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A constructive approach to the finite congruence
lattice representation problem

JOHN W. SNOW

Abstract. A finite lattice isrepresentableif it is isomorphic to the congruence lattice of a finite algebra. In

this paper, we develop methods by which we can construct new representable lattices from known ones. The
techniques we employ are sufficient to show that every finite lattice which contains no three element antichains is
representable. We then show that if an order polynomially complete lattice is representable then so is every one
of its diagonal subdirect powers.

1. Introduction

One of the most elusive longstanding problems in Universal Algebra is the finite congru-
ence representation problem: “Is every finite lattice isomorphic to the congruence lattice of
afinite algebra?” Call afinite lattice which is isomorphic to the congruence lattice of a finite
algebraepresentable We begin here to construct a list of operations under which the class
of representable lattices is closed. The motivation is quite simple. In [7]aRadid Tma
provide a construction on lattices so that any class of lattices which contains all Boolean
lattices and is closed under their construction is the class of all lattices. This is then used
to show that every finite lattice can be embedded in the lattice of equivalence relations on
a finite set. A similar theorem which could be applied to the class of representable lattices
would be the ultimate goal. More realistically, we might hope to develop operations by
which we can construct new representable lattices from known ones, thereby enlarging the
class of lattices known to be representable. The constructions covered herein are sufficient
to prove that every finite lattice which contains no three element antichains is representable.
We note that many of the tools we develop here, though unpublished, were known to P.
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2. Primitive positive formulas

Call a subuniverse of a direct power of an algebcapatible relation on the algebra.
To begin with, we need to know when a system of relations on a finite set is the system of
all finitary compatible relations of a finite algebra. There are many such characterizations,
we choose to use the following model theoretic characterization.

Call afirst order formula of the for@a (atomic) aprimitive positive formula. Suppose
A is any set and is a primitive positive formula using relation symbels ..., r,. Let
rit, ..., r} be relations o so thatr; has the same rank ag for eachi. Interpreting
eachr; in o aSriA defines a relatiom“ on the universe oA. A setR of relations onA
is closed under primitive positive definitionsif every relationo4 defined in this manner
using only relations fronR is already inR. It is an easy exercise to show that the system
of finitary compatible relations on an algebra is closed under primitive positive definitions.
In the finite case, the reverse is also true:

LEMMA 2.1. [1, 5] Suppose that is a finite set andR is a collection of finitary
relations onA. There is an algebr& on A for whichR is the set of all finitary compatible
relations if and only ifR is closed under primitive positive definitions and contdins

We are concerned here with congruences, so we can isolate our attention to sets of equiv-
alence relations. Lemma 2.1 has this immediate consequence about congruence lattices:

COROLLARY 2.2. SupposeC is a 0—1lattice of equivalence relations on a finite set
A. There is an algebrd on A with ConA = £ if and only if every equivalence relation on
A which can be defined frori by a primitive positive formula is already ifi.

Of course, a similar corollary would hold for any special type of compatible relation:
tolerances, endomorphisms, homomorphisms between direct powers. It will be to our
advantage to have a standard form for primitive positive formulas. This can be easily done.
SinceL in Corollary 2.2 must contain the identity and universal relations, we can always
choose our primitive positive formulas to be of a special form:

COROLLARY 2.3. SupposeC is a 0-1lattice of equivalence relations on a finite set
A. There is an algebr& on A with ConA = L if and only if £ contains every equivalence
relation onA definable by primitive positive formulas of the form

o(x1, x2) «— Axz,..xn J\ Sij(xinx))

i,j<n

where each; ; € L.
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We note here that equivalence relations have many faces. They are sets, but they are
also relations. As such, sometimes it is convenient to use set notation to denote inclusion—
(x,y) € @« — and other times it is useful to use more model theoretic notatieay-or
a(x, y). Lattices also have more than one face. Sometimes, we will be working with
lattices of equivalence relations. In these cases, we will use scripted fextte refer to
the lattices. Whenever we are working with a lattice which is not necessarily a lattice of
equivalence relations, we will use bold faced text.—

