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A constructive approach to the finite congruence
lattice representation problem

John W. Snow

Abstract. A finite lattice is representableif it is isomorphic to the congruence lattice of a finite algebra. In
this paper, we develop methods by which we can construct new representable lattices from known ones. The
techniques we employ are sufficient to show that every finite lattice which contains no three element antichains is
representable. We then show that if an order polynomially complete lattice is representable then so is every one
of its diagonal subdirect powers.

1. Introduction

One of the most elusive longstanding problems in Universal Algebra is the finite congru-
ence representation problem: “Is every finite lattice isomorphic to the congruence lattice of
a finite algebra?” Call a finite lattice which is isomorphic to the congruence lattice of a finite
algebrarepresentable. We begin here to construct a list of operations under which the class

of representable lattices is closed. The motivation is quite simple. In [7], Pudlák and T
◦
uma

provide a construction on lattices so that any class of lattices which contains all Boolean
lattices and is closed under their construction is the class of all lattices. This is then used
to show that every finite lattice can be embedded in the lattice of equivalence relations on
a finite set. A similar theorem which could be applied to the class of representable lattices
would be the ultimate goal. More realistically, we might hope to develop operations by
which we can construct new representable lattices from known ones, thereby enlarging the
class of lattices known to be representable. The constructions covered herein are sufficient
to prove that every finite lattice which contains no three element antichains is representable.
We note that many of the tools we develop here, though unpublished, were known to P.

Pudĺak and J. T
◦
uma.
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2. Primitive positive formulas

Call a subuniverse of a direct power of an algebra acompatible relation on the algebra.
To begin with, we need to know when a system of relations on a finite set is the system of
all finitary compatible relations of a finite algebra. There are many such characterizations,
we choose to use the following model theoretic characterization.

Call a first order formula of the form∃∧ (atomic) aprimitive positive formula. Suppose
A is any set andσ is a primitive positive formula using relation symbolsr1, . . . , rn. Let
rA
1 , . . . , rA

n be relations onA so thatri has the same rank asrA
i for eachi. Interpreting

eachri in σ asrA
i defines a relationσA on the universe ofA. A setR of relations onA

is closed under primitive positive definitionsif every relationσA defined in this manner
using only relations fromR is already inR. It is an easy exercise to show that the system
of finitary compatible relations on an algebra is closed under primitive positive definitions.
In the finite case, the reverse is also true:

LEMMA 2.1. [1, 5] Suppose thatA is a finite set andR is a collection of finitary
relations onA. There is an algebraA onA for whichR is the set of all finitary compatible
relations if and only ifR is closed under primitive positive definitions and contains∅.

We are concerned here with congruences, so we can isolate our attention to sets of equiv-
alence relations. Lemma 2.1 has this immediate consequence about congruence lattices:

COROLLARY 2.2. SupposeL is a 0–1 lattice of equivalence relations on a finite set
A. There is an algebraA onA with ConA = L if and only if every equivalence relation on
A which can be defined fromL by a primitive positive formula is already inL.

Of course, a similar corollary would hold for any special type of compatible relation:
tolerances, endomorphisms, homomorphisms between direct powers. It will be to our
advantage to have a standard form for primitive positive formulas. This can be easily done.
SinceL in Corollary 2.2 must contain the identity and universal relations, we can always
choose our primitive positive formulas to be of a special form:

COROLLARY 2.3. SupposeL is a 0–1 lattice of equivalence relations on a finite set
A. There is an algebraA onA with ConA = L if and only ifL contains every equivalence
relation onA definable by primitive positive formulas of the form

σ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j≤n

Si,j (xi, xj )

where eachsi,j ∈ L.
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We note here that equivalence relations have many faces. They are sets, but they are
also relations. As such, sometimes it is convenient to use set notation to denote inclusion–
〈x, y〉 ∈ α − and other times it is useful to use more model theoretic notation –xαy or
α(x, y). Lattices also have more than one face. Sometimes, we will be working with
lattices of equivalence relations. In these cases, we will use scripted text –L – to refer to
the lattices. Whenever we are working with a lattice which is not necessarily a lattice of
equivalence relations, we will use bold faced text –L .

