β = µj for some i, j ∈ B. If i = j then

(α + β)γ = α ∩ γ = (α ◦ β) ∩ γ ≤ σ.

Assume that i 
= j. We proceed now by cases on γ. If γ = 0B then

(α + β)γ = 0B ≤ σ.

If γ = 1B, then (α◦β)∩γ = α◦β. Since (α◦β)∩γ ≤ σ, and since (α◦β)∩γ = α◦β,
we know that α ≤ σ and that β ≤ σ. It follows then that

(α + β)γ = α + β ≤ σ.

Next assume that γ = µk for some k ∈ B. If k ∈ {i, j}, then (α ◦ β) ∩ γ = γ. If
k 
∈ {i, j}, then 〈j, i〉 ∈ (α ◦ β)∩ γ while 〈i, j〉 
∈ (α ◦ β)∩ γ, so 0B < (α ◦ β)∩ γ < γ.
In either case, 0B < (α ◦ β) ∩ γ ≤ γ = µk, so the only equivalence relations above
(α ◦ β) ∩ γ are µk = γ and 1B. Therefore, either σ = γ or σ = 1B. In either
case, (α + β)γ ≤ σ. We have proven that if σ is any equivalence relation on B

containing (α ◦ β) ∩ γ then (α + β)γ ≤ σ. This establishes the lemma since clearly
(α ◦ β) ∩ γ ⊆ (α + β)γ. �

Definition 4.3. For any primitive positive formula Φ(r1, . . . , rl) of the form

〈v1, v2〉 ∈ Φ(r1, . . . , rl) ↔ ∃v3

l∧
i=1

ri(vji , vki)

define a lattice term TΦ(r1, . . . , rl) by

TΦ(r1, . . . , rl) =
([∏

{ri : {ji, ki} = {1, 3}}
]
+

[∏
{ri : {ji, ki} = {3, 2}}

])

·
[∏

{ri : {ji, ki} = {1, 2}}
]
.

If any of the sets in this definition are empty, we follow the tradition that the
meet over an empty set is the largest element of a lattice, so that this is actually a
term in the language of lattices with a greatest element (the language with symbols
+, · , and 1).
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Lemma 4.4. If Φ(r1, . . . , rl) is a primitive positive formula of the form

〈v1, v2〉 ∈ Φ(r1, . . . , rl) ↔ ∃v3

l∧
i=1

ri(vji , vki)

and if θ1, . . . , θl ∈ EqB, then TΦ(θ1, . . . , θl) is the smallest equivalence relation on
B containing Φ(θ1, . . . , θl).

Proof. Define α =
∏{θi : {ji, ki} = {1, 3}}, β =

∏{θi : {ji, ki} = {3, 2}}, and
γ =

∏{θi : {ji, ki} = {1, 2}}. Notice that each of these is an equivalence rela-
tion on B, and that these are the meets which occur within TΦ(θ1, . . . , θl) so that
TΦ(θ1, . . . , θl) = (α + β)γ.

We claim that Φ(θ1, . . . , θl) = (α◦β)∩γ. To see this, suppose first that (x1, x2) ∈
Φ(θ1, . . . , θl). This means that there is an element x3 ∈ B so that θi(xji , xki ) is
true for i = 1, . . . , l. Suppose that {ji, ki} = {1, 3}. Then from θi(xji , xjk

), we
know either θi(x1, x3) or θi(x3, x1). Since θi is symmetric, this means θi(x1, x3).
This is true for all i for which {ji, ki} = {1, 3}, so 〈x1, x3〉 ∈ α. Similar arguments
when {ji, ki} = {3, 2} and {ji, ki} = {1, 2} will establish that 〈x3, x2〉 ∈ β and
〈x1, x2〉 ∈ γ. Hence 〈x1, x2〉 ∈ (α ◦ β) ∩ γ and Φ(θ1, . . . , θl) ⊆ (α ◦ β) ∩ γ.