3. The tools

There is an intimate relationship between primitive positive formulas using only binary
relation symbols and certain graphs. This relationship is essential to our first two lemmas.
Suppose is a primitive positive formula containing the variablas. . ., x,. By thegraph
of o we mean the grap& whose vertices are labeled, .. ., x, so that for each, j < n
there is an edge betweepandx; labeled byr if and only if 7 (x;, x;) is included in the
conjunction ino. For example, it is defined by

o (x1, x2) <— 3x3, x4[r (x1, x3) A s(x1, x4) A t(x3, x4) A u(x3, x2) A v(x4, X2)]

then the graph of would look like the graph in Figure 1.

Figure 1 The graph of

Supposer (x1, x2) is a primitive positive formula involving binary relation symbols
ri, ..., r, and thatG is the graph ob. Suppose is a finite set and that, ..., r? are
equivalence relations oA. Leto4 be the relation om obtained by interpretting each
aSrl.A. In the language of [9]74 is the relation obtained from the graphical composition of
ri, ..., r2 andG associated with the labelling of the edgén G by r ([9] uses directed
graphs, but this is not necessary if we are only using equivalence relations). Furthermore,
every such graphical composition can be realized through a primitive positive formula. Thus
Corollary 2.2 is equivalent to Theorem 2.6 of [9] which says that the lattices of equivalence
relations on a finite set are those lattices of equivalence relations which are closed under all

graphical compositions.
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LEMMA 3.1. Supposex < § are equivalence relations on a finite sét Leto be a
binary relation onA defined by

O'(XJ_,XZ) > 3x39---7-xn /\ si,j(xl'sxj)

i,j,<n

where each; ; € {o, 8}. Theno € {«, B} ando = « if and only if there is a path of
a-edges fromx1 to x2 in the graph of.

Proof. The lemma is trivial ifa = B, so assume < B. It should be clear that
a < o < B. Ifthere is a path labeled hy connectingr1 andxs in the graph ofr, then
it follows immediately that (x1, x2) impliesa(x1, x2). Thus we would have < «, and
hences = a. Assume then that there is no such path. We will showahat 8. This will
establish the lemma. We know already that 8. We showthap < o. Suppose, b € A
andpB(a, b). Let G be the graph o with all of the 8-edges removed. For=1,...,n
define:

| a if x; isin theG-component ofi;
Y= b else

For alli, j < n, we claim thats; ;(y;, y;) holds. Since everything here fsrelated,
we just need to show thaf ; (y;, y;) holds whens; ; = «. Whens; ; = « the vertices
x; andx; are in the same component@f so by definitiony; = y;. Hences; ;(yi, y;) is
trivial. Since/\ivjsn si,j (yi, y;) holds, it follows thatr (y1, y2). Buty; = a andy, = b,
S0o (a, b) holds. Thus8 < o, so actually = o. O

In this lemma, the fact that € {«, 8} can easily be seen by other methods. What is
essential for us is the conclusion regarding paths in the graph &fis vital for the next
lemma.

LEMMA 3.2. Supposé is a finite algebra andr and 8 are equivalence relations on
A. There is an algebr&’ on A with

CoMA' = {x e COMA : x < aor x > B}.

Proof. If « = 14 or B8 = Qy4, then this is trivial. Assume then that< 14 andg > 04.
LetL ={x € CorA : x < aorx > B}. We will show that is closed under primitive
positive definitions which yield equivalence relations 4nDefine a binary relatiop on
A by

px1, x2) «— xz, ..., x0 [\ rij(xi, x))

i,j,<n
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where each; ; € £. Suppose that is an equivalence relation oh. We need to show that
p € L. Note thatp € ConA since Co® is closed under the appropriate primitive positive
defintions.