3. The tools

There is an intimate relationship between primitive positive formulas using only binary
relation symbols and certain graphs. This relationship is essential to our first two lemmas.
Supposeσ is a primitive positive formula containing the variablesx1, . . . , xn. By thegraph
of σ we mean the graphG whose vertices are labeledx1, . . . , xn so that for eachi, j ≤ n

there is an edge betweenxi andxj labeled byr if and only if r(xi, xj ) is included in the
conjunction inσ . For example, ifσ is defined by

σ(x1, x2)←→ ∃x3, x4[r(x1, x3) ∧ s(x1, x4) ∧ t (x3, x4) ∧ u(x3, x2) ∧ v(x4, x2)]

then the graph ofσ would look like the graph in Figure 1.

x3

x4

x1 t x2

r

s

u

v

Figure 1 The graph ofσ

Supposeσ(x1, x2) is a primitive positive formula involving binary relation symbols
r1, . . . , rn and thatG is the graph ofσ . SupposeA is a finite set and thatrA

1 , . . . , rA
n are

equivalence relations onA. Let σA be the relation onA obtained by interpretting eachri
asrA

i . In the language of [9],σA is the relation obtained from the graphical composition of
rA
1 , . . . , rA

n andG associated with the labelling of the edgeri in G by rA
i ([9] uses directed

graphs, but this is not necessary if we are only using equivalence relations). Furthermore,
every such graphical composition can be realized through a primitive positive formula. Thus
Corollary 2.2 is equivalent to Theorem 2.6 of [9] which says that the lattices of equivalence
relations on a finite set are those lattices of equivalence relations which are closed under all
graphical compositions.
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LEMMA 3.1. Supposeα ≤ β are equivalence relations on a finite setA. Let σ be a
binary relation onA defined by

σ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j,≤n

si,j (xi, xj )

where eachsi,j ∈ {α, β}. Thenσ ∈ {α, β} and σ = α if and only if there is a path of
α-edges fromx1 to x2 in the graph ofσ .

Proof. The lemma is trivial ifα = β, so assumeα < β. It should be clear that
α ≤ σ ≤ β. If there is a path labeled byα connectingx1 andx2 in the graph ofσ , then
it follows immediately thatσ(x1, x2) impliesα(x1, x2). Thus we would haveσ ≤ α, and
henceσ = α. Assume then that there is no such path. We will show thatσ = β. This will
establish the lemma. We know already thatσ ≤ β. We show thatβ ≤ σ . Supposea, b ∈ A

andβ(a, b). Let G be the graph ofσ with all of theβ-edges removed. Fori = 1, . . . , n

define:

yi =
{

a if xi is in theG-component ofx1

b else

For all i, j ≤ n, we claim thatsi,j (yi, yj ) holds. Since everything here isβ related,
we just need to show thatsi,j (yi, yj ) holds whensi,j = α. Whensi,j = α the vertices
xi andxj are in the same component ofG, so by definitionyi = yj . Hencesi,j (yi, yj ) is
trivial. Since

∧
i,j≤n si,j (yi, yj ) holds, it follows thatσ(y1, y2). But y1 = a andy2 = b,

soσ(a, b) holds. Thusβ ≤ σ , so actuallyβ = σ . ¨

In this lemma, the fact thatσ ∈ {α, β} can easily be seen by other methods. What is
essential for us is the conclusion regarding paths in the graph ofσ . It is vital for the next
lemma.

LEMMA 3.2. SupposeA is a finite algebra andα andβ are equivalence relations on
A. There is an algebraA′ onA with

ConA′ = {x ∈ ConA : x ≤ α or x ≥ β}.