Next, suppose that 〈x1, x2〉 ∈ (α ◦ β) ∩ γ. Since 〈x1, x2〉 ∈ α ◦ β, there is an
x3 ∈ B with x1αx3βx2. Suppose i ∈ {1, . . . , l}. If {ji, ki} = {1, 3} then θi(x1, x3)
(since 〈x1, x3〉 ∈ α). Since θi is symmetric, it follows that θi(xji , xki). Similar
arguments establish θi(xji , xki) when {ji, ki} = {3, 2} or {ji, ki} = {1, 2}. Thus we
have θi(xji , xki) for all i, so x3 witnesses that 〈x1, x2〉 ∈ Φ(θ1, . . . , θl). This provides
the reverse inclusion to conclude that Φ(θ1, . . . , θl) = (α ◦ β) ∩ γ. The lemma now
follows from Lemma 4.2. �

Definition 4.5. Suppose that n ≥ 2. Define Fn to be the set of all functions
f : {1, . . . , n} → {1, 2, 3} with f(1) = 1 and f(2) = 2. Suppose that Φ(r1, . . . , rl) is
a primitive positive formula of the form

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).

Let f ∈ Fn. Define Φf (r1, . . . , rl) to be the primitive positive formula

〈v1, v2〉 ∈ Φf (r1, . . . , rl) ↔ ∃v3

l∧
i=1

ri(vf(gi), vf(hi)).

Lemma 4.6. Suppose that Φ(r1, . . . , rl) is the primitive positive formula

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).
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Let x1, x2 ∈ B and θ1, . . . , θl ∈ EqB. Then 〈x1, x2〉 ∈ Φ(θ1, . . . , θl) if and only if
there is a function f ∈ Fn so that 〈x1, x2〉 ∈ Φf (θ1, . . . , θl).

Proof. Suppose that 〈x1, x2〉 ∈ Φ(θ1, . . . , θl). If x1 = x2, then 〈x1, x2〉 is in any
Φf (θ1, . . . , θl). Suppose then that x1 
= x2. There is exactly one element in B and
not in {x1, x2}. Call this element z. There are x3, . . . , xn ∈ B so that θi(xgi , xhi)
for each i = 1, . . . , l. Define f : {1, . . . , n} → {1, 2, 3} by

f(i) =




1 xi = x1

2 xi = x2

3 xi = z .

Let y1 = x1, y2 = x2, and y3 = z. It follows that yf(gi) = xgi and yf(hi) = xhi

for all i. Since θi(xgi , xhi) for all i, this means θi(yf(gi), yf(hi)). Hence, 〈x1, x2〉 =
〈y1, y2〉 ∈ Φf (θ1, . . . , θl).

Next, suppose that f ∈ Fn and that 〈x1, x2〉 ∈ Φf (θ1, . . . , θl). This means there
is an x3 ∈ B with θi(xf(gi), xf(hi)) for all i. For each i = 1, . . . , l, let yi = xf(i).
Then y1 = x1, y2 = x2, and for all i = 1, . . . , l, ygi = xf(gi) and yhi = xf(hi).
Suppose that i ∈ {1, . . . , l}. Since θi(xf(gi), xf(hi)), it follows that θi(ygi , yhi).
Thus 〈x1, x2〉 = 〈y1, y2〉 ∈ Φ(θ1, . . . , θl). �

Lemma 4.6 immediately gives us

Corollary 4.7. Suppose that Φ(r1, . . . , rl) is the primitive positive formula

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).

Let θ1, . . . , θl ∈ EqB. Then Φ(θ1, . . . , θl) =
⋃

f∈Fn
Φf (θ1, . . . , θl). �

Definition 4.8. Suppose that Φ(r1, . . . , rl) is the primitive positive formula

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).

Define the following term in the language of lattices with a greatest element

QΦ(r1, . . . , rl) =
∑

f∈Fn

TΦf
(r1, . . . , rl).

Corollary 4.9. Suppose that Φ(r1, . . . , rl) is the primitive positive formula

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).

Let θ1, . . . , θl ∈ EqB. If Φ(θ1, . . . , θl) is an equivalence relation on B, then

Φ(θ1, . . . , θl) = QΦ(θ1, . . . , θl).
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Proof. Suppose that Φ(θ1, . . . , θl) is an equivalence relation. By Corollary 4.7 and
Lemma 4.4

Φ(θ1, . . . , θl) =
⋃

f∈Fn

Φf (θ1, . . . , θl) ⊆
∑

f∈Fn

TΦf
(θ1, . . . , θl) = QΦ(θ1, . . . , θl).