For each, j < n define:

a rij<a rij =
Si,j :{ L= and ti,j :{ ﬂ tJ _ﬂ

14 else 04 else
Also define:
o(x1,x2) <—> 3Jx3, ..., X, /\ si (X, xj)
i,j,<n
and
T(x1, x2) <—> dx3,..., X, /\ tij (xi, xj).
i,j<n

Sincet; ; <r;; <s; ;foralli, j <n,wehaver < p < o. We will show that eithet = g
oro = «. Sincep € ConA, this will establish thap € £ as desired. From Lemma 3.1, we
know thatzr € {04, 8}. Assume that # 8. From the lemma, there is a path in the graph
of T connectingr1 andx2 with every edge labeled bys0 Therefore, there is a path in the
graph ofp from x1 to x2 with every edge labeled by an equivalence relation beldgince
every equivalence relation il is either belowx or aboveg). It follows that in the graph
of o there is a path connecting andx, whose edges are labeled with From Lemma
3.1, we can conclude that= «. O

The next lemma is almost obvious:

LEMMA 3.3. Supposé andB are algebras on a sed. There is an algebr& on A
so thatConC = ConA N CorB. O

We will make extensive use of Lemma 3.2 a little later. However, we first concern our-
selves with the fact that the class of finite representable lattices is closed under subintervals.

LEMMA 3.4. The class of representable lattices is closed under subintervals.

Proof. Supposel is a finite representable lattice. Find a finite algeBraso that
CorA = L. Supposer < b in ComA. LetC = A/a andd = b/a. The interval [@, 0]
is isomorphic as a lattice to the interval, p]. If & = 1¢, then we are done. Assume,
therefore, tha# < 1¢, and letH,, ..., H,, be the equivalence classesofFor any binary
relationo C 0, leto’ = o N H? (thatis,o’ is the restriction o to H;). Let B = [/, H;,
and defineF : [0¢, 6] — Eq(B) by F (o) = [[/L,0'. Let N = F([Oc, 6]).
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Notice first that for any equivalence relationsr < 6 onC we haves < t if and only
if 0! < ti foralli. Itfollows thatF is a lattice injection, and/ is isomorphic as a lattice to
the interval fz, b]. Also notice that\/ is a 0-1 lattice of equivalence relations BnHence
we need only show that there is an algeBran B with CorB = A/. To do this we show
that\V is closed under all primitive positive definitions which happen to yield equivalence
relations onB. Suppose is a binary relation orB given by:

p(x1,x2) <— 3x3, ..., Xy /\ ri i (Xi, xj)
i,j,<n

where each; ; € NV. For each, j < n, we can finds; ; < 6 in ConC so that

m
k
rij=F(si )= Hsiyj'

k=1
For eachk = 1, ..., m, definer* on Hy by:
k k
(X1, x2) <—> 3dx3, ..., X, /\ si’j(xi,xj).
i,j<n
Also, defines on C by
o(x1,x2) <> Ix3, ..., x, /\ sij(xi, xj).
i,j<n

It is not difficult to see that* = o for eachk since all of the relations present in the
definition ofe must hold within individuab classes. Alsgp = []{-,z¥ is not hard to see.
Thus

Suppose is an equivalence relation. Sinpe= ]_[leo", it follows that eacto* is also
an equivalence relation. It is routine to show thais an equivalence relation — since in
each case of reflexivity, symmetry, and transitivity we can isolate our attention to a single
equivalence class @fand thus work with one of the*. Thuso is an equivalence relation
on C defined using primitive positive definitions involving only members of Cdess
thané, soo € ConC ando < 6. Hencep = [[{_ 0% = F(o) is a member of\'. We
have established thaf is closed under primitive positive definitions yielding equivalence
relations. SinceV is isomorphic as a lattice to the original interval p], this interval is
representable. O
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It follows from a result of Kurzweil [3] that the class of finite representable lattices is self-
dual. This fact provides a much simpler (though not self-contained) proof of Lemma 3.4.
We choose to state our proof because we believe that the connection used herein between
equivalence relations any’_, H; and equivalence relations ¢f,_, Hx might prove useful
in attempting to show that the class of representable lattices is closed under subdirect
products. Notice that the intervald00] in the proof induces through restriction a lattice of
equivalence relations on eaéh. The representation which is found for this interval in the
proof is actually a subdirect product of these induced lattices. We will return to subdirect
products in Section 5.