Proof. If α = 1A or β = 0A, then this is trivial. Assume then thatα < 1A andβ > 0A.
Let L = {x ∈ ConA : x ≤ α or x ≥ β}. We will show thatL is closed under primitive
positive definitions which yield equivalence relations onA. Define a binary relationρ on
A by

ρ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j,≤n

ri,j (xi, xj )
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where eachri,j ∈ L. Suppose thatρ is an equivalence relation onA. We need to show that
ρ ∈ L. Note thatρ ∈ ConA since ConA is closed under the appropriate primitive positive
defintions.

For eachi, j ≤ n define:

si,j =
{

α ri,j ≤ α

1A else
and ti,j =

{
β ri,j ≤ β

0A else

Also define:

σ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j,≤n

si,j (xi, xj )

and
τ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j≤n

ti,j (xi, xj ).

Sinceti,j ≤ ri,j ≤ si,j for all i, j ≤ n, we haveτ ≤ ρ ≤ σ . We will show that eitherτ = β

or σ = α. Sinceρ ∈ ConA, this will establish thatρ ∈ L as desired. From Lemma 3.1, we
know thatτ ∈ {0A, β}. Assume thatτ 6= β. From the lemma, there is a path in the graph
of τ connectingx1 andx2 with every edge labeled by 0A. Therefore, there is a path in the
graph ofρ from x1 to x2 with every edge labeled by an equivalence relation belowα (since
every equivalence relation inL is either belowα or aboveβ). It follows that in the graph
of σ there is a path connectingx1 andx2 whose edges are labeled withα. From Lemma
3.1, we can conclude thatσ = α. ¨

The next lemma is almost obvious:

LEMMA 3.3. SupposeA andB are algebras on a setA. There is an algebraC on A

so thatConC = ConA ∩ ConB. ¨

We will make extensive use of Lemma 3.2 a little later. However, we first concern our-
selves with the fact that the class of finite representable lattices is closed under subintervals.

LEMMA 3.4. The class of representable lattices is closed under subintervals.

Proof. SupposeL is a finite representable lattice. Find a finite algebraA so that
ConA ∼= L . Supposea < b in ConA. Let C = A/a andθ = b/a. The interval [0C, θ ]
is isomorphic as a lattice to the interval [a, b]. If θ = 1C , then we are done. Assume,
therefore, thatθ < 1C , and letH1, . . . , Hm be the equivalence classes ofθ . For any binary
relationσ ⊆ θ , letσ i = σ ∩H 2

i (that is,σ i is the restriction ofσ toHi). LetB =∏m
i=1Hi ,

and defineF : [0C, θ ] → Eq(B) by F(σ) =∏m
i=1σ

i . Let N = F([0C, θ ]).
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Notice first that for any equivalence relationsσ, τ ≤ θ onC we haveσ ≤ τ if and only
if σ i ≤ τ i for all i. It follows thatF is a lattice injection, andN is isomorphic as a lattice to
the interval [a, b]. Also notice thatN is a 0–1 lattice of equivalence relations onB. Hence
we need only show that there is an algebraB on B with ConB = N . To do this we show
thatN is closed under all primitive positive definitions which happen to yield equivalence
relations onB. Supposeρ is a binary relation onB given by:

ρ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j,≤n

ri,j (xi, xj )

where eachri,j ∈ N . For eachi, j ≤ n, we can findsi,j ≤ θ in ConC so that

ri,j = F(si,j ) =
m∏

k=1

sk
i,j .

For eachk = 1, . . . , m, definetk onHk by:

τ k(x1, x2)←→ ∃x3, . . . , xn

∧
i,j≤n

sk
i,j (xi, xj ).

Also, defineσ onC by

σ(x1, x2)←→ ∃x3, . . . , xn

∧
i,j≤n

si,j (xi, xj ).

It is not difficult to see thatτ k = σk for eachk since all of the relations present in the
definition ofσ must hold within individualθ classes. Also,ρ =∏m

k=1τ
k is not hard to see.