Thus Φ(θ1, . . . , θl) ⊆ QΦ(θ1, . . . , θl). Now note that Φf (θ1, . . . , θl) ⊆ Φ(θ1, . . . , θl)
for each f ∈ Fn by Corollary 4.7. Therefore, since Φ(θ1, . . . , θl) is an equivalence
relation, Lemma 4.4 tells us that TΦf

(θ1, . . . , θl) ⊆ Φ(θ1, . . . , θl). This now gives
that

QΦ(θ1, . . . , θl) =
∑

f∈Fn

TΦf
(θ1, . . . , θl) ⊆ Φ(θ1, . . . , θl).

We then have QΦ(θ1, . . . , θl) = Φ(θ1, . . . , θl) as desired. �

Definition 4.10. Let M = EqB. This lattice is isomorphic to M3. Let m be a
positive integer. Let θ1, . . . , θm be equivalence relations on B. By 〈θ1, . . . , θm〉 we
will mean the equivalence relation on Bm defined so that 〈x1, . . . , xm〉 is related to
〈y1, . . . , ym〉 precisely when xiθiyi for all i = 1, . . . , m. We will denote the lattice
of all equivalence relations on Bm of the form 〈θ1, . . . , θm〉 where each θi ∈ M as
Mm. Note that this lattice is isomorphic to Mm

3 .

Lemma 4.11. For any positive integer m, every 0–1 sublattice of Mm is the con-
gruence lattice of an algebra on Bm.

Proof. Let L be a 0–1 sublattice of Mm. We will show that L is closed under
primitive positive definitions. Let Φ(r1, . . . , rl) be the primitive positive formula

〈u1, u2〉 ∈ Φ(r1, . . . , rl) ↔ ∃u3, . . . , un

l∧
i=1

ri(ugi , uhi).

We know from Corollary 4.9 that there is term QΦ(r1, . . . , rl) in the language of
lattices with a greatest element so that if θ1, . . . , θl ∈ EqB and if Φ(θ1, . . . , θl) is
an equivalence relation, then Φ(θ1, . . . , θl) = QM

Φ (θ1, . . . , θl). Since QΦ is a term
in the language of lattices with a greatest element, there is a pure lattice term
RΦ(r1, . . . , rl, y) so that M satisfies QM

φ (r1, . . . , rl) = RM
Φ (r1, . . . , rl, 1).

Suppose that θ1, . . . , θl ∈ L and that ΦBm

(θ1, . . . , θl) is an equivalence relation.
For each i, there are equivalence relations θ1

i , . . . , θm
i so that θi = 〈θ1

i , . . . , θm
i 〉. By

virtue of Φ being a primitive positive formula

ΦBm

(θ1, . . . , θl) = 〈ΦB(θ1
1, . . . , θ

1
l ), . . . , Φ

B(θm
1 , . . . , θm

l )〉.
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Since ΦBm

(θ1, . . . , θl) is an equivalence relation, each ΦB(θi
1, . . . , θ

i
l) is an equiva-

lence relation on B. Therefore,

ΦBm

(θ1, . . . , θl) = 〈ΦB(θ1
1 , . . . , θ

1
l ), . . . , ΦB(θm

1 , . . . , θm
l )

〉
=

〈
QM

Φ (θ1
1, . . . , θ

1
l ), . . . , Q

M
Φ (θm

1 , . . . , θm
l )

〉
=

〈
RM

Φ (θ1
1 , . . . , θ

1
l , 1), . . . , RM

Φ (θm
1 , . . . , θm

l , 1)
〉

= RMm

Φ (θ1, . . . , θl,
〈
1, . . . , 1

〉
).

Since L is a 0–1 sublattice of Mm, and since RΦ is a lattice term, this is an element
of L. The lattice L is thus closed under primitive positive definitions which yield
equivalence relations, so by 3.1 it is the congruence lattice of an algebra on Bm. �

Every finite lattice in the variety generated by M3 is isomorphic to a 0–1 sub-
lattice of a finite direct power of M3. Therefore, Theorem 4.1 now follows directly
from Corollary 4.11.
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