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Primitive positive clones of groupoids

John W. Snow

Abstract. We prove that if two finite groupoids with unity have the same ternary com-
patible relations, then they have the same primitive positive clones.

1. Introduction

In [3], K. Kearnes and Á. Szendrei prove that if a finite group G has Abelian

Sylow subgroups, then the term operations of G are precisely those operations on

G which preserve the subgroups of G3. In contrast to this, they give an example

of a ternary operation on the eight-element quaternion group which preserves all

compatible ternary relations but is not a term operation. Thus ternary relations

may not completely determine the clone of a finite group among all clones on the

universe. However, Kearnes and Szendrei ask if these relations may be enough to

distinguish between group clones. In [3], they pose the following problem:

Problem 1.1 (Problem 3.18 of [3]). Suppose that G and H are groups defined on

the same set. Show that Sub(G3) = Sub(H3) implies Clo(G) = Clo(H).

In this paper, we prove that if A is a finite groupoid with an identity element,

then all of the homomorphisms between finite direct products of subalgebras of

A are completely determined by Sub(A3). This implies that Sub(A3) determines

the centralizer clone of A and, hence, the primitive positive clone generated by

the operations of A. It follows that the groups G and H in the Kearnes–Szendrei

problem have the same primitive positive clones.

2. Preliminaries

A primitive positive formula is a first order formula of the form ∃ ∧ (atomic). A

clone C on a set A is a primitive positive clone if every operation definable on A from

operations in C using primitive positive definitions is already in C. The primitive

positive closure of a set F of operations on a set A is the smallest primitive positive
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clone on A containing F . We will denote the primitive positive closure of a set F

of operations as PPClo(F). If A = 〈A,F〉 is an algebra, then PPClo(A) will be

used to denote PPClo(F).

For two similar algebras A and B, we use Hom(A,B) to denote the set of

homomorphisms from A to B. For a class K of similar algebras, we will write

Hom(K) for the collection of all homomorphisms between algebras in K. If A is

similar to the algebras in K, then Hom(A,K) is the class of all homomorphisms

from A to an algebra in K.

The centralizer clone of an algebra A is the clone Z(A) =
⋃

n≥1 Hom(An,A).

If A = 〈A,F〉 is an algebra, then we may write Z(F) for Z(A). Let C be a clone

on a finite set A. It follows from the Galois connection between operations and

relations on a set developed by Bodnarchuk, Kalužnin, Kotov, and Romov in [1]

that PPClo(C) = Z(Z(C)) and that C is a primitive positive clone if and only if it

is a centralizer clone. The next lemma will be our tool for telling when two sets

of operations generate the same primitive positive clone. For proofs of these and

other fundamental results about primitive positive clones, see [5, 4, 6].

Lemma 2.1 (A. V. Kuznecov [4], see also L. Szabó [5]). Suppose that F1 and F2

are sets of operations on a finite set A. Then PPClo(F1) = PPClo(F2) if and only

if Z(F1) = Z(F2).

For any class K of similar algebras, Pn(K) will represent the class of all algebras

which are direct products of at most n (not necessarily distinct) algebras from K,

and Pfin(K) =
⋃

n≥1 Pn(K).

3. Groupoids

This section is concerned with algebras A = 〈A, ·, 1〉 with a binary operation and

a constant which is an identity element for the binary operation. We will call these

algebras groupoids with identity. We prove that the centralizer clone of a groupoid

A with identity 1 is completely determined by Sub(A3).

Suppose that A is an algebra, that K0,K1, . . . ,Kn ∈ Sub(A), and that αi ∈

Con(Ki) for all i. For any function F :
∏n

i=1 Ki/αi → K0/α0, define the extended

graph of F to be

EG(F ) =
{

〈x1, . . . , xn, y〉 ∈
(
∏n

i=1 Ki

)

× K0 : F (x1/α1, . . . , xn/αn) = y/α0

}

.