Thus

ρ =
m∏

k=1

τ k =
m∏

k=1

σk.

Supposeρ is an equivalence relation. Sinceρ =∏m
k=1σ

k, it follows that eachσk is also
an equivalence relation. It is routine to show thatσ is an equivalence relation – since in
each case of reflexivity, symmetry, and transitivity we can isolate our attention to a single
equivalence class ofθ and thus work with one of theσk. Thusσ is an equivalence relation
on C defined using primitive positive definitions involving only members of ConC less
thanθ , soσ ∈ ConC andσ ≤ θ . Henceρ = ∏m

k=1σ
k = F(σ) is a member ofN . We

have established thatN is closed under primitive positive definitions yielding equivalence
relations. SinceN is isomorphic as a lattice to the original interval [a, b], this interval is
representable. ¨



Vol. 43, 2000 A constructive approach to the finite congruence lattice representation problem 285

It follows from a result of Kurzweil [3] that the class of finite representable lattices is self-
dual. This fact provides a much simpler (though not self-contained) proof of Lemma 3.4.
We choose to state our proof because we believe that the connection used herein between
equivalence relations on∪m

k=1Hk and equivalence relations on
∏m

k=1Hk might prove useful
in attempting to show that the class of representable lattices is closed under subdirect
products. Notice that the interval [0C, θ ] in the proof induces through restriction a lattice of
equivalence relations on eachHk. The representation which is found for this interval in the
proof is actually a subdirect product of these induced lattices. We will return to subdirect
products in Section 5.

Since the congruence lattice of the non-indexed product of two algebrasA andB is
isomorphic to ConA × ConB, and since any two latticesL andN can be embedded as
intervals in the productL × N, we immediately have:

LEMMA 3.5. SupposeL andN are finite lattices.L × N is representable if and only if
bothL andN are representable. ¨

We next tackle ordinal sums and things that look like ordinal sums. SupposeL andN
are lattices. We will denote the lattice obtained from the ordinal sumL ⊕N by identifying
the least element of the upper lattice with the greatest element of the lower byL ⊕a N (see
Figure 2).

N

N

LL

Figure 2L⊕a N (left) andL⊕ N (right).

LEMMA 3.6. SupposeL andN are finite lattices.L ⊕a N is representable if and only
if L andN are representable.

Proof. If L ⊕a N is representable, thenL andN are representable by Lemma 3.4 (as
subintervals). SupposeL andN are representable. Notice thatL ⊕a N is isomorphic to the
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sublattice of (the representable lattice)L × N containing the elements

{x ∈ L × N : x ≤ 〈1, 0〉 or x ≥ 〈1, 0〉}.

By lemma 3.2, this sublattice is also representable. ¨

COROLLARY 3.7. SupposeL andN are finite lattices.L ⊕ N is representable if and
only if L andN are representable.

Proof. If L ⊕ N is representable, thenL andN are representable by Lemma 3.4. Let2
be the two element lattice (which is representable). SupposeL andN representable. Since
L ⊕ N ∼= (L ⊕a 2)⊕a N, it follows thatL ⊕ N is representable by Lemma 3.6. ¨

SupposeL andN are lattices. We define a new latticeL ∓ N which we call theparallel
sum of L and N. The universe ofL ∓ N is the disjoint union ofL andN along with two
new elements which we will denote here as 0 and 1. The order onL ∓ N is given by:

x ≤ y ←→




x ≤ y ∈ L
x ≤ y ∈ N
y = 1
x = 0

(See Figure 3).
There is a rather technical extension of Lemma 3.2 which we will employ in Lemmas

3.9 and 3.10. This corollary follows immediately from Lemma 3.2 and Lemma 3.3.

L N

Figure 3N∓N

COROLLARY 3.8. SupposeA is a finite algebra andα ≤ β, γ ≤ δ are congruences
on A. If α ∨ γ = 1A andβ ∧ δ = 0A, then there is an algebraA′ on A with ConA′ =
{0A} ∪ [α, β] ∪ [γ, δ] ∪ {1a}.

