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1. Introduction

In [6] Márki and Pöschel define an algebra A to be endoprimal if every opera-
tion on A which is preserved by every endomorphism of A is a term operation.
They then prove that a distributive lattice D is endoprimal if and only D
is not relatively complemented. In proving that if D is endoprimal, then D
is not relatively complemented, Márki and Pöschel use the contrapositive.
Assuming that D is relatively complemented, they construct a ternary term
operation f on D which is preserved by every endomorphism of D but which
is not a term operation. With their construction, it is clear that f is not a
term operation because f does not preserve the order of D. Since every term
operation of a lattice must be order preserving, it seems natural to consider
operations which are not only preserved by endomorphisms but which are
also order preserving. Therefore, we define a lattice L to be order endoprimal
if every order preserving operation on L which is preserved by all endomor-
phisms of L is a term operation. In [4] and [3], Davey, Haviar, and Priestly
prove that every finite distributive lattice is dualised by its endomorphisms
and order. It follows that every finite distributive lattice is order endoprimal.
We prove that every lattice in the variety generated by N5 (including all
distributive lattices) is order endoprimal.

2. Preliminaries

In this section, after we give some basic definitions, we use a result of Hegedűs
and Pálfy to give conditions based on join endomorphisms for an operation p
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on a finite lattice to be a term operation (Theorem 2.4). We then give some
technical results about join endomorphisms which we will need within proofs
in later sections. We close the section with a result (Lemma 2.11) about order
preserving operations preserved by endomorphisms which will be critical to
our work with N5 later.

For basic concepts, notation, and terminology related to universal al-
gebra and lattice theory, we direct the reader to [7]. We will always call the
least and greatest elements of a lattice (if they exist) 0 and 1, respectively.
When we say that a lattice has a 0 (or 1) we mean that the lattice has a least
(greatest) element which is denoted 0 (1).

Suppose that p is an operation on a finite lattice L. For each positive n,
p induces an operation pLn

on Ln which is p applied coordinatewise. We will
usually abuse notation and refer to these operations in direct powers also as
p. If a subset R of L is closed under p, then we will say that p preserves R.
The familiar Galois connection between relations and operations on a finite
set declares that p is a term operation of L if and only if p preserves every
subuniverse of every finite direct power of L [8]. Moreover, since L has a
majority operation, these subuniverses of direct powers are all generated by
the subuniverses of L2 [2, 1]. It follows that:

Lemma 2.1. Suppose that L is a finite lattice. An operation p on L is a term
operation of L if and only if p preserves every subuniverse of L2.

Suppose that p is an idempotent, order preserving n-ary operation on a
lattice L and that a < b ∈ L. If x1, . . . , xn are in the interval between a and
b, then

a = p(a, a, . . . , a) ≤ p(x1, x2, . . . , xn) ≤ p(b, b, . . . , b) = b

This proves that:

Lemma 2.2. Suppose that L is a lattice and that p is an idempotent, order
preserving operation on L. Every bounded interval in L is closed under p.

Hegedűs and Pálfy in [5] give the following characterization of sublat-
tices of the square of a lattice as intersections of special sublattices.

Lemma 2.3. ([5] Lemma 4.7) Let L1 and L2 be arbitrary lattices and let L
be a sublattice of L1 × L2. Define

L′1 = {x ∈ L1 : (∃b ∈ L2)〈x, b〉 ∈ L}
L′2 = {y ∈ L2 : (∃a ∈ L1)〈a, y〉 ∈ L}
L∗1 = {〈x, y〉 ∈ L1 × L2 : (∃〈a, b〉 ∈ L)(x ≤ a and b ≤ y)}
L∗2 = {〈x, y〉 ∈ L1 × L2 : (∃〈a, b〉 ∈ L)(x ≥ a and b ≥ y)}.

Then L = (L′1×L2)∩(L1×L′2)∩L∗1∩L∗2. Moreover, if L is a 0-1 sublattice, then
L∗1 and L∗2 are subdirect products in L1×L2 with 〈0, 1〉 ∈ L∗1 and 〈1, 0〉 ∈ L∗2.