Then this lemma is easy to prove:

Lemma 3.1. Suppose that A is an algebra, that K0,K1, . . . ,Kn ∈ Sub(A), that

αi ∈ Con(Ki) for all i, and that F :
∏n

i=1 Ki/αi → K0/α0 is any function. Then F

is a homomorphism from
∏n

i=1 Ki/αi to K0/α0 if and only if EG(F ) ∈ Sub(An+1).
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If α is an equivalence relation on a set A, then we will write πα for the canonical

projection from A to A/α.

Theorem 3.2. Suppose that A = 〈A, ·, 1〉 is a finite groupoid with an identity

element. Let A be the algebra on the set A whose basic operations are all operations

which preserve Sub(A3). Then the following are true:

(1) Hom(PfinHS(A)) = Hom(PfinHS(A)).

(2) Z(A) = Z(A).

(3) PPClo(A) = PPClo(A).

Proof. We prove (1). Then (2) will follow from the definition of the centralizer

clone, and (3) will follow from Lemma 2.1. First, note that from the definition of A

it follows that Sub(A3) = Sub(A
3
). From this, we know that Sub(A2) = Sub(A

2
)

and Sub(A) = Sub(A). It follows that A and A have the same subalgebras and

congruences. Thus the universes which appear in PfinHS(A) and PfinHS(A) are

the same (so it even makes sense to ask if (1) is true). For any B ∈ PfinHS(A), we

will use B to represent the algebra in PfinHS(A) with the same universe as B.

We will prove by induction on n that Hom(B,HS(A)) ⊆ Hom(B,HS(A)) for

all positive integers n and for every B ∈ PnHS(A). This is true for n = 1, 2

because Sub(A3) = Sub(A
3
) and since the extended graph of a homomorphism

from an algebra in P1HS(A) or P2HS(A) to an algebra in HS(A) can be realized

in Sub(A2) = Sub(A
2
) or Sub(A3) = Sub(A

3
).

Suppose then that n ≥ 2 and that Hom(B,HS(A)) ⊆ Hom(B,HS(A)) for all

B ∈ PmHS(A) for all m ≤ n. Let B ∈ Pn+1HS(A) and C ∈ HS(A). There

are K0,K1, . . . ,Kn+1 ∈ Sub(A) and αi ∈ Con(Ki) so that B =
∏n+1

i=1 Ki/αi and

C = K0/α0. Let F : B → C be a homomorphism. Define

F1 :

n
∏

i=1

Ki/αi → K0/α0 by F1(x1, . . . , xn) = F (x1, . . . , xn, 1)

and

F2 : Kn+1/αn+1 → K0/α0 by F2(xn+1) = F (1, . . . , 1, xn+1).

Then F1 and F2 are homomorphisms. For i = 1, 2, let Hi ≤ K0 be given by

Hi = π−1
α0

(Im(Fi)). And define

G : H1/α0 × H2/α0 → K0/α0 by G(x, y) = x · y.

Then G is also a homomorphism. To see this, let (a, b), (c, d) ∈ H1/α0 × H2/α0.

There are 〈x1, . . . , xn〉, 〈u1, . . . , un〉 ∈
∏n

i=1 Ki/αi so that F1(x1, . . . , xn) = a and

F1(u1, . . . , un) = c. Also, there are xn+1, un+1 ∈ Kn+1/αn+1 so that F2(xn+1) = b
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and F2(un+1) = d. Then

G(a, b)G(c, d) = (a · b) · (c · d)

= (F1(x1, . . . , xn) · F2(xn+1)) · (F1(u1, . . . , un) · F2(un+1))

= (F (x1, . . . , xn, 1) · F (1, . . . , 1, xn+1)) · (F (u1, . . . , un, 1) · F (1, . . . , 1, un+1))

= F (x1 · u1, . . . , xn · un, xn+1 · un+1)

= F (x1 · u1, . . . , xn · un, 1) · F (1, . . . , 1, xn+1 · un+1)

= (F (x1, . . . , xn, 1) · F (u1, . . . , un, 1)) · (F (1, . . . , 1, xn+1) · F (1, . . . , 1, un+1))

= (a · c) · (b · d) = G(a · c, b · d).