We will denote the trivial lattice by1.
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LEMMA 3.9. If L is representable, thenL ∓1 is representable.

Proof. Let A be a finite algebra so that ConA ∼= L . We can assume thatA is unary.
List the elements ofA asA = {r1, . . . , rn}. Let C = {l1, . . . , ln}, B = C ∪ A, and define
three equivalence relations,α, β, andγ on B so that:α = C2 ∪ 1A, β = C2 ∪ A2, and
γ identifiesli andri for eachi and nothing else. Note thatβ ∧ γ = 0B andα ∨ γ = 1B .
Since the entire lattice of equivalence relations onB is the congruence lattice of an algebra
onB, Corollary 3.8 now tells us that there is an algebraB1 onB with ConB1 = {0B, 1B} ∪
[α, β] ∪ {γ }. There is a lattice isomorphism of the lattice of equivalence relations onA and
the interval [α, β] given byθ 7→ θ̄ whereθ̄ = θ ∪ C2.

We can extend any operationp of A to an operation̄p on B by definingp̄(ri) = p(ri)

and p̄(li) = lj if and only if p(ri) = rj . Let F be the set of allp̄ wherep is a basic
operation ofA.

DefineB to be the algebra onB with the operations ofB1 along with the operations
in F . Then ConB is contained in ConB1. We first notice thatγ ∈ ConB. To do so, we
simply need to establish thatγ is closed under the operations inF . Let p̄ ∈ F . Suppose
〈x, y〉 ∈ γ . If x = y, then it is trivial that〈p̄(x), p̄(y)〉 ∈ γ . If x 6= y, then we can assume
thatx = li andy = ri for somei. For somej , it must be that〈p̄(x), p̄(y)〉 = 〈lj , rj 〉 ∈ γ .
Thusγ is closed under the operations ofF and, hence under all of the operations ofB.

We claim that for any equivalence relationθ̄ in [α, β], θ̄ ∈ ConB if and only ifθ ∈ ConA.
Suppose first thatθ ∈ ConA. We show that̄θ is preserved by the operations ofB. Again,
we need only concern ourselves with the operations inF . Supposep̄ ∈ F and〈x, y〉 ∈ θ̄ .
Either 〈x, y〉 ∈ C2 or 〈x, y〉 ∈ θ . If 〈x, y〉 ∈ C2, then 〈p̄(x), p̄(y)〉 is contained in
C2 ⊆ θ̄ sinceC is closed under the operations inF . If 〈x, y〉 ∈ θ then〈p̄(x), p̄(y)〉 =
〈p(x), p(y)〉 ∈ θ ⊆ θ̄ . This shows that ifθ ∈ ConA then θ̄ ∈ ConB. To establish
the reverse implication, we use the contrapositive. Supposeθ /∈ ConA. There is some
operationp of A so thatθ is not closed underp. It follows immediately that̄θ is not closed
underp̄, and soθ̄ is not in ConB. We have that

ConB = {0B, 1B, γ } ∪ {θ̄ : θ ∈ ConA}.
It is easy to check that this is isomorphic toL ∓ 1. ¨

LEMMA 3.10. SupposeL1 andL2 are finite lattices.L1 ∓ L2 is representable if and
only if L1 andL2 are representable.

Proof. If L1∓ L2 is representable, then both ofL1 andL2 are by Lemma 3.4. Suppose
that L1 andL2 are both representable. By the previous lemma,L1 ∓ 1 andL2 ∓ 1 are
representable. Letai be the point incomparable toL i in L i ∓ 1. Let 1i and 0i be the
greatest and least elements ofL i . Within (L1∓ 1)× (L2∓ 1)

〈11, a2〉 ∧ 〈a1, 12〉 = 〈01, 02〉 and〈01, a2〉 ∨ 〈a1, 02〉 = 〈11, 12〉.
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By Corollary 3.8, the sublattice of(L1∓ 1)× (L2∓ 1) consisting of the elements