Since the congruence lattice of the non-indexed product of two algébaa®d B is
isomorphic to CoA x CorB, and since any two latticds andN can be embedded as
intervals in the produdt x N, we immediately have:

LEMMA 3.5. Supposé& andN are finite latticesL x N is representable if and only if
bothL andN are representable. O

We next tackle ordinal sums and things that look like ordinal sums. Suppasel N
are lattices. We will denote the lattice obtained from the ordinal sudN by identifying
the least element of the upper lattice with the greatest element of the loephWN (see
Figure 2).

a0

N
N
L L

o’

Figure 2L @, N (left) andL & N (right).
LEMMA 3.6. Supposé. andN are finite lattices.L @, N is representable if and only
if L andN are representable.

Proof. If L ¢, N is representable, thdn andN are representable by Lemma 3.4 (as
subintervals). SuppodeandN are representable. Notice tHatp, N is isomorphic to the
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sublattice of (the representable lattite)x N containing the elements
freLxN:x<(,0) orx > (10)}.
By lemma 3.2, this sublattice is also representable. O

COROLLARY 3.7. Supposé. andN are finite lattices.L & N is representable if and
only if L andN are representable.

Proof. If L & N is representable, thdnandN are representable by Lemma 3.4. Ret
be the two element lattice (which is representable). Supbas&lN representable. Since
LeNZ=(L e, 2 @, N, itfollows thatL & N is representable by Lemma 3.6. O

Supposé. andN are lattices. We define a new latticer N which we call theparallel

sum of L and N. The universe of. = N is the disjoint union of. andN along with two
new elements which we will denote here as 0 and 1. The ordersrN is given by:

elL
eN

1A IA

y
y
<
X <y<«— 1
0

=< = =

(See Figure 3).
There is a rather technical extension of Lemma 3.2 which we will employ in Lemmas
3.9 and 3.10. This corollary follows immediately from Lemma 3.2 and Lemma 3.3.

Figure 3NEN

COROLLARY 3.8. Suppose is a finite algebra andr < 8, y < § are congruences
onA.lfavy =14 andB A § = 04, then there is an algebrA’ on A with ConA’ =

{OA} ) [Ol, ﬂ] ) [)/, 8] ) {10}-

We will denote the trivial lattice byl.
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LEMMA 3.9. If L is representable, thelnh F1 is representable.

Proof. Let A be a finite algebra so that Cén= L. We can assume thét is unary.
List the elements oA asA = {r1,...,r,}. LetC ={l1,...,1,}, B= C U A, and define
three equivalence relations, 8, andy on B so that.o = C2U A4, f = C2U A2, and
y identifies/; andr; for eachi and nothing else. Note thatA y = Og anda v y = 13.
Since the entire lattice of equivalence relationsiois the congruence lattice of an algebra
on B, Corollary 3.8 now tells us that there is an algeBiaon B with CorB; = {Op, 15} U
[a, BlU{y}. There is a lattice isomorphism of the lattice of equivalence relations amd
the interval fr, 8] given by — 6 whered = 6 U C2.

We can extend any operatignof A to an operatiorp on B by definingp(r;) = p(r;)
andp(l;) = I; ifand only if p(r;) = r;. Let F be the set of allp wherep is a basic
operation ofA.