Thus G is also a homomorphism. Since F1, F2, and G are homomorphisms for the

algebraic structures induced by A, we can assume by induction that F1, F2, and

G are homomorphisms for the algebraic structures induced by A. This means by

Lemma 3.1 that the extended graphs EG(F1), EG(F2), and EG(G) are closed under

the operations induced by A. If a collection of relations on an algebra is closed under

the operations of the algebra, then so is every relation definable from those relations

by a primitive positive formula [1]. Then the following relation R defined by a

primitive positive formula from these extended graphs is also compatible with A:

〈x1, . . . , xn, xn+1, y〉 ∈ R ↔ (∃a, b ∈ A)
(

[〈x1, . . . , xn, a〉 ∈ EG(F1)] ∧ [〈xn+1, b〉 ∈ EG(F2)] ∧ [(a, b, y) ∈ EG(G)]
)

.

It is easy to see that

〈x1, . . . , xn, xn+1, y〉 ∈ R

if and only if

F1(x1/α1, . . . , xn/αn) · F2(xn+1/αn+1) = y/α0.

However,

F1(x1/α1, . . . , xn/αn) · F2(xn+1/αn+1) = F (x1/α1, . . . , xn/αn, xn+1/αn+1),

so R is nothing other than EG(F ). Since EG(F ) = R is compatible with A, it

follows that F is a homomorphism from
∏n

i=1 Ki/αi to K0/α0.

By induction we now have that, for each n = 1, 2, . . . and for each B ∈ PnHS(A),

Hom(B,HS(A)) ⊆ Hom(B,HS(A)). It follows that Hom(PfinHS(A),HS(A)) ⊆

Hom(PfinHS(A),HS(A)). Now, since every function into a product is uniquely

determined by its component maps, and since such a function is a homomor-

phism if and only if its component maps are, we have that Hom(PfinHS(A)) ⊆

Hom(PfinHS(A)). Of course, since the operations of A are also operations of A,

the reverse inclusion also holds, so we have (1). The statements (2) and (3) now

follow as mentioned. ¤
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Note that finiteness only plays a role in the proof of Theorem 3.2 in the reference

to Lemma 2.1 to establish (3). Thus (1) and (2) also hold when A is infinite.

Suppose now that A and B are finite groupoids with identity on the same uni-

verse and that Sub(A3) = Sub(B3). Let A be the algebra with the same uni-

verse as A and B whose operations are all operations preserving the relations in

Sub(A3) = Sub(B3). Then by the previous theorem

Hom(PfinHS(A)) = Hom(PfinHS(A)) = Hom(PfinHS(B)),

Z(A) = Z(A) = Z(B),

PPClo(A) = PPClo(A) = PPClo(B).

We have:

Theorem 3.3. Suppose that A and B are finite groupoids with identity on the

same universe. If Sub(A3) = Sub(B3), then

(1) Hom(PfinHS(A)) = Hom(PfinHS(B)).

(2) Z(A) = Z(B).

(3) PPClo(A) = PPClo(B).

We can say a bit more in the presence of associativity and a little commutativity.

Corollary 3.4. Suppose that A1 = 〈A, ·, 1〉 and A2 = 〈A, ∗, 1〉 are finite groupoids

with identity defined on the same universe and that Sub(A3
1) = Sub(A3

2). Suppose

also that A1 is associative. Then

(1) If x and y commute in A1, then x ∗ y = y ∗ x = x · y.

(2) Positive powers agree in A1 and A2.

(3) If x and y are inverses in A1, then x and y are inverses in A2.