{〈11, 12〉, 〈01, 02〉} ∪ [〈01, a2〉, 〈11, a2〉] ∪ [〈a1, 02〉, 〈a1, 12〉]
is representable. It is not difficult to see that this sublattice is isomorphic toL1∓ L2. ¨

4. An example

In this section, we apply the tools we have developed so far to show that any finite lattice
which contains no three element antichains is representable. This provides an example of
how the tools we have developed can be applied, but we note that the techniques of [6] can
also be used to prove this result. We also note that every lattice which contains no three
element antichains can be embedded into a subdirect power ofN5 [4].

Supposes andt are positive integers. ByNs,t we mean the parallel sum of ans-element
chain with at-element chain. Since every finite distributive lattice is representable [8],
Lemma 3.10 immediately gives us:

LEMMA 4.1. EveryNs,t is representable.

We are now ready for:

THEOREM 4.2. Every finite lattice which contains no three element antichains is
representable.

Proof. LetL be a finite lattice with no three-element antichains. We show by induction on
the size ofL thatL is representable. The reader can find examples to show that every lattice
with fewer than 6 elements is representable. Therefore, suppose|L | ≥ 6 and that every
lattice smaller thanL which does not contain a three element antichain is representable.

Suppose first thatL has a single atoma. LetL ′ be the interval inL abovea. L ′ is clearly
smaller thanL and has no three element antichains. By inductionL ′ is representable. By
Lemma 3.6,L is representable sinceL ∼= 2⊕a L ′.

Next, suppose thatL has more than one atom. SinceL cannot have a three element
antichain,L has precisely two atomsa andb. If a ∨ b = 1, thenL is isomorphic to some
Ns,t and is representable by Lemma 4.1. Suppose then thatc = a ∨ b < 1. There are two
cases – either everything inL is comparable toc or there is something incomparable toc.

Suppose first that everything inL is comparable toc. Let L1 be the lattice of elements
greater than or equal toc and letL2 be the lattice of elements less than or equal toc. Each of
L1 andL2 is smaller thanL , and neither contains a three element antichain. By induction,
both are representable. SinceL ∼= L2⊕a L1, L is also representable by Lemma 3.6.

Suppose now that there are elements ofL incomparable toc. SinceL contains no three
element antichains, the set of elements incomparable toc must form a chain. By finiteness,
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we can select the greatest elementd incomparable toc. The elementd must exceed either
a or b (not both sincec = a ∨ b). Without loss of generality, assume thatd > a. Let
a′ = d ∧ c. Notice thatc must covera′ since any element strictly betweena′ andc must
be incomparable both tod andb – and sinceL contains no three element antichains. Our
latticeL now looks like the lattice in Figure 4.

1

0

a

a'

d

c

b

Figure 4 The laticeL in Theorem 4.2.

Let L1 = [a′, 1], and letL2 = [0, c]. By induction again each of these lattices is
representable, so the latticeL1×L2 is representable by Lemma 3.5. Definef : L → L1×L2

by f (x) = 〈x ∨ a′, x ∧ c〉. It is routine to check thatf is a lattice injection. Therefore, the
image

f (L) = ([a′, d] × {a}) ∪ ([c, 1]× {c}) ∪ ({a′} × [0, a′]) ∪ ({c} × [b, c])

is isomorphic toL . If

M = {x ∈ L1× L2 : x ≥ 〈a′, a′〉 or x ≤ 〈c, c〉},

then

f (L) = {x ∈ M : x ≥ 〈c, b〉 or r ≤ 〈d, a′〉}.

SinceL1× L2 is representable, it follows from Lemma 3.2 thatM , f (L), and henceL are
all representable. ¨
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5. OPC lattices and subdirect powers

A lattice isorder polynomially complete (or OPC) if every order preserving operation
on the lattice is a polynomial of the lattice. While OPC lattices are special, they arise
naturally when considering the finite congruence representation problem. Every finite
simple lattice whose atoms join to the maximal element is OPC [10]. This includes all
equivalence relation lattices on finite sets, and it includes all of the latticesMn (which many
believe will hold special significance in the solution to this problem [7]).