According to Lemma 2.1, to know whether or not an operation p on
a finite lattice M is a term operation, we must know whether or not the
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sublattices of M2 are closed under p. Corollary 2.4 shows that we actually
only have to concern ourselves with certain special sublattices. We note that
the proof of this theorem is identical to the proof of Theorem 4.8 of [5].

Corollary 2.4. (See [5] Theorem 4.8) Let M be a finite lattice and let p :
Mn → M be an idempotent operation on M. Then p is a term operation
of M if and only if p preserves every subdirect product in M2 containing
({0} ×M) ∪ (M× {1}).

Proof. Suppose that p is an idempotent operation which preserves every sub-
direct product in M2 containing ({0}×M)∪(M×{1}). First, {〈x, y〉 : x ≤ y}
is a sublattice of M2 containing ({0}×M)∪(M×{1}), so p is order preserving.
According to Lemma 2.1, we need only show that every sublattice of M2 is
closed under p. In order to do so, we will use Lemma 2.3. First we prove that
that all sublattices of M are closed under p. Suppose that L is a sublattice of
M. Let L′ be L∪{0, 1} (it may be that L = L′). For each a ∈M, let a′ be the
smallest element of L′ greater than or equal to a. Let L′′ = {〈a, b〉 : a′ ≤ b}.
L′′ is a sublattice of M2 containing ({0} ×M) ∪ (M× {1}), and so is closed
under p. Now, L′′ ∩ {〈a, a〉 : a ∈ M} = {〈a, a〉 : a ∈ L′} is closed under
p (since applying p to diagonal elements must yield a diagonal element). It
follows then that L′ is closed under p. Now, L is an interval in L′, and p is
an idempotent, order preserving operation on L′, so L is closed under p by
Lemma 2.2. We have shown that every sublattice of M is closed under p.

Now let L be a sublattice of M2. Let L′ = L ∪ {〈0, 0〉, 〈1, 1〉}. Taking
L1 = M and L2 = M we can apply Lemma 2.3 to L′ ⊆ L1 ×L2. Let L′1, L′2,
L∗1, and L∗2 be as in Lemma 2.3. The lattices M, L′1, and L′2 are closed under
p since they are sublattices of M. Since L∗1 is a subdirect product containing
〈0, 1〉, it follows that L∗1 contains ({0}×M)∪(M×{1}) and is closed under p.
Since L∗2 is a subdirect product containing 〈1, 0〉, it follows that L∗2 contains
({1}×M)∪(M×{0}). Then the converse of L∗2 contains ({0}×M)∪(M×{1})
and is closed under p. Since the converse of L∗2 is closed under p, so is L∗2.
Thus L∗1 and L∗2 are closed under p. Now L′ = (L′1×L2)∩ (L1×L′2)∩L∗1∩L∗2
is closed under p. Since p is idempotent and order preserving, and since L is
an interval in L′, L is also closed under p by Lemma 2.2.

We have now proven that every sublattice of L2 is closed under p. Since
L has a majority term, p must be a term operation of L by Lemma 2.1. �

Definition 2.5. Let M be a finite lattice. If e is a join endomorphism of M
fixing 0, define e↑ = {〈x, y〉 : e(x) ≤ y}. If L is a sublattice of M2 containing
({0} ×M) ∪ (M× {1}), then define eL : M→M so that eL(x) is the least y
with 〈x, y〉 ∈ L.

The next two lemmas demonstrate the connection between the Hegedűs
and Pálfy sublattices and join endomorphisms.

Lemma 2.6. Suppose that M is a finite lattice. If L is a sublattice of M2

containing ({0} ×M) ∪ (M × {1}), then eL is a join endomorphism of M
which fixes 0 and (eL)↑ = L.
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Proof. Suppose that M is a finite lattice and that L is a sublattice of M2

containing ({0} ×M) ∪ (M × {1}). To simplify notation, we write e for eL.
We will prove that e is a join endomorphism of M. Let x, y ∈ M. By the
definition of eL, we know that 〈x, e(x)〉 and 〈y, e(y)〉 are in L. Therefore,
〈x ∨ y, e(x) ∨ e(y)〉 ∈ L. It now follows that e(x ∨ y) ≤ e(x) ∨ e(y). On the
other hand, since 〈x, 1〉 and 〈x ∨ y, e(x ∨ y)〉 are in L, then also

〈x, e(x ∨ y)〉 = 〈x, 1〉 ∧ 〈x ∨ y, e(x ∨ y)〉 ∈ L.