Define B to be the algebra o® with the operations oB; along with the operations
in F. Then Com is contained in CoB;. We first notice thayy € ConB. To do so, we
simply need to establish thatis closed under the operationsin Let p € F. Suppose
(x,y) € y. If x =y, thenitis trivial that{ p(x), p(y)) € y. If x # y, then we can assume
thatx = /; andy = r; for somei. For somej, it must be thatp(x), p(y)) = (I}, r;) € y.
Thusy is closed under the operations Bfand, hence under all of the operationBof

We claim that for any equivalence relatiéin [«, 8], § € CorBifand onlyifd € ConA.
Suppose first that € ConA. We show thab is preserved by the operationsBf Again,
we need only concern ourselves with the operations.irsuppose € F and(x, y) € 6.
Either (x,y) € C2or (x,y) € 6. If (x,y) € C?, then(p(x), p(y)) is contained in
C2 C f sinceC is closed under the operations # If (x, y) € 6 then(p(x), p(y)) =
(p(x), p(y)) € 6 C . This shows that i € CorA thend e CorB. To establish
the reverse implication, we use the contrapositive. SuppogeCorA. There is some
operationp of A so tha® is not closed undep. It follows immediately thad is not closed
underp, and sd is not in CorB. We have that

CorB = {0, 15, ¥y} U {0 : 6 € ConA}.

It is easy to check that this is isomorphicltor 1. O

LEMMA 3.10. Supposé 1 andL , are finite lattices.L 1 = L 2 is representable if and
only if L1 andL » are representable.

Proof. If L1 F L2 is representable, then bothlof andL ; are by Lemma 3.4. Suppose
thatL, andL 2 are both representable. By the previous lemima 1 andL, 1 are
representable. Let; be the point incomparable to; in L; + 1. Let 3; and Q be the
greatest and least elementd.of Within (L1 F1) x (L2 F 1)

(11, a2) A (a1, 12) = (01, 02) and(0q, a2) V (a1, 02) = (11, 1o).
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By Corollary 3.8, the sublattice ¢f.1 + 1) x (L2 1) consisting of the elements

{(11, 12), (01, 02)} U [(O1, a2), (11, a2)] U [(a1, 02), (a1, 12)]

is representable. It is not difficult to see that this sublattice is isomorplhig tpL,. O

4. Anexample

In this section, we apply the tools we have developed so far to show that any finite lattice
which contains no three element antichains is representable. This provides an example of
how the tools we have developed can be applied, but we note that the techniques of [6] can
also be used to prove this result. We also note that every lattice which contains no three
element antichains can be embedded into a subdirect povey [f.

Suppose andr are positive integers. By, ; we mean the parallel sum of arelement
chain with az-element chain. Since every finite distributive lattice is representable [8],
Lemma 3.10 immediately gives us:

LEMMA 4.1. EveryN;; is representable.

We are now ready for:

THEOREM 4.2. Every finite lattice which contains no three element antichains is
representable.

Proof. LetL be afinite lattice with no three-element antichains. We show by induction on
the size oL thatL is representable. The reader can find examples to show that every lattice
with fewer than 6 elements is representable. Therefore, supgphpse 6 and that every
lattice smaller thah which does not contain a three element antichain is representable.

Suppose first thdt has a single atom. LetL’ be the interval i abovea. L’ is clearly
smaller tharl. and has no three element antichains. By inductibis representable. By
Lemma 3.6L is representable sintce= 2@, L'.

Next, suppose thdt has more than one atom. Sincecannot have a three element
antichainL has precisely two atomsandb. If a v b = 1, thenL is isomorphic to some
N, and is representable by Lemma 4.1. Suppose therthat v b < 1. There are two
cases — either everything inis comparable te or there is something incomparablecto

Suppose first that everything inis comparable te. LetL 1 be the lattice of elements
greater than or equal toand letl ; be the lattice of elements less than or equal tBach of
L1 andL 2 is smaller thari., and neither contains a three element antichain. By induction,
both are representable. Since= L, @, L1, L is also representable by Lemma 3.6.

Suppose now that there are elementk @icomparable te. SincelL contains no three
element antichains, the set of elements incomparakietost form a chain. By finiteness,
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we can select the greatest eleméimcomparable te. The element/ must exceed either

a or b (not both sincec = a Vv b). Without loss of generality, assume that- a. Let

a’ = d A c. Notice thatc must covel’ since any element strictly betweehandc must

be incomparable both @ andb — and sincd. contains no three element antichains. Our
latticeL now looks like the lattice in Figure 4.