Proof. Let H and K be the subgroupoids (with identity) of A1 generated by x and

y, respectively. Note that by using associativity and the commutativity of x and y,

every element of H commutes with every element of K (under the operation of A1).

Define a function f : H×K → A by f(a, b) = a·b. Then f is an A1-homomorphism.

To see this, let 〈h1, k1〉, 〈h2, k2〉 ∈ H × K. Then

f(h1, k1) · f(h2, k2) = (h1 · k1) · (h2 · k2) = h1 · ((k1 · h2) · k2)

= h1 · ((h2 · k1) · k2) = (h1 · h2) · (k1 · k2)

= f(h1 · h2, k1 · k2) = f(〈h1, k1〉 · 〈h2, k2〉).

Notice that what is essential here is the commutativity and associativity of elements

of H and K. Since f is an A1-homomorphism, it follows from Theorem 3.3 that f
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is an A2-homomorphism. Then

x ∗ y = f(x, 1) ∗ f(1, y) = f(〈x, 1〉 ∗ 〈1, y〉) = f(x, y)

= f(〈1, y〉 ∗ 〈x, 1〉) = f(1, y) ∗ f(x, 1) = y ∗ x

and

x ∗ y = f(x, y) = x · y.

This proves (1). Now (2) follows from (1) since any element must commute with

its positive powers in A1. Statement (3) also follows from (1) since any element

with an inverse must commute with its inverse. ¤

We close by noting that our results do not solve even the finite version of the

Kearnes–Szendrei problem mentioned in the introduction because the primitive

positive clone of a finite group may or may not be equal to the clone of the group.

If G is a finite simple non-Abelian group, then the primitive positive clone of G

contains the ternary discriminator operation by Lemma 2.2 of [2]. In this case,

the primitive positive clone of G is larger than Clo(G). On the other hand, if G

is a finitely generated Abelian group, then Z(Z(G)) = Clo(G), so if G is finite,

PPClo(G) = Clo(G). To see this, suppose that G is a finitely generated Abelian

group. We know Clo(G) ⊆ Z(Z(G)), so we just need to show the opposite inclu-

sion. Since the binary operation of G is in Z(G), every member of Z(Z(G)) is a

homomorphism from a direct power of G into G. Every such homomorphism is a

sum of coordinate homomorphisms which must also be in Z(Z(G)). Thus, to show

Z(Z(G)) ⊆ Clo(G), it is enough to show that every unary member of Z(Z(G)) is

in Clo(G). By the Fundamental Theorem of Finitely Generated Abelian Groups,

we can assume that G is a direct product

Zn1
× Zn2

× · · · × Znk
× Z × Z × · · · × Z

with ni a factor of ni+1 for i = 1, 2, . . . , k − 1. Suppose that there are m factors

here. For each i = 1, 2, . . . ,m, let ei be the vector in G with 1 in the ith coordinate

and 0 everywhere else. For each i ≤ m, there is an endomorphism gi of G so

that gi(em) = ei and gi(ej) = 0 else. Notice that if x ∈ G, then gi(x) = lei for

some integer l. Let f be a unary function in Z(Z(G)). Since f and gi commute,

f(ei) = f(gi(em)) = gi(f(em)). Thus, there is some integer li with f(ei) = liei.

Now notice that

lmei = lmgi(em) = gi(lmem) = gi(f(em)) = f(gi(em)) = f(ei)

so f(ei) = lmei for all i. Now let x = 〈x1, x2, . . . , xm〉 ∈ G. Then

f(x) = f
(

m
∑

i=1

xiei

)

=

m
∑

i=1

xif(ei) =

m
∑

i=1

xilmei = lm

m
∑

i=1

xiei = lmx.
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Thus f ∈ Clo(G). Since every operation in Z(Z(G)) is a sum of unary operations

of Z(Z(G)) applied coordinatewise, it follows that Z(Z(G)) ⊆ Clo(G) and that

these sets are equal.
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