Therefore, e(x) ≤ e(x ∨ y). Similarly, e(y) ≤ e(x ∨ y). Thus e(x) ∨ e(y) ≤
e(x∨y) must also be true. Since e(x∨y) ≤ e(x)∨e(y) and e(x)∨e(y) ≤ e(x∨y),
then e(x)∨ e(y) = e(x∨ y). This is true for all x, y ∈ L, so e = eL is actually
a join homomorphism. That e(0) = 0 follows from the assumption that L
contains {0} ×M.

Next we prove that e↑ = L. Suppose first that 〈x, y〉 ∈ L. Then e(x) ≤ y
by the definition of eL = e. Therefore, 〈x, y〉 ∈ e↑. This proves L ⊆ e↑. On the
other hand, let 〈a, b〉 ∈ e↑. This implies that e(a) ≤ b. By our assumptions,
〈0, b〉 ∈ L and 〈a, e(a)〉 ∈ L. Therefore, L also contains 〈0, b〉 ∨ 〈a, e(a)〉 =
〈a, b〉. This proves that e↑ ⊆ L and completes the proof that these sets are
equal. �

Lemma 2.7. Suppose that M is a finite lattice. If e is a join endomorphism of
M which fixes 0, then e↑ is a sublattice of M2 containing ({0}×M)∪(M×{1})
and e

e
↑ = e.

Proof. Suppose that M is a finite lattice and that e is a join endomorphism
of M which fixes 0. Let x ∈M. Then e(0) = 0 ≤ x, so 〈0, x〉 ∈ e↑. This proves
that e↑ contains {0} ×M. On the other hand, if x ∈ M, then e(x) ≤ 1, so
〈x, 1〉 ∈ e↑. This shows that e↑ contains M×{1}. We now need to prove that
e↑ is a sublattice of M2. To that end, let 〈x, y〉, 〈a, b〉 ∈ e↑. This means that
e(x) ≤ y and e(a) ≤ b. Then e(x∨a) = e(x)∨e(a) ≤ y∨b so 〈x∨a, y∨b〉 ∈ e↑,
and e↑ is closed under joins. Also, by the order preserving nature of e, we
know that e(x ∧ a) ≤ e(x) and e(x ∧ a) ≤ e(a). This implies that e(x ∧ a) ≤
e(x) ∧ e(a) ≤ y ∧ b so 〈x ∧ a, y ∧ b〉 ∈ e↑. Thus e↑ is also closed under meets
and is, therefore, a sublattice of M2.

Now we prove that ee↑ = e. If x ∈M, then ee↑(x) is the least y so that
〈x, y〉 ∈ e↑. From the definition of e↑, this is the least y so that e(x) ≤ y.
Clearly, the least such y is e(x). Therefore, ee↑(x) = e(x). �

Corollary 2.4 along with Lemmas 2.6 and 2.7 now combine to give us
this characterization of term operations on a finite lattice.

Theorem 2.8. Let M be a finite lattice and let p be an idempotent operation
on M. Then p is a term operation of M if and only if p preserves every
sublattice of M2 of the form e↑ where e is a join endomorphism of M fixing
0.

The ↑ operator interacts nicely with joins and intersections.
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Lemma 2.9. Suppose that M is a finite lattice and that e and f are join
endomorphisms of M fixing 0. Then the pointwise join e ∨ f is a join endo-
morphism of M fixing 0 and (e ∨ f)↑ = e↑ ∩ f↑.