0

Figure 4 The laticd& in Theorem 4.2.

LetL1 = [d/,1], and letL, = [0, c]. By induction again each of these lattices is
representable, sothe latticex L 2 is representable by Lemma 3.5. DefifielL — LixLs
by f(x) = (x va’, x Ac). Itisroutine to check thaf is a lattice injection. Therefore, the
image

FL) =(d'.d] x {ah U ([c, 1] x {c}) U ({fa'} x [0,a]) U (fc} x [b, c])
is isomorphic td_. If
M={xelLyixLa:x>{(d,d)orx <{c,c)},

then
fLy=xeM:x>(cb)orr <{d,a’)}.

Sincel 1 x Ly is representable, it follows from Lemma 3.2 tivif £ (L), and hencé are
all representable. O
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5. OPC lattices and subdirect powers

A lattice isorder polynomially complete (or OPC) if every order preserving operation
on the lattice is a polynomial of the lattice. While OPC lattices are special, they arise
naturally when considering the finite congruence representation problem. Every finite
simple lattice whose atoms join to the maximal element is OPC [10]. This includes all
equivalence relation lattices on finite sets, and it includes all of the latlggsvhich many
believe will hold special significance in the solution to this problem [7]).

Suppose (x1, x2) is a primitive positive formula with two free variables which involves

only the relation symbolsy, ..., r, — all binary. Suppose also that is any finite set.
We can think ofo as defining am-ary operation on the set of binary relationsAf If
rit, ..., are binary relations o, then the operation would map', ..., r2) to the
relation defined o when each; in o is interpreted asiA. We will denote this relation as
o(rt,....rM. If oissuchthat (', ..., ) is an equivalence relation when eaghis,

theno actually defines an operation on Eqj((the lattice of equivalence relations k).
If G is the graph o, then this operation is essentially the graphical composi®en, .,
of [9]. Since this operation must necessarily be order preserving, and sig4¢ B@PC,
the operation defined by could be realized as a polynomial of the lattice(By This
observation is the basis of:

THEOREM 5.1. SupposeA is a finite set. There is a set P of polynomials of
(Eq(A), A, V) so that any0—1 lattice £ of equivalence relations on A is the congruence
lattice of an algebra on A if and only £ is closed under the operations in P.

Proof. Suppose is a finite set. Let be any primitive positive formula with two free
variables involving the relation symbols ..., r,. If ri, ..., r2 are equivalence relations
onA, theno (r;, ..., ) is necessarily reflexive. Defing by

o'(x1, x2) <— o (x1, X2) A 0 (x2, X1).

Theno' is (equivalent to) a primitive positive formula and involves only the binary relation
symbolsry, ..., r,. If v, ..., 1 are equivalence relations ofy theno’ (v}, ..., /) is
reflexive and symmetric. Define by

|Al-1
G (x1, x)4)) <— np, ..., xj4-1 /\ o’ (xi, Xi11).
i=1
Theng is (equivalent to) a primitive positive formula and involves only the binary rela-
tion symbolsr1, ..., r,. If rf, e r,f‘ are equivalence relations on then&(rf, e r,’:‘)
is an equivalence relation. Moreover,oi(rf, ...,r}) is an equivalence relation, then
6@, ... ,rMando(rfl, ..., /') are equal. The operation on &) defined by6 is order
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preserving, sowe can find arary polynomialp, of (Eq(A), A, V) sothatp, (rf, o=

&(rit, ..., r for any equivalence relationg', ..., r/! on A. Let P be the set of all such
po for every binary primitive positive formula involving only binary relation symbols.
It should now be clear that a lattice of equivalencedois closed under primitive positive

definitions if and only if it is closed under the operationgPin O

We can use the idea of interpolating the operation on an equivalence relation lattice
defined by a primitive positive formula to approach the representability of diagonal subdirect
powers of OPC lattices. Aiagonal subdirect powerof an algebra is a subdirect power
which contains the diagonal relation.

THEOREM 5.2. Supposd. is a finite representable lattice. If is OPC, then every
diagonal subdirect power df is also representable.

Proof. Let A be a finite algebra for which there is an isomorphigm L — ConA.
SupposeM is a diagonal sublattice df”. Within Eq(A™), consider the latticeV' of
equivalence relations of the forf[;_,6; where eact¥; € CorA. N is closed under
primitive positive definitions which yield equivalence relations (it is congruence lattice of
the non-indexed product af copies ofA). We will view the members af\" asn-tuples
of elements from CoA. Allowing f to act coordinate-wise do” gives an isomorphism of
L™ with A/. The restriction of this isomorphism M gives an isomorphic copyt of M in
N which contains the diagonal relation. We will show thtis closed under all primitive
positive definitions which yield equivalence relations.

Suppose is a primitive positive formulainvolving the binary relation symbals. . ., r,,.
Suppos@?, ..., 6™ are members oM. We will assume)’ = (91', ..., 0l). Suppose that
T = o(0L,...,0™) is an equivalence relation of". We need to show € M. Since
N is closed under primitive positive definitions, e N. Hencer = (11,..., 1) for
somery, ..., 1, € CorA. Also, s must act coordinate-wise, so that= o (6}, ..., 0}).
The assignmen®;, ..., 0,) — t; must be order preserving since it comes from a prim-
itive positive definition. Sincd. is OPC andL = ConA, ConA is also OPC. There-
fore, there is am-ary polynomialp on CorA which interpolates the assignment — that is

p(@i,...,00) = 1 for eachi. Thus there is a lattice termand elementsy, ..., c; €
ConA so thattC™ @i, ..., 0l c1,...,cx) = 7 for eachi. Fori = 1,...,k, let
¢ = (ci,ci,...,ci) (n coordinates). ThenFd4) @1 . o™ &, ... &) = . Since

M contains the diagonal, ea¢his in M. SinceM also contains eac#f and is a sub-
lattice of EqA™), it follows thatt € M as desired. M is closed under the appropriate
primitive positive definitions and, hence, is the congruence lattice of an algebaA&.on
SinceM = M, we have thaM is representable. O

Since every subdirect power®tontains the diagonal, and since every finite distributive
lattice is a subdirect power & this theorem gives as a corollary the well known fact that
every finite distributive lattice is representable.
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6. The future

We believe there is potential for extending the methods we have begun to explore here.
We want to mention some possibilities in this section.

To begin with, a glaring omission from the list of constructions we have formed is
homomorphisms. It should be useful to know that the class of representable finite lattices
is closed under homomorphisms. The techniques of tame congruence theory might lend
themselves to this pursuit. Suppo&ds a finite algebra ang is an idempotent unary
polynomial of A. Tame congruence theory provides an algebra on the imagendfose
congruence lattice is a homomorphic image of BoRor a discussion of tame congruence
theory, see [2].

Theorem 5.1 shows that the study of which lattices of equivalence relations on a finite set
A are congruence lattices of algebrastoan be reduced to the study of the subalgebras of
an algebrdEq(A), P) where the operations iR are certain polynomials of the equivalence
relation lattice. This observation would be more useful if we could describe the polyno-
mials included inP. OPC lattices work well in Theorem 5.2 because in an OPC lattice,
polynomials can be found to interpolate any order preserving operation. The truth is that we
do not need to be able to interpret any order preserving operation — only those arising from
primitive positive formulas. Thus a study of the operations arising from primitive positive
formulas and interpolation on finite lattices should be able to extend Theorem 5.2 to larger
classes of finite lattices.

A corollary of Lemma 3.5 is that the class of non-representable finite lattices is closed
under products. It might be useful to find operations under which this class is closed. For
example, aproofthatthe class of non-representable finite lattices is closed under subintervals
would show that the class is empty (sirfcend2 are subintervals of any nontrivial lattice).
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