Supposeσ(x1, x2) is a primitive positive formula with two free variables which involves
only the relation symbolsr1, . . . , rn – all binary. Suppose also thatA is any finite set.
We can think ofσ as defining ann-ary operation on the set of binary relations ofA. If
rA
1 , . . . , rA

n are binary relations onA, then the operation would map〈rA
1 , . . . , rA

n 〉 to the
relation defined onA when eachri in σ is interpreted asrA

i . We will denote this relation as
σ(rA

1 , . . . , rA
n ). If σ is such thatσ(rA

1 , . . . , rA
n ) is an equivalence relation when eachrA

i is,
thenσ actually defines an operation on Eq(A) (the lattice of equivalence relations onA).
If G is the graph ofσ , then this operation is essentially the graphical compositionPG,x1,x2

of [9]. Since this operation must necessarily be order preserving, and since Eq(A) is OPC,
the operation defined byσ could be realized as a polynomial of the lattice Eq(A). This
observation is the basis of:

THEOREM 5.1. SupposeA is a finite set. There is a set P of polynomials of
〈Eq(A),∧,∨〉 so that any0–1 lattice L of equivalence relations on A is the congruence
lattice of an algebra on A if and only ifL is closed under the operations in P.

Proof. SupposeA is a finite set. Letσ be any primitive positive formula with two free
variables involving the relation symbolsr1, . . . , rn. If rA

1 , . . . , rA
n are equivalence relations

onA, thenσ(rA
1 , . . . , rA

n ) is necessarily reflexive. Defineσ ′ by

σ ′(x1, x2)←→ σ(x1, x2) ∧ σ(x2, x1).

Thenσ ′ is (equivalent to) a primitive positive formula and involves only the binary relation
symbolsr1, . . . , rn. If rA

1 , . . . , rA
n are equivalence relations onA, thenσ ′(rA

1 , . . . , rA
n ) is

reflexive and symmetric. Definêσ by

σ̂ (x1, x|A|)←→ ∃x2, . . . , x|A|−1

|A|−1∧
i=1

σ ′(xi, xi+1).

Then σ̂ is (equivalent to) a primitive positive formula and involves only the binary rela-
tion symbolsr1, . . . , rn. If rA

1 , . . . , rA
n are equivalence relations onA, thenσ̂ (rA

1 , . . . , rA
n )

is an equivalence relation. Moreover, ifσ(rA
1 , . . . , rA

n ) is an equivalence relation, then
σ̂ (rA

1 , . . . , rA
n ) andσ(rA

1 , . . . , rA
n ) are equal. The operation on Eq(A) defined byσ̂ is order
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preserving, so we can find ann-ary polynomialpσ of 〈Eq(A),∧,∨〉so thatpσ (rA
1 , . . . , rA

n )=
σ̂ (rA

1 , . . . , rA
n ) for any equivalence relationsrA

1 , . . . , rA
n onA. Let P be the set of all such

pσ for every binary primitive positive formulaσ involving only binary relation symbols.
It should now be clear that a lattice of equivalence onA is closed under primitive positive
definitions if and only if it is closed under the operations inP . ¨

We can use the idea of interpolating the operation on an equivalence relation lattice
defined by a primitive positive formula to approach the representability of diagonal subdirect
powers of OPC lattices. Adiagonal subdirect powerof an algebraA is a subdirect power
which contains the diagonal relation.

THEOREM 5.2. SupposeL is a finite representable lattice. IfL is OPC, then every
diagonal subdirect power ofL is also representable.

Proof. Let A be a finite algebra for which there is an isomorphismf : L → ConA.
SupposeM is a diagonal sublattice ofLn. Within Eq(An), consider the latticeN of
equivalence relations of the form

∏n
i=1θi where eachθi ∈ ConA. N is closed under

primitive positive definitions which yield equivalence relations (it is congruence lattice of
the non-indexed product ofn copies ofA). We will view the members ofN asn-tuples
of elements from ConA. Allowing f to act coordinate-wise onLn gives an isomorphism of
Ln with N . The restriction of this isomorphism toM gives an isomorphic copyM of M in
N which contains the diagonal relation. We will show thatM is closed under all primitive
positive definitions which yield equivalence relations.

Supposeσ is a primitive positive formula involving the binary relation symbolsr1, . . . , rm.
Supposeθ1, . . . , θm are members ofM. We will assumeθi = 〈θi

1, . . . , θ
i
n〉. Suppose that

τ = σ(θ1, . . . , θm) is an equivalence relation onAn. We need to showτ ∈ M. Since
N is closed under primitive positive definitions,τ ∈ N . Henceτ = 〈τ1, . . . , τn〉 for
someτ1, . . . , τn ∈ ConA. Also, σ must act coordinate-wise, so thatτi = σ(θi

1, . . . , θ
i
m).

The assignment〈θi
1, . . . , θ

i
m〉 7→ τi must be order preserving since it comes from a prim-

itive positive definition. SinceL is OPC andL ∼= ConA, ConA is also OPC. There-
fore, there is anm-ary polynomialp on ConA which interpolates the assignment – that is
p(θi

1, . . . , θ
i
m) = τi for eachi. Thus there is a lattice termt and elementsc1, . . . , ck ∈

ConA so that tConA(θ i
1, . . . , θ

i
m, c1, . . . , ck) = τi for each i. For i = 1, . . . , k, let

c̄i = 〈ci, ci, . . . , ci〉 (n coordinates). ThentEq(An)(θ1, . . . , θm, c̄1, . . . , c̄k) = τ . Since
M contains the diagonal, eachc̄i is in M. SinceM also contains eachθi and is a sub-
lattice of Eq(An), it follows thatτ ∈ M as desired.M is closed under the appropriate
primitive positive definitions and, hence, is the congruence lattice of an algebra onAn.
SinceM ∼= M , we have thatM is representable. ¨

Since every subdirect power of2contains the diagonal, and since every finite distributive
lattice is a subdirect power of2, this theorem gives as a corollary the well known fact that
every finite distributive lattice is representable.
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6. The future

We believe there is potential for extending the methods we have begun to explore here.
We want to mention some possibilities in this section.

To begin with, a glaring omission from the list of constructions we have formed is
homomorphisms. It should be useful to know that the class of representable finite lattices
is closed under homomorphisms. The techniques of tame congruence theory might lend
themselves to this pursuit. SupposeA is a finite algebra andp is an idempotent unary
polynomial ofA. Tame congruence theory provides an algebra on the image ofp whose
congruence lattice is a homomorphic image of ConA. For a discussion of tame congruence
theory, see [2].

Theorem 5.1 shows that the study of which lattices of equivalence relations on a finite set
A are congruence lattices of algebras onA can be reduced to the study of the subalgebras of
an algebra〈Eq(A), P 〉where the operations inP are certain polynomials of the equivalence
relation lattice. This observation would be more useful if we could describe the polyno-
mials included inP . OPC lattices work well in Theorem 5.2 because in an OPC lattice,
polynomials can be found to interpolate any order preserving operation. The truth is that we
do not need to be able to interpret any order preserving operation – only those arising from
primitive positive formulas. Thus a study of the operations arising from primitive positive
formulas and interpolation on finite lattices should be able to extend Theorem 5.2 to larger
classes of finite lattices.

A corollary of Lemma 3.5 is that the class of non-representable finite lattices is closed
under products. It might be useful to find operations under which this class is closed. For
example, a proof that the class of non-representable finite lattices is closed under subintervals
would show that the class is empty (since1 and2 are subintervals of any nontrivial lattice).
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