Proof. That e ∨ f is a join homomorphism of M fixing 0 should be clear.
Suppose that 〈x, y〉 ∈ (e ∨ f)↑. This means that e(x) ∨ f(x) ≤ y. Therefore,
e(x) ≤ y and e(x) ≤ y, so 〈x, y〉 is in e↑ ∩ f↑. Thus (e ∨ f)↑ ⊆ e↑ ∩ f↑. Now
suppose that 〈a, b〉 ∈ e↑ ∩ f↑. This means that e(a) ≤ b and f(a) ≤ b. It
follows then that e(a)∨f(a) ≤ b and 〈a, b〉 ∈ (e∨f)↑. Thus (e∨f)↑ = e↑∩f↑
as desired. �

When the range of a join endomorphism e contains only 1 or 2 elements,
e↑ takes on a simple form.

Lemma 2.10. Suppose that M is a finite lattice. If e is a join endomorphism
of M which fixes 0 and if the range of e contains at most two elements, then
e↑ is the union of a filter and an ideal in M2.

Proof. If the range of e contains exactly one element, then that one element
must be 0 since e fixes 0. Then

e↑ = M2 = {〈x, y〉 ∈M2 : 〈x, y〉 ≤ 〈1, 1〉} ∪ {〈x, y〉 ∈M2 : 〈0, 0〉 ≤ 〈x, y〉}.

Thus, e↑ is the union of a filter and an ideal when the range of e has only
one element.

Assume next that the range of e contains exactly two elements. One of
these must be 0 (since e fixes 0). The other must be e(1), since if e(1) = 0
then e would be constantly 0 by its order preserving nature. Let a be the
largest element of M so that e(a) = 0, and let b = e(1). Since the range of e
is {0, b}, and since e is order preserving, then e(x) = 0 if and only if x ≤ a.
Let

L = {〈x, y〉 ∈M2 : 〈x, y〉 ≤ 〈a, 1〉} ∪ {〈x, y〉 ∈M2 : 〈0, b〉 ≤ 〈x, y〉}.

We prove that e↑ = L. Suppose first that 〈x, y〉 ∈ L. If 〈x, y〉 ≤ 〈a, 1〉, then
x ≤ a. It follows that e(x) ≤ e(a) = 0, so e(x) = 0 ≤ y. This places 〈x, y〉
in e↑. Suppose on the other hand that 〈0, b〉 ≤ 〈x, y〉 and that 〈x, y〉 6≤ 〈a, 1〉.
This implies that x 6≤ a, so e(x) 6= 0. Since the range of e is {0, b}, it must be
that e(x) = b ≤ y. Thus, 〈x, y〉 ∈ e↑. In either case, 〈x, y〉 ∈ e↑, and L ⊆ e↑.

Now suppose that 〈x, y〉 ∈ e↑. If e(x) = 0, then x ≤ a and 〈x, y〉 ≤ 〈a, 1〉.
This would place 〈x, y〉 in L. On the other hand, if e(x) 6= 0, then e(x) = b.
Since 〈x, y〉 ∈ e↑, b = e(x) ≤ y. This means that 〈0, b〉 ≤ 〈x, y〉, so 〈x, y〉 ∈ L.
In either case, 〈x, y〉 ∈ L, and e↑ ⊆ L. We have proven that e↑ = L, so e↑ is
the union of a filter and an ideal. �

Lemma 2.11. Suppose that

(1) L is a finite lattice,
(2) There is a homomorphism from L onto the two element lattice, and
(3) p is an order preserving operation on L which is preserved by endomor-

phisms.
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Then every sublattice of L or of L2 which is the union of a filter and an ideal
is closed under p.

Proof. First, since every element of L is the range of a constant endomor-
phism which must preserve p, it follows that p is idempotent. We next prove
that p induces an isomorphic structure on every two element sublattice of L
and every two element sublattice of L2. Since L has a surjective homomor-
phism onto the two element lattice, there is an endomorphism f of L whose
image is {0, 1} (the bottom and top of L). Notice that since f maps onto
{0, 1} and since f must be order preserving, f must fix 0 and 1. Since p is
preserved by endomorphisms, and since the range of f is {0, 1}, we know that
{0, 1} is closed under p. Suppose now that a < b in L. Let e : {0, 1} → {a, b}
be given by e(0) = a and e(1) = b. The map e ◦ f is an endomorphism of
L onto {a, b} which must preserve p. The restriction of e ◦ f to {0, 1} is an
isomorphism of 〈{0, 1}, p〉 and 〈{a, b}, p〉. However, the restriction of e ◦ f to
{0, 1} is just e since f fixes 0 and 1. Thus, every two element sublattice of L
is closed under p, and the induced algebra on any two element sublattice is
isomorphic to 〈{0, 1}, p〉 with the natural ordering.

Next, we turn our attention to two element sublattices of L2. Suppose
that 〈a, b〉 < 〈c, d〉 in L2. Then {a, c} and {b, d} are two element sublattices of
L. We know that these two element sets are closed under p and that p induces
isomorphic structures on them via a 7→ b and c 7→ d. Then {〈a, b〉, 〈c, d〉} is the

graph of the isomorphism from {a, c} to {b, d} and is closed under pL2

. The
projection to the first coordinate is an isomorphism of {〈a, b〉, 〈c, d〉} with
{a, c} under p, which is isomorphic to 〈{0, 1}, p〉. Thus every two element

sublattice of L2 is closed under pL2

, and the structures induced on these two
element sublattices are isomorphic to 〈{0, 1}, p〉.

We now know that p induces a structure isomorphic to 〈{0, 1}, p〉 on
every two element sublattice of L and every two element sublattice of L2.
Before we can finish with the proof, we need to describe this structure. Sup-
pose that p is n-ary. Let A be the collection of all subsets B of {1, 2, . . . , n}
for which there exist x1, x2, . . . , xn ∈ {0, 1} so that p(x1, x2, . . . xn) = 0 and
B = {i : xi = 0}. The set A completely determines the behavior of p on
2-element sublattices. By the definition of A, if x1, x2, . . . , xn ∈ {0, 1} then
p(x1, x2, . . . , xn) = 0 if and only if {i : xi = 0} ∈ A. Also, since p induces
an isomorphic structure on every two element sublattice, if r < s ∈ L (or
L2), and if x1, x2, . . . , xn ∈ {r, s}, then p(x1, x2, . . . , xn) = r if and only if
{i : xi = r} ∈ A.

Next, we prove that if B ∈ A, and if B ⊆ C ⊆ {1, 2, . . . , n}, then
C ∈ A. Suppose that b1, b2, . . . , bn, c1, c2, . . . , cn ∈ {0, 1} so that B = {i :
bi = 0} and C = {i : ci = 0}. If some bi is equal to 0, then i ∈ B ⊆ C so
ci = 0 also. This means that ci ≤ bi for all i. Since {0, 1} is closed under p,
then p(c1, c2, . . . , cn) ∈ {0, 1}. Since p is order preserving, p(c1, c2, . . . , cn) ≤
p(b1, b2, . . . , bn). Since B ∈ A, p(b1, b2, . . . , bn) = 0. Therefore, it must be that
p(c1, c2, . . . , cn) = 0 and C ∈ A as desired.
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We are now ready to prove the lemma. Suppose that a, b ∈ L (or L2)
and let

M = {x : x ≤ a} ∪ {x : b ≤ x}.
We will prove that M is closed under p. Let y1, y2, . . . , yn ∈ M. For each
i ∈ {1, 2, . . . , n}, define

xi =

{
b b ≤ yi

0 else
and zi =

{
a yi ≤ a

1 else.

Now, let u = p(x1, . . . , xn), v = p(y1, . . . , yn), and w = p(z1, . . . , zn). We will
prove v ∈ M. Since xi ≤ yi ≤ zi for each i, we have that u ≤ v ≤ w. We
will argue that either w = a (in which case v ≤ a) or u = b (in which case
b ≤ v). This will force v ∈ M. Suppose that u 6= b. Since {0, b} is closed
under p, this means that u = 0. Since 0 = u = p(x1, . . . , xn), it has to be that
{i : xi = 0} ∈ A by the arguments above. Suppose that xi = 0. This means
that b 6≤ yi. Since yi ∈ M, it has to be that yi ≤ a. In this case, zi = a.
This shows that {i : xi = 0} ⊆ {i : zi = a}. Since {i : xi = 0} ∈ A, we
know then that {i : zi = a} ∈ A. By the arguments above this implies that
a = p(z1, z2, . . . , zn) = w. Thus, we have proven that either u = b or w = a.
Therefore, either v ≤ w = a or b = u ≤ v, so v ∈M as desired. Thus, every
sublattice of L (or L2) which is the union of an ideal and a filter is closed
under p. �

3. Distributive lattices

As an example using Theorem 2.8, we prove this lemma characterizing the
term operations of the two element lattice. This characterization has been
known at least since Post [9].

Lemma 3.1. The term operations on the two element lattice are precisely the
idempotent, order preserving operations.

Proof. Let L be the two element lattice with elements 0 < 1. Note that
every lattice term opeartion must be idempotent and order preserving, so
we need only prove that every idempotent, order preserving operation is a
term operation. Let p be such an operation on L. L has exactly two join
endomorphisms which fix 0:

e
0 7→ 0
1 7→ 0

and
f

0 7→ 0
1 7→ 1

Note that e↑ = L2 is preserved by every operation on L, so it is preserved
by p. On the other hand, f↑ = {〈x, y〉 : x ≤ y〉 is just the order relation on
L and is preserved by p since we are assuming that p is order preserving. By
Theorem 2.8, we can conclude that p is a term operation of L. �
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We can now use this characterization of term operations in the two
element lattice to prove that every distributive lattice is order endoprimal.
Note that every finite distributive lattice is order endoprimal follows from
the results on dualisability in [4] and [3].

Theorem 3.2. Every distributive lattice is order endoprimal.

Proof. Suppose that L is a distributive lattice, and suppose that p is an n-ary
order preserving operation on L which is preserved by all endomorphisms.
We need to prove that p is a term operation of L. Let M be any two element
sublattice of L. Since L is in the variety generated by M and since M is
subdirectly irreducible, L can be embedded into a direct power of M. This
implies that there is a family of homomorphisms {ej : j ∈ J} from L to M
whose kernels intersect to the identity. Since M is subdirectly irreducible,
and since the ejs separate points in M, there is some ei which is injective
on M. This means that ei restricts to an automorphism of M. The only
automorphism of M is the identity, so ei is the identity on M.

Now we consider the operation p. Since every element of L is the range of
a constant endomorphism of L, and since p is preserved by endomorphisms, p
must be idempotent. Every ej is an endomorphism of L, so every ej preserves
p. Since M is the range of ei, and since ei preserves, p, M is closed under p.
This means that the restriction of p to M is an idempotent, order preserving
operation on M. Now by Lemma 3.1, there is a lattice term T so that pM =
TM. If x1, x2, . . . , xn ∈ L, then for all ej ,

ej(p
L(x1, x2, . . . , xn)) = pM(ej(x1), ej(x2), . . . , ej(xn))

= TM(ej(x1), ej(x2), . . . , ej(xn))

= ej(T
L(x1, x2, . . . , xn)).

Since this is true for all ej , and since the kernels of the ej intersect to the
identity, it follows that pL(x1, x2, . . . , xn) = T L(x1, x2, . . . , xn), so p is equal
to a term operation on all of L. �

4. The variety generated by N5

We are now ready to address term operations in N5. Our main tool here will
be to use Theorem 2.8, our closure condition involving join endomorphisms.
Almost all of the join endomorphisms we encounter will decompose as joins of
join endomorphisms with two element ranges, and we will be able to employ
Lemmas 2.9, 2.10, and 2.11.

Theorem 4.1. N5 is order endoprimal.

Proof. Suppose that p is an n-ary order preserving operation on N5 which is
preserved by endomorphisms. Since N5 has a homomorphism onto the two
element lattice, we can employ Theorem 2.11. We will use Theorem 2.8 to
prove that p is a term operation of N5. Let e be a join endomorphism of N5

which fixes 0. If e is injective, then e must be the identity (since the identity
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map is the only join automorphism of N5). In this case, e↑ = {〈x, y〉 : x ≤ y}
is closed under p because we assumed that p is order preserving. Assume,
then, that e is not injective. This implies that the range e(N5) of e is a
distributive sublattice of N5. Let J be the elements of e(N5) which are join
prime in e(N5). Since e(N5) is a distributive sublattice of N5, every element
of e(N5) is a join of elements in J . Suppose j ∈ J . Define ej : N5 → N5 by

ej(x) =

{
j j ≤ e(x)

0 else.

Then ej is a join endomorphism of N5 which fixes 0. Since ej has a two
element range, ej

↑ is closed under p by Lemmas 2.10 and 2.11. Also, for any
x ∈ N5, note that

e(x) =
∨
j∈J

j≤e(x)

j =
∨
j∈J

j≤e(x)

ej(x).

Now, if j ∈ J and j 6≤ e(x), then ej(x) = 0, so we can add this ej(x) to the
join without changing the outcome to get

e(x) =
∨
j∈J

j≤e(x)

j =
∨
j∈J

j≤e(x)

ej(x) =
∨
j∈J

ej(x).

It follows, then, that e =
∨

j∈J ej . By Lemma 2.9,

e↑ =
⋂
j∈J

ej
↑.

Since each ej
↑ is closed under p, we now know that e↑ is closed under p. We

now have shown that if e is any join endomorphism fixing 0 then e↑ is closed
under p. By Theorem 2.8, it follows that p is a term operation of N5. �

The subdirect irreducibility of N5 allows us to extend Theorem 4.1 to
all lattices in the variety generated by N5. This proof will be almost identical
to the proof of Theorem 3.2.

Theorem 4.2. Every lattice in the variety generated by N5 is order endopri-
mal.

Proof. Suppose that L is a lattice in the variety generated by N5 and that p
is an n-ary order preserving operation on L which is preserved by endomor-
phisms. We prove that p is a term operation of L. If L is distributive, then p
is a term operation of L by Theorem 3.2. Suppose that L is not distributive.
Since L is in the variety generated by N5 and since L is not distributive, L
contains a sublattice N which is isomorphic to N5. Since L is in the vari-
ety generated by N5

∼= N and since N is subdirectly irreducible, L can be
embedded into a direct power of N. This implies that there is a family of
homomorphisms {ej : j ∈ J} from L to N whose kernels intersect to the
identity. Since N is subdirectly irreducible, and since the ejs separate points
in N, there is some ei which is injective on N. This means that ei restricts
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to an automorphism of N. The only automorphism of N is the identity, so ei
is the identity on N.

Now we consider the operation p. Every ej is an endomorphism of L,
so every ej preserves p. Since N is the range of ei, and since ei preserves, p,
N is closed under p. Suppose that g is an endomorphism of N. Then g ◦ ei is
an endomorphism of L and preserves p. The restriction of g ◦ ei to N must
then preserve p also. However, since ei is the identity on N, the restriction of
g ◦ ei to N is just g. Thus g preserves p. This is true for all endomorphisms
of N, so the restriction of p to N is an order preserving operation which is
preserved by endomorphisms. By Lemma 4.1, there is a lattice term T so
that pN = TN. If x1, x2, . . . , xn ∈ L, then for all ej ,

ej(p
L(x1, x2, . . . , xn)) = pN(ej(x1), ej(x2), . . . , ej(xn))

= TN(ej(x1), ej(x2), . . . , ej(xn))

= ej(T
L(x1, x2, . . . , xn)).

Since this is true for all ej , and since the kernels of the ej intersect to the
identity, it follows that pL(x1, x2, . . . , xn) = T L(x1, x2, . . . , xn), so p is equal
to a term operation on all of L. �

5. An example and a question

We now give an example to demonstrate that not all finite lattices are order
endoprimal. Let L be a finite simple lattice with more than two elements.
Define a binary operation p on L so that

p(x, y) =

{
x ∨ y 1 ∈ {x, y}
x ∧ y else.

Since L is simple, its only nonconstant endomorphisms are automorphisms.
Every automorphism of L fixes 1, so it is easy to see that p is preserved
by every endomorphism of L. The operation p is also order preserving (and
even idempotent). However, the only binary term operations of any lattice
are meet and join and the projections, and p is none of these. The operation
p is not a term operation of L. Therefore, we immediately have the following
theorem.

Theorem 5.1. No finite simple lattice with more than two elements is order
endoprimal.

This leads naturally to our closing question.

Question 5.2. Which (finite) lattices are order endoprimal